Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC

. 2013 ; 73 (6) : 2469. [epub] 20130614

Status PubMed-not-MEDLINE Jazyk angličtina Země Francie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25814864

A search for a standard-model-like Higgs boson in the H→WW and H→ZZ decay channels is reported, for Higgs boson masses in the range 145

1 Physikalisches Institut RWTH Aachen University Aachen Germany

3 Physikalisches Institut A RWTH Aachen University Aachen Germany

3 Physikalisches Institut B RWTH Aachen University Aachen Germany

Academy of Scientific Research and Technology of the Arab Republic of Egypt Egyptian Network of High Energy Physics Cairo Egypt

Baylor University Waco USA

Benemerita Universidad Autonoma de Puebla Puebla Mexico

Bhabha Atomic Research Centre Mumbai India

Bogazici University Istanbul Turkey

Boston University Boston USA

Brown University Providence USA

Brunel University Uxbridge United Kingdom

California Institute of Technology Pasadena USA

Carnegie Mellon University Pittsburgh USA

Centro Brasileiro de Pesquisas Fisicas Rio de Janeiro Brazil

Centro de Investigacion y de Estudios Avanzados del IPN Mexico City Mexico

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas Madrid Spain

Charles University Prague Czech Republic

Chulalongkorn University Bangkok Thailand

CNRS IN2P3 Institut de Physique Nucléaire de Lyon Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne France

Cornell University Ithaca USA

Cukurova University Adana Turkey

Department of Physics University of Helsinki Helsinki Finland

Deutsches Elektronen Synchrotron Hamburg Germany

DSM IRFU CEA Saclay Gif sur Yvette France

European Organization for Nuclear Research CERN Geneva Switzerland

Faculty of Physics and Vinca Institute of Nuclear Sciences University of Belgrade Belgrade Serbia

Fairfield University Fairfield USA

Fermi National Accelerator Laboratory Batavia USA

Florida Institute of Technology Melbourne USA

Florida International University Miami USA

Florida State University Tallahassee USA

Ghent University Ghent Belgium

Helsinki Institute of Physics Helsinki Finland

Imperial College London United Kingdom

INFN Laboratori Nazionali di Frascati Frascati Italy

INFN Sezione di Bari Bari Italy

INFN Sezione di Bari Bari Italy ; Politecnico di Bari Bari Italy

INFN Sezione di Bari Bari Italy ; Università di Bari Bari Italy

INFN Sezione di Bologna Bologna Italy

INFN Sezione di Bologna Bologna Italy ; Università di Bologna Bologna Italy

INFN Sezione di Catania Catania Italy ; Università di Catania Catania Italy

INFN Sezione di Firenze Firenze Italy

INFN Sezione di Firenze Firenze Italy ; Università di Firenze Firenze Italy

INFN Sezione di Genova Genova Italy

INFN Sezione di Genova Genova Italy ; Università di Genova Genova Italy

INFN Sezione di Milano Bicocca Milano Italy

INFN Sezione di Milano Bicocca Milano Italy ; Università di Milano Bicocca Milano Italy

INFN Sezione di Napoli Napoli Italy

INFN Sezione di Napoli Napoli Italy ; Università della Basilicata Napoli Italy

INFN Sezione di Napoli Napoli Italy ; Università di Napoli 'Federico II' Napoli Italy

INFN Sezione di Napoli Napoli Italy ; Università G Marconi Napoli Italy

INFN Sezione di Padova Padova Italy

INFN Sezione di Padova Padova Italy ; Università di Padova Padova Italy

INFN Sezione di Padova Padova Italy ; Università di Trento Padova Italy

INFN Sezione di Pavia Pavia Italy ; Università di Pavia Pavia Italy

INFN Sezione di Perugia Perugia Italy

INFN Sezione di Perugia Perugia Italy ; Università di Perugia Perugia Italy

INFN Sezione di Pisa Pisa Italy

INFN Sezione di Pisa Pisa Italy ; Scuola Normale Superiore di Pisa Pisa Italy

INFN Sezione di Pisa Pisa Italy ; Università di Pisa Pisa Italy

INFN Sezione di Roma Roma Italy

INFN Sezione di Roma Roma Italy ; Università di Roma Roma Italy

INFN Sezione di Torino Torino Italy

INFN Sezione di Torino Torino Italy ; Università del Piemonte Orientale Torino Italy

