Electric Control of Dirac Quasiparticles by Spin-Orbit Torque in an Antiferromagnet
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
- Publikační typ
- časopisecké články MeSH
Spin orbitronics and Dirac quasiparticles are two fields of condensed matter physics initiated independently about a decade ago. Here we predict that Dirac quasiparticles can be controlled by the spin-orbit torque reorientation of the Néel vector in an antiferromagnet. Using CuMnAs as an example, we formulate symmetry criteria allowing for the coexistence of topological Dirac quasiparticles and Néel spin-orbit torques. We identify the nonsymmorphic crystal symmetry protection of Dirac band crossings whose on and off switching is mediated by the Néel vector reorientation. We predict that this concept verified by minimal model and density functional calculations in the CuMnAs semimetal antiferromagnet can lead to a topological metal-insulator transition driven by the Néel vector and to the topological anisotropic magnetoresistance.
Institut für Physik Johannes Gutenberg Universität Mainz D 55099 Mainz Germany
Max Planck Institute for Chemical Physics of Solids Nöthnitzer Strasse 40 D 01187 Dresden Germany
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD United Kingdom
Citace poskytuje Crossref.org
Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate
Altermagnetic lifting of Kramers spin degeneracy
Anisotropic magnetoresistance: materials, models and applications
Prediction of unconventional magnetism in doped FeSb2
Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets
Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films