Antiferromagnetic structure in tetragonal CuMnAs thin films
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26602978
PubMed Central
PMC4658521
DOI
10.1038/srep17079
PII: srep17079
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Tetragonal CuMnAs is an antiferromagnetic material with favourable properties for applications in spintronics. Using a combination of neutron diffraction and x-ray magnetic linear dichroism, we determine the spin axis and magnetic structure in tetragonal CuMnAs, and reveal the presence of an interfacial uniaxial magnetic anisotropy. From the temperature-dependence of the neutron diffraction intensities, the Néel temperature is shown to be (480 ± 5) K. Ab initio calculations indicate a weak anisotropy in the (ab) plane for bulk crystals, with a large anisotropy energy barrier between in-plane and perpendicular-to-plane directions.
Diamond Light Source Chilton Didcot Oxfordshire OX11 0DE United Kingdom
Faculty of Mathematics and Physics Charles University Prague 121 16 Prague Czech Republic
Institut Laue Langevin 6 Rue Jules Horowitz 38042 Grenoble France
Institute of Physics ASCR v v i Cukrovarnicka 10 16253 Prague 6 Czech Republic
School of Physics and Astronomy University of Nottingham NG7 2RD United Kingdom
Zobrazit více v PubMed
Barthem V. M. T. S., Colin C. V., Mayaffre H., Julien M. H. & Givord D. Revealing the properties of Mn2Au for antiferromagnetic spintronics. Nature Commun. 4, 2892 (2013). PubMed
Wu H. C. et al.. Mn2Au: body-centered-tetragonal bimetallic antiferromagnets grown by molecular beam epitaxy. Adv. Mater. 24, 6374 (2012). PubMed
Jungwirth T. et al.. Demonstration of molecular beam epitaxy and a semiconducting band structure for I-Mn-V compounds. Phys. Rev. B 83, 035321 (2011).
Beleanu A. et al.. Large resistivity change and phase transition in the antiferromagnetic semiconductors LiMnAs and LaOMnAs. Phys. Rev. B 88, 184429 (2013).
Nogues J. & Schuller I. K. Exchange bias. J. Magn. Magn. Mater. 192, 203–232 (1999).
Shick A. B., Khmelevskyi S., Mryasov O. N., Wunderlich J. & Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010).
Park B. G. et al.. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011). PubMed
Maca F. et al.. Room-temperature antiferromagnetism in CuMnAs. J. Magn. Magn. Mater. 324, 1606–1612 (2012).
Wadley P. et al.. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nature Commun. 4, 2322 (2013). PubMed
Wadley P. et al.. Obtaining the structure factors for an epitaxial film using Cu X-ray radiation. J. Appl. Cryst. 46, 1749–1754 (2013).
Wadley P. et al.. Electrical switching of an antiferromagnet, arXiv:1503.03765 (Science - in press). PubMed
Scholl A., Liberati M., Arenholz E., Ohldag H. & Stohr J. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 92, 247201 (2004). PubMed
Alders D. et al.. Temperature and thickness dependence of magnetic moments in NiO epitaxial films. Phys. Rev. B 57, 11623 (1998).
Haverkort M. W. et al.. Magnetic versus crystal-field linear dichroism in NiO thin films. Phys. Rev. B 69, 020408 (2004).
Chapon L. C. et al.. Wish: The New Powder and Single Crystal Magnetic Diffractometer on the Second Target Station. Neutron News 22, 22–25 (2011).
Telling N. D. et al.. Evidence of local moment formation in Co-based Heusler alloys. Phys. Rev. B 78, 184438 (2008).
Meinert M. et al.. Itinerant and localized magnetic moments in ferrimagnetic Mn2CoGa thin films probed by x-ray magnetic linear dichroism: Experiment and ab initio theory. Phys. Rev. B 84, 132405 (2011).
Freeman A. A. et al.. Giant anisotropy in x-ray magnetic linear dichroism in (Ga,Mn)As. Phys. Rev. B 73, 233303 (2006).
Blaha P., Schwarz K., Madsen G., Kvasnicka D. & Luitz J. WIEN2k: An Augmented Plane Wave + LO Program for Calculating Crystal Properties, TU Wien, Vienna. (2001).
Jeong T., Weht R. & Pickett W. E. Semimetallic antiferromagnetism in the half-Heusler compound CuMnSb. Phys. Rev. B 71, 184103 (2005).
Wang X. D., Wang D. S., Wu R. Q. & Freeman A. J. Validity of the force theorem for magnetocrystalline anisotropy. J. Magn. Magn. Mater. 159, 337–341 (1996).
Perdew J. P., Burke K. & Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865 (1996). PubMed
Wastlbauer G. & Bland J. A. C. Structural and magnetic properties of ultrathin epitaxial Fe films on GaAs(001) and related semiconductor substrates. Adv. Phys. 54, 137–219 (2005).
Hindmarch A. T. Interface magnetism in ferromagnet-compound semiconductor hybrid structures. Spin 1, 45–69 (2011).