INFN Sezione di Torino Torino Italy ; Università di Torino Torino Italy

INFN Sezione di Trieste Trieste Italy

INFN Sezione di Trieste Trieste Italy ; Università di Trieste Trieste Italy

Institut für Experimentelle Kernphysik Karlsruhe Germany

Institut für Hochenergiephysik der OeAW Wien Austria

Institut Pluridisciplinaire Hubert Curien Université de Strasbourg Université de Haute Alsace Mulhouse CNRS IN2P3 Strasbourg France

Institute for Nuclear Research and Nuclear Energy Sofia Bulgaria

Institute for Nuclear Research Moscow Russia

Institute for Particle Physics ETH Zurich Zurich Switzerland

Institute for Research in Fundamental Sciences Tehran Iran

Institute for Theoretical and Experimental Physics Moscow Russia

Institute for Universe and Elementary Particles Chonnam National University Kwangju Korea

Institute of Experimental Physics Faculty of Physics University of Warsaw Warsaw Poland

Institute of High Energy Physics and Informatization Tbilisi State University Tbilisi Georgia

Institute of High Energy Physics Beijing China

Institute of Nuclear and Particle Physics NCSR Demokritos Aghia Paraskevi Greece

Institute of Nuclear Research ATOMKI Debrecen Hungary

Institute Rudjer Boskovic Zagreb Croatia

Instituto de Física de Cantabria CSIC Universidad de Cantabria Santander Spain

Istanbul Technical University Istanbul Turkey

Johns Hopkins University Baltimore USA

Joint Institute for Nuclear Research Dubna Russia

Kangwon National University Chunchon Korea

Kansas State University Manhattan USA

KFKI Research Institute for Particle and Nuclear Physics Budapest Hungary

Korea University Seoul Korea

Kyungpook National University Daegu Korea

Laboratoire Leprince Ringuet Ecole Polytechnique IN2P3 CNRS Palaiseau France

Laboratório de Instrumentação e Física Experimental de Partículas Lisboa Portugal

Lappeenranta University of Technology Lappeenranta Finland

Lawrence Livermore National Laboratory Livermore USA

Massachusetts Institute of Technology Cambridge USA

National Central University Chung Li Taiwan

National Centre for Nuclear Research Swierk Poland

National Centre for Particle and High Energy Physics Minsk Belarus

National Centre for Physics Quaid 1 Azam University Islamabad Pakistan

National Institute of Chemical Physics and Biophysics Tallinn Estonia

National Scientific Center Kharkov Institute of Physics and Technology Kharkov Ukraine

National Taiwan University Taipei Taiwan

Northeastern University Boston USA

Northwestern University Evanston USA

P N Lebedev Physical Institute Moscow Russia

Panjab University Chandigarh India

Paul Scherrer Institut Villigen Switzerland

Petersburg Nuclear Physics Institute Gatchina Russia

Physics Department Middle East Technical University Ankara Turkey

Princeton University Princeton USA

Purdue University Calumet Hammond USA

Purdue University West Lafayette USA

Rice University Houston USA

Rutgers The State University of New Jersey Piscataway USA

Rutherford Appleton Laboratory Didcot United Kingdom

Saha Institute of Nuclear Physics Kolkata India

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University Moscow Russia

State Key Laboratory of Nuclear Physics and Technology Peking University Beijing China

State Research Center of Russian Federation Institute for High Energy Physics Protvino Russia

