Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
28894219
PubMed Central
PMC5593844
DOI
10.1038/s41598-017-11653-8
PII: 10.1038/s41598-017-11653-8
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5 nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. This is a key parameter for enabling the understanding of domain structures in CuMnAs imaged using x-ray magnetic linear dichroism microscopy techniques.
Diamond Light Source Chilton Didcot Oxfordshire OX11 0DE United Kingdom
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Praha 2 Czech Republic
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Praha 6 Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 1999 2 182 21 Praha 8 Czech Republic
Institute of Solid State Physics TU Wien Wiedner Hauptstr 8 1040 Wien Austria
Max Planck Institute for Chemical Physics of Solids 01187 Dresden Germany
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD United Kingdom
See more in PubMed
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic Spintronics. Nature Nanotech. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI
Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nature Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI
Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI
Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI
Olejník K, et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nature Commun. 2017;8:15434. doi: 10.1038/ncomms15434. PubMed DOI PMC
Tang P, Zhou Q, Xu G, Zhang S-C. Dirac fermions in an antiferromagnetic semimetal. Nature Phys. 2016;12:1100–1104. doi: 10.1038/nphys3839. DOI
Šmejkal L, Železný J, Sinova J, Jungwirth T. Electrical control of Dirac quasiparticles by spin-orbit torque in an antiferromagnet. Phys. Rev. Lett. 2017;118:106402. doi: 10.1103/PhysRevLett.118.106402. PubMed DOI
Meiklejohn WH, Bean CP. New magnetic anisotropy. Phys. Rev. 1956;102:1413. doi: 10.1103/PhysRev.102.1413. DOI
Zhang W, Krishnan KM. Epitaxial exchange-bias systems: from fundamentals to future spin-orbitronics. Mat. Sci. Eng. R. 2016;105:1–20. doi: 10.1016/j.mser.2016.04.001. DOI
Morales R, et al. Role of the antiferromagnetic bulk spin structure on exchange bias. Phys. Rev. Lett. 2009;102:097201. doi: 10.1103/PhysRevLett.102.097201. PubMed DOI
Scholl A, Liberati M, Arenholz E, Ohldag H, Stohr J. Creation of an antiferromagnetic exchange spring. Phys. Rev. Lett. 2004;92:247201. doi: 10.1103/PhysRevLett.92.247201. PubMed DOI
Ohldag H, et al. Correlation between exchange bias and pinned interfacial spins. Phys. Rev. Lett. 2003;91:017203. doi: 10.1103/PhysRevLett.91.017203. PubMed DOI
Wu J, et al. Direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001) Phys. Rev. Lett. 2010;104:217204. doi: 10.1103/PhysRevLett.104.217204. PubMed DOI
Marti X, et al. Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. Phys. Rev. Lett. 2012;108:017201. doi: 10.1103/PhysRevLett.108.017201. PubMed DOI
Park BG, et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 2011;10:347–351. doi: 10.1038/nmat2983. PubMed DOI
Wadley P, et al. Antiferromagnetic structure in tetragonal CuMnAs thin films. Sci. Rep. 2015;5:17079. doi: 10.1038/srep17079. PubMed DOI PMC
Saidl V, et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nature Photon. 2017;11:91–96. doi: 10.1038/nphoton.2016.255. DOI
Wastlbauer G, Bland JAC. Structural and magnetic properties of ultrathin epitaxial Fe films on GaAs(001) and related semiconductor substrates. Adv. Phys. 2005;54:137–219. doi: 10.1080/00018730500112000. DOI
Kunes J, Oppeneer PM. Anisotropic x-ray magnetic linear dichroism at the L2,3 edges of cubic Fe, Co, and Ni: ab initio calculations and model theory. Phys. Rev. B. 2003;67:024431. doi: 10.1103/PhysRevB.67.024431. DOI
Nolting F, et al. Anisotropy of the L2,3 x-ray magnetic linear dichroism of Fe films on GaAs: experiment and ab initio theory. Phys. Rev. B. 2010;82:184415. doi: 10.1103/PhysRevB.82.184415. DOI
Czekaj S, Nolting F, Heyderman LJ, Willmott PR, van der Laan G. Sign dependence of the x-ray magnetic linear dichroism on the antiferromagnetic spin axis in LaFeO3 thin films. Phys. Rev. B. 2006;73:020401. doi: 10.1103/PhysRevB.73.020401. DOI
Arenholz E, van der Laan G, Chopdekar RV, Suzuki Y. Anisotropic x-ray magnetic linear dichroism at the Fe L2,3 edges in Fe3O4. Phys. Rev. B. 2006;74:094407. doi: 10.1103/PhysRevB.74.094407. DOI
Arenholz E, van der Laan G, Chopdekar RV, Suzuki Y. Angle-dependent Ni2+ x-ray magnetic linear dichroism: interfacial coupling revisited. Phys. Rev. Lett. 2007;98:197201. doi: 10.1103/PhysRevLett.98.197201. PubMed DOI
Freeman AA, et al. Giant anisotropy in x-ray magnetic linear dichroism in (Ga,Mn)As. Phys. Rev. B. 2006;73:233303. doi: 10.1103/PhysRevB.73.233303. DOI
Bhatkar H, Snow RJ, Arenholz E, Idzerda YU. Elemental moment variation of bcc FexMn1−x on MgO(001) J. Magn. Magn. Mater. 2017;423:46–50. doi: 10.1016/j.jmmm.2016.09.060. DOI
Ruosi A, et al. Electron sampling depth and saturation effects in perovskite films investigated by soft x-ray absorption spectroscopy. Phys. Rev. B. 2014;90:125120. doi: 10.1103/PhysRevB.90.125120. DOI
Zelezny J, et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI