• Something wrong with this record ?

H₂O₂-Activated Mitochondrial Phospholipase iPLA₂γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells

J. Ježek, A. Dlasková, J. Zelenka, M. Jabůrek, P. Ježek,

. 2015 ; 23 (12) : 958-72. [pub] 20150521

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

AIMS: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)-mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. RESULTS: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein-coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). INNOVATION AND CONCLUSION: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc16010250
003      
CZ-PrNML
005      
20160412104920.0
007      
ta
008      
160408s2015 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1089/ars.2014.6195 $2 doi
024    7_
$a 10.1089/ars.2014.6195 $2 doi
035    __
$a (PubMed)25925080
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Ježek, Jan $u Department of Membrane Transport Biophysics, Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic .
245    10
$a H₂O₂-Activated Mitochondrial Phospholipase iPLA₂γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling via G-Protein-Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells / $c J. Ježek, A. Dlasková, J. Zelenka, M. Jabůrek, P. Ježek,
520    9_
$a AIMS: Pancreatic β-cell chronic lipotoxicity evolves from acute free fatty acid (FA)-mediated oxidative stress, unprotected by antioxidant mechanisms. Since mitochondrial uncoupling protein-2 (UCP2) plays antioxidant and insulin-regulating roles in pancreatic β-cells, we tested our hypothesis, that UCP2-mediated uncoupling attenuating mitochondrial superoxide production is initiated by FA release due to a direct H2O2-induced activation of mitochondrial phospholipase iPLA2γ. RESULTS: Pro-oxidant tert-butylhydroperoxide increased respiration, decreased membrane potential and mitochondrial matrix superoxide release rates of control but not UCP2- or iPLA2γ-silenced INS-1E cells. iPLA2γ/UCP2-mediated uncoupling was alternatively activated by an H2O2 burst, resulting from palmitic acid (PA) β-oxidation, and it was prevented by antioxidants or catalase overexpression. Exclusively, nascent FAs that cleaved off phospholipids by iPLA2γ were capable of activating UCP2, indicating that the previously reported direct redox UCP2 activation is actually indirect. Glucose-stimulated insulin release was not affected by UCP2 or iPLA2γ silencing, unless pro-oxidant activation had taken place. PA augmented insulin secretion via G-protein-coupled receptor 40 (GPR40), stimulated by iPLA2γ-cleaved FAs (absent after GPR40 silencing). INNOVATION AND CONCLUSION: The iPLA2γ/UCP2 synergy provides a feedback antioxidant mechanism preventing oxidative stress by physiological FA intake in pancreatic β-cells, regulating glucose-, FA-, and redox-stimulated insulin secretion. iPLA2γ is regulated by exogenous FA via β-oxidation causing H2O2 signaling, while FAs are cleaved off phospholipids, subsequently acting as amplifying messengers for GPR40. Hence, iPLA2γ acts in eminent physiological redox signaling, the impairment of which results in the lack of antilipotoxic defense and contributes to chronic lipotoxicity.
650    _2
$a zvířata $7 D000818
650    _2
$a antioxidancia $x farmakologie $7 D000975
650    _2
$a nádorové buněčné linie $7 D045744
650    _2
$a fosfolipasy A2, skupina II $x metabolismus $7 D054501
650    _2
$a peroxid vodíku $x metabolismus $7 D006861
650    _2
$a inzulin $x sekrece $7 D007328
650    _2
$a beta-buňky $x účinky léků $7 D050417
650    _2
$a iontové kanály $x metabolismus $7 D007473
650    _2
$a lipidy $x toxicita $7 D008055
650    _2
$a membránový potenciál mitochondrií $x účinky léků $7 D053078
650    _2
$a mitochondrie $x účinky léků $7 D008928
650    _2
$a mitochondriální proteiny $x metabolismus $7 D024101
650    _2
$a oxidační stres $x účinky léků $7 D018384
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a receptory spřažené s G-proteiny $x metabolismus $7 D043562
650    _2
$a signální transdukce $x účinky léků $7 D015398
650    _2
$a superoxidy $x metabolismus $7 D013481
650    _2
$a terc-butylhydroperoxid $x farmakologie $7 D020122
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Dlasková, Andrea $u Department of Membrane Transport Biophysics, Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic .
700    1_
$a Zelenka, Jaroslav $u Department of Membrane Transport Biophysics, Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic .
700    1_
$a Jabůrek, Martin $u Department of Membrane Transport Biophysics, Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic .
700    1_
$a Ježek, Petr $u Department of Membrane Transport Biophysics, Institute of Physiology , Academy of Sciences of the Czech Republic, Prague, Czech Republic .
773    0_
$w MED00006026 $t Antioxidants & redox signaling $x 1557-7716 $g Roč. 23, č. 12 (2015), s. 958-72
856    41
$u https://pubmed.ncbi.nlm.nih.gov/25925080 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20160408 $b ABA008
991    __
$a 20160412105003 $b ABA008
999    __
$a ok $b bmc $g 1113679 $s 934618
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2015 $b 23 $c 12 $d 958-72 $e 20150521 $i 1557-7716 $m Antioxidants & redox signaling $n Antioxid Redox Signal $x MED00006026
LZP    __
$a Pubmed-20160408

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...