State University of New York at Buffalo Buffalo USA

Sungkyunkwan University Suwon Korea

Tata Institute of Fundamental Research EHEP Mumbai India

Tata Institute of Fundamental Research HECR Mumbai India

Technical University of Split Split Croatia

Texas A and M University College Station USA

Texas Tech University Lubbock USA

The Ohio State University Columbus USA

The Rockefeller University New York USA

The University of Alabama Tuscaloosa USA

The University of Iowa Iowa City USA

The University of Kansas Lawrence USA

Universidad Autónoma de Madrid Madrid Spain

Universidad Autónoma de San Luis Potosí San Luis Potosí Mexico

Universidad de Los Andes Bogota Colombia

Universidad de Oviedo Oviedo Spain

Universidad Iberoamericana Mexico City Mexico

Universidade do Estado do Rio de Janeiro Rio de Janeiro Brazil

Universidade Estadual Paulista São Paulo Brazil

Universidade Federal do ABC São Paulo Brazil

Universität Zürich Zurich Switzerland

Université Catholique de Louvain Louvain la Neuve Belgium

Université de Mons Mons Belgium

Université Libre de Bruxelles Bruxelles Belgium

Universiteit Antwerpen Antwerpen Belgium

University College Dublin Dublin Ireland

University of Athens Athens Greece

University of Auckland Auckland New Zealand

University of Bristol Bristol United Kingdom

University of California Davis Davis USA

University of California Los Angeles USA

University of California Riverside Riverside USA

University of California San Diego La Jolla USA

University of California Santa Barbara Santa Barbara USA

University of Canterbury Christchurch New Zealand

University of Colorado at Boulder Boulder USA

University of Cyprus Nicosia Cyprus

University of Debrecen Debrecen Hungary

University of Delhi Delhi India

University of Florida Gainesville USA

University of Hamburg Hamburg Germany

University of Illinois at Chicago Chicago USA

University of Ioánnina Ioánnina Greece

University of Maryland College Park USA

University of Minnesota Minneapolis USA

University of Mississippi Oxford USA

University of Nebraska Lincoln Lincoln USA

University of Notre Dame Notre Dame USA

University of Puerto Rico Mayaguez USA

University of Rochester Rochester USA

University of Seoul Seoul Korea

University of Sofia Sofia Bulgaria

University of Split Split Croatia

University of Tennessee Knoxville USA

University of Virginia Charlottesville USA

University of Wisconsin Madison USA

Vanderbilt University Nashville USA

Vilnius University Vilnius Lithuania

Vrije Universiteit Brussel Brussel Belgium

Wayne State University Detroit USA

Yerevan Physics Institute Yerevan Armenia

Zobrazit více v PubMed

Glashow S.L. Partial-symmetries of weak interactions. Nucl. Phys. 1961;22:579. doi: 10.1016/0029-5582(61)90469-2. DOI

Weinberg S. A model of leptons. Phys. Rev. Lett. 1967;19:1264. doi: 10.1103/PhysRevLett.19.1264. DOI

Salam A. Weak and electromagnetic interactions. In: Svartholm N., editor. Elementary Particle Physics: Relativistic Groups and Analyticity. 1968. p. 367.

Englert F., Brout R. Broken symmetry and the mass of gauge vector mesons. Phys. Rev. Lett. 1964;13:321. doi: 10.1103/PhysRevLett.13.321. DOI

Higgs P.W. Broken symmetries, massless particles and gauge fields. Phys. Lett. 1964;12:132.

Higgs P.W. Broken symmetries and the masses of gauge bosons. Phys. Rev. Lett. 1964;13:508. doi: 10.1103/PhysRevLett.13.508. DOI

Guralnik G.S., Hagen C.R., Kibble T.W.B. Global conservation laws and massless particles. Phys. Rev. Lett. 1964;13:585. doi: 10.1103/PhysRevLett.13.585. DOI

Higgs P.W. Spontaneous symmetry breakdown without massless bosons. Phys. Rev. 1966;145:1156. doi: 10.1103/PhysRev.145.1156. DOI

Kibble T.W.B. Symmetry breaking in non-Abelian gauge theories. Phys. Rev. 1967;155:1554. doi: 10.1103/PhysRev.155.1554. DOI

ALEPH Collaboration. DELPHI Collaboration. L3 Collaboration. OPAL Collaboration. the LEP Working Group for Higgs boson searches Search for the standard model Higgs boson at LEP. Phys. Lett. B. 2003;565:61. doi: 10.1016/S0370-2693(03)00614-2. DOI

CDF Collaboration. D0 Collaborations Combination of Tevatron searches for the standard model Higgs boson in the WW decay mode. Phys. Rev. Lett. 2010;104:061802. doi: 10.1103/PhysRevLett.104.061802. PubMed DOI

Evans L., Bryant P. LHC machine. J. Instrum. 2008;3:S08001. doi: 10.1088/1748-0221/3/08/S08001. DOI

CMS Collaboration Combined results of searches for the standard model Higgs boson in pp collisions at [Formula: see text] Phys. Lett. B. 2012;710:26. doi: 10.1016/j.physletb.2012.02.064. DOI

ATLAS Collaboration Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B. 2012;716:1. doi: 10.1016/j.physletb.2012.08.020. DOI

CMS Collaboration Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B. 2012;716:30. PubMed

CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at [Formula: see text] (2013). Submitted to J. High Energy Phys. arXiv:1303.4571

Dicus D.A., Mathur V.S. Upper bounds on the values of masses in unified gauge theories. Phys. Rev. D. 1973;7:3111. doi: 10.1103/PhysRevD.7.3111. DOI

Veltman M.J.G. Second threshold in weak interactions. Acta Phys. Pol. B. 1977;8:475.

Lee B.W., Quigg C., Thacker H.B. Weak interactions at very high-energies: the role of the Higgs boson mass. Phys. Rev. D. 1977;16:1519. doi: 10.1103/PhysRevD.16.1519. DOI

Lee B.W., Quigg C., Thacker H.B. The strength of weak interactions at very high-energies and the Higgs boson mass. Phys. Rev. Lett. 1977;38:883. doi: 10.1103/PhysRevLett.38.883. DOI

Passarino G. WW scattering and perturbative unitarity. Nucl. Phys. B. 1990;343:31. doi: 10.1016/0550-3213(90)90593-3. DOI

Chanowitz M.S., Gaillard M.K. The TeV physics of strongly interacting W’s and Z’s. Nucl. Phys. B. 1985;261:379. doi: 10.1016/0550-3213(85)90580-2. DOI

Duncan M.J., Kane G.L., Repko W.W. WW physics at future colliders. Nucl. Phys. B. 1986;272:517. doi: 10.1016/0550-3213(86)90234-8. DOI

Dicus D.A., Vega R. WW production from pp collisions. Phys. Rev. Lett. 1986;57:1110. doi: 10.1103/PhysRevLett.57.1110. PubMed DOI

Bagger J., et al. CERN LHC analysis of the strongly interacting WW system: gold-plated modes. Phys. Rev. D. 1995;52:3878. doi: 10.1103/PhysRevD.52.3878. PubMed DOI

Ballestrero A., et al. How well can the LHC distinguish between the SM light Higgs scenario, a composite Higgs and the Higgsless case using VV scattering channels? J. High Energy Phys. 2009;11:126. doi: 10.1088/1126-6708/2009/11/126. DOI

Low I., Lykken J., Shaughnessy G. Singlet scalars as Higgs imposters at the Large Hadron Collider. Phys. Rev. D. 2011;84:035027. doi: 10.1103/PhysRevD.84.035027. DOI

Low I., Lykken J., Shaughnessy G. Have we observed the Higgs (Imposter)? Phys. Rev. D. 2012;86:093012. doi: 10.1103/PhysRevD.86.093012. DOI

Branco G.C., et al. Theory and phenomenology of two-Higgs-doublet models. Phys. Rep. 2012;516:1. doi: 10.1016/j.physrep.2012.02.002. DOI

Craig N., Scott T. Exclusive signals of an extended Higgs sector. J. High Energy Phys. 2012;11:083. doi: 10.1007/JHEP11(2012)083. DOI

B. Patt, F. Wilczek, Higgs-field portal into hidden sectors (2006). arXiv:hep-ph/0605188

CMS Collaboration The CMS experiment at the CERN LHC. J. Instrum. 2008;3:S08004. doi: 10.1088/1748-0221/3/08/S08004. DOI

Alioli S., et al. NLO vector-boson production matched with shower in POWHEG. J. High Energy Phys. 2008;07:060. doi: 10.1088/1126-6708/2008/07/060. DOI

Nason P. A new method for combining NLO QCD with shower Monte Carlo algorithms. J. High Energy Phys. 2004;11:040. doi: 10.1088/1126-6708/2004/11/040. DOI

Frixione S., Nason P., Oleari C. Matching NLO QCD computations with parton shower simulations: the POWHEG method. J. High Energy Phys. 2007;11:070. doi: 10.1088/1126-6708/2007/11/070. DOI

Gao Y., et al. Spin determination of single-produced resonances at hadron colliders. Phys. Rev. D. 2010;81:075022. doi: 10.1103/PhysRevD.81.075022. DOI

Sjöstrand T., Mrenna S., Skands P.Z. PYTHIA 6.4 physics and manual. J. High Energy Phys. 2006;05:026. doi: 10.1088/1126-6708/2006/05/026. DOI

Anastasiou C., Boughezal R., Petriello F. Mixed QCD-electroweak corrections to Higgs boson production in gluon fusion. J. High Energy Phys. 2009;04:003. doi: 10.1088/1126-6708/2009/04/003. DOI

de Florian D., Grazzini M. Higgs production through gluon fusion: updated cross sections at the Tevatron and the LHC. Phys. Lett. B. 2009;674:291. doi: 10.1016/j.physletb.2009.03.033. DOI

Baglio J., Djouadi A. Higgs production at the LHC. J. High Energy Phys. 2011;03:055. doi: 10.1007/JHEP03(2011)055. DOI

LHC Higgs cross section working group, Handbook of LHC Higgs cross sections: 1. Inclusive observables. CERN report CERN-2011-002 (2011)

Djouadi A., Spira M., Zerwas P.M. Production of Higgs bosons in proton colliders: QCD corrections. Phys. Lett. B. 1991;264:440. PubMed

Dawson S. Radiative corrections to Higgs boson production. Nucl. Phys. B. 1991;359:283. doi: 10.1016/0550-3213(91)90061-2. DOI

Spira M., et al. Higgs boson production at the LHC. Nucl. Phys. B. 1995;453:17. doi: 10.1016/0550-3213(95)00379-7. DOI

Harlander R.V., Kilgore W.B. Next-to-next-to-leading order Higgs production at hadron colliders. Phys. Rev. Lett. 2002;88:201801. doi: 10.1103/PhysRevLett.88.201801. PubMed DOI

Anastasiou C., Melnikov K. Higgs boson production at hadron colliders in NNLO QCD. Nucl. Phys. B. 2002;646:220. doi: 10.1016/S0550-3213(02)00837-4. PubMed DOI

Ravindran V., Smith J., van Neerven W.L. NNLO corrections to the total cross section for Higgs boson production in hadron-hadron collisions. Nucl. Phys. B. 2003;665:325. doi: 10.1016/S0550-3213(03)00457-7. DOI

Catani S., et al. Soft-gluon resummation for Higgs boson production at hadron colliders. J. High Energy Phys. 2003;07:028. doi: 10.1088/1126-6708/2003/07/028. DOI

Actis S., et al. NLO electroweak corrections to Higgs boson production at hadron colliders. Phys. Lett. B. 2008;670:12. doi: 10.1016/j.physletb.2008.10.018. DOI

Ciccolini M., Denner A., Dittmaier S. Strong and electroweak corrections to the production of Higgs + 2-jets via weak interactions at the LHC. Phys. Rev. Lett. 2007;99:161803. doi: 10.1103/PhysRevLett.99.161803. PubMed DOI

Ciccolini M., Denner A., Dittmaier S. Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC. Phys. Rev. D. 2008;77:013002. doi: 10.1103/PhysRevD.77.013002. DOI

Figy T., Oleari C., Zeppenfeld D. Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion. Phys. Rev. D. 2003;68:073005. doi: 10.1103/PhysRevD.68.073005. DOI

Arnold K., et al. VBFNLO: a parton level Monte Carlo for processes with electroweak bosons. Comput. Phys. Commun. 2009;180:1661. doi: 10.1016/j.cpc.2009.03.006. DOI

Bolzoni P., et al. Higgs production via vector-boson fusion at NNLO in QCD. Phys. Rev. Lett. 2010;105:011801. doi: 10.1103/PhysRevLett.105.011801. PubMed DOI

Passarino G., Sturm C., Uccirati S. Higgs pseudo-observables, second Riemann sheet and all that. Nucl. Phys. B. 2010;834:77. doi: 10.1016/j.nuclphysb.2010.03.013. DOI

Goria S., Passarino G., Rosco D. The Higgs boson lineshape. Nucl. Phys. B. 2012;864:530. doi: 10.1016/j.nuclphysb.2012.07.006. DOI

Kauer N., Passarino G. Inadequacy of zero-width approximation for a light Higgs boson signal. J. High Energy Phys. 2012;08:116. doi: 10.1007/JHEP08(2012)116. DOI

Passarino G. Higgs interference effects in gg→ZZ and their uncertainty. J. High Energy Phys. 2012;08:146. doi: 10.1007/JHEP08(2012)146. DOI

Campbell J.M., Ellis R., Williams C. Gluon-gluon contributions to WW production and Higgs interference effects. J. High Energy Phys. 2011;10:0055.

N. Kauer, Signal-background interference in gg→H→VV (2012). arXiv:1201.1667

Alwall J., et al. MadGraph/MadEvent v4: the new web generation. J. High Energy Phys. 2007;09:028. doi: 10.1088/1126-6708/2007/09/028. DOI

Binoth T., et al. Gluon-induced W-boson pair production at the LHC. J. High Energy Phys. 2006;12:046. doi: 10.1088/1126-6708/2006/12/046. DOI

Binoth T., Kauer N., Mertsch P. Proceedings of the XVI Int. Workshop on Deep-Inelastic Scattering and Related Topics (DIS’07) 2008. Gluon-induced QCD corrections to [Formula: see text]

Lai H.-L., et al. Uncertainty induced by QCD coupling in the CTEQ global analysis of parton distributions. Phys. Rev. D. 2010;82:054021. doi: 10.1103/PhysRevD.82.054021. DOI

Lai H.-L., et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. DOI

Jadach S., et al. The tau decay library TAUOLA, version 2.4. Comput. Phys. Commun. 1993;76:361. doi: 10.1016/0010-4655(93)90061-G. DOI

Allison J., et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci. 2006;53:270. doi: 10.1109/TNS.2006.869826. DOI

CMS Collaboration Measurement of the underlying event activity at the LHC with [Formula: see text] and comparison with [Formula: see text] J. High Energy Phys. 2011;09:109.

CMS Collaboration, Particle-flow event reconstruction in CMS and performance for jets, taus, and MET. CMS Physics Analysis Summary CMS-PAS-PFT-09-001 (2009)

CMS Collaboration, Commissioning of the particle–flow reconstruction in minimum–bias and jet events from pp collisions at 7 TeV. CMS Physics Analysis Summary CMS-PAS-PFT-10-002 (2010)

Baffioni S., et al. Electron reconstruction in CMS. Eur. Phys. J. C. 2007;49:1099. doi: 10.1140/epjc/s10052-006-0175-5. DOI

CMS Collaboration, Electron reconstruction and identification at [Formula: see text]. CMS Physics Analysis Summary CMS-PAS-EGM-10-004 (2010)

CMS Collaboration, Commissioning of the particle-flow event reconstruction with leptons from J/ψ and W decays at 7 TeV. CMS Physics Analysis Summary CMS-PAS-PFT-10-003 (2010)

CMS Collaboration Performance of τ-lepton reconstruction and identification in CMS. J. Instrum. 2012;7:P01001. doi: 10.1088/1748-0221/7/01/P01001. DOI

Cacciari M., Salam G.P., Soyez G. The anti-kt jet clustering algorithm. J. High Energy Phys. 2008;04:063. doi: 10.1088/1126-6708/2008/04/063. DOI

Cacciari M., Salam G.P., Soyez G. FastJet user manual. Eur. Phys. J. C. 2012;72:1896. doi: 10.1140/epjc/s10052-012-1896-2. DOI

CMS Collaboration Determination of jet energy calibration and transverse momentum resolution in CMS. J. Instrum. 2011;6:P11002. doi: 10.1088/1748-0221/6/11/P11002. DOI

Cacciari M., Salam G.P., Soyez G. The catchment area of jets. J. High Energy Phys. 2008;04:005. doi: 10.1088/1126-6708/2008/04/005. DOI

CMS Collaboration Identification of b-quark jets with the CMS experiment. J. Instrum. 2013;8:P04013. doi: 10.1088/1748-0221/8/04/P04013. DOI

Cacciari M., Salam G.P. Pileup subtraction using jet areas. Phys. Lett. B. 2008;659:119. doi: 10.1016/j.physletb.2007.09.077. PubMed DOI

CMS Collaboration Measurement of the inclusive W and Z production cross sections in pp collisions at [Formula: see text] TeV. J. High Energy Phys. 2011;10:132.

ATLAS Collaboration, CMS Collaboration, LHC Higgs Combination Group, Combination Group, Procedure for the LHC Higgs boson search combination in Summer 2011. Technical report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005 (2011)

CMS Collaboration Search for the standard model Higgs boson decaying to a W pair in the fully leptonic final state in pp collisions at [Formula: see text] Phys. Lett. B. 2012;710:91. doi: 10.1016/j.physletb.2012.02.076. DOI

A. Hoecker et al., TMVA—toolkit for multivariate data analysis with ROOT (2007). arXiv:physics/0703039

Cahn R., et al. Transverse-momentum signatures for heavy Higgs bosons. Phys. Rev. D. 1987;35:1626. doi: 10.1103/PhysRevD.35.1626. PubMed DOI

S. Alekhin et al., The PDF4LHC Working Group Interim Report (2011). arXiv:1101.0536

M. Botje et al., The PDF4LHC Working Group Interim Recommendations, (2011). arXiv:1101.0538

Lai H.-L., et al. New parton distributions for collider physics. Phys. Rev. D. 2010;82:074024. doi: 10.1103/PhysRevD.82.074024. DOI

Martin A.D., et al. Parton distributions for the LHC. Eur. Phys. J. C. 2009;63:189. doi: 10.1140/epjc/s10052-009-1072-5. DOI

Ball R.D., et al. Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B. 2011;849:296. doi: 10.1016/j.nuclphysb.2011.03.021. DOI

Junk T. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Methods A. 1999;434:435. doi: 10.1016/S0168-9002(99)00498-2. DOI

Read A.L. Presentation of search results: the CLs technique. J. Phys. G, Nucl. Part. Phys. 2002;28:2693. doi: 10.1088/0954-3899/28/10/313. DOI

Dobrescu B.A., Lykken J.D. Semileptonic decays of the standard Higgs boson. J. High Energy Phys. 2010;04:083. doi: 10.1007/JHEP04(2010)083. DOI

CMS Collaboration Search for the standard model Higgs boson in the decay channel H→ZZ→4ℓ in pp collisions at [Formula: see text] Phys. Rev. Lett. 2012;108:111804. doi: 10.1103/PhysRevLett.108.111804. PubMed DOI

CMS Collaboration Search for the standard model Higgs boson in the H→ZZ→ℓℓττ decay channel in pp collisions at [Formula: see text] J. High Energy Phys. 2012;03:081.

Campbell J.M., Ellis R.K. MCFM for the Tevatron and the LHC. Nucl. Phys. B, Proc. Suppl. 2010;205:10. doi: 10.1016/j.nuclphysbps.2010.08.011. DOI

Campbell J.M., Ellis R.K. An update on vector boson pair production at hadron colliders. Phys. Rev. D. 1999;60:113006.

Campbell J.M., Ellis R.K., Williams C. Vector boson pair production at the LHC. J. High Energy Phys. 2011;07:018. doi: 10.1007/JHEP07(2011)018. DOI

Cabibbo N., Maksymowicz A. Angular correlations in Ke4 decays and determination of low-energy π–π phase shifts. Phys. Rev. B. 1965;137:438. doi: 10.1103/PhysRev.137.B438. DOI

De Rujula A., et al. Higgs look-alikes at the LHC. Phys. Rev. D. 2010;82:013003. doi: 10.1103/PhysRevD.82.013003. DOI

CMS Collaboration Search for a Higgs boson in the decay channel [Formula: see text] in pp collisions at [Formula: see text] J. High Energy Phys. 2012;04:036.

CMS Collaboration Missing transverse energy performance of the CMS detector. J. Instrum. 2011;6:P09001. doi: 10.1088/1748-0221/6/09/P09001. DOI

M. Oreglia, A study of the reactions ψ′→γγψ. PhD thesis, Stanford University (1980). SLAC-0236

J.E. Gaiser, Charmonium spectroscopy from radiative decays of the J/ψ and ψ′. PhD thesis, Stanford University (1982). SLAC-R-225

T. Skwarnicki, A study of the radiative cascade transitions between the ϒ and ϒ′ resonanses. PhD thesis, DESY (1986). DESY F31-86-02

CMS Collaboration Search for the standard model Higgs boson in the H→ZZ→2ℓ2ν channel in pp collisions at [Formula: see text] J. High Energy Phys. 2012;03:040.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...