Terahertz electrical writing speed in an antiferromagnetic memory
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29740601
PubMed Central
PMC5938222
DOI
10.1126/sciadv.aar3566
PII: aar3566
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the path toward the development of memory-logic technology reaching the elusive terahertz band.
Department of Materials ETH Zürich Hönggerbergring 64 CH 8093 Zürich Switzerland
Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Fritz Haber Institute of the Max Planck Society Faradayweg 4 6 14195 Berlin Germany
Hitachi Cambridge Laboratory J J Thomson Avenue Cambridge CB3 0HE UK
Institut für Physik Johannes Gutenberg Universität Mainz 55128 Mainz Germany
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 162 00 Praha 6 Czech Republic
Institute of Physics Czech Academy of Sciences Na Slovance 2 182 21 Praha 8 Czech Republic
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Chappert C., Fert A., Van Dau F. N., The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007). PubMed
Brataas A., Kent A. D., Ohno H., Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012). PubMed
Kent A. D., Worledge D. C., A new spin on magnetic memories. Nat. Nanotechnol. 10, 187–191 (2015). PubMed
Waldrop M. M., The chips are down for Moore’s law. Nature 530, 144–147 (2016). PubMed
Ralph D. C., Stiles M. D., Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).
Chernyshov A., Overby M., Liu X., Furdyna J. K., Lyanda-Geller Y., Rokhinson L. P., Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009).
Miron I. M., Garello K., Gaudin G., Zermatten P.-J., Costache M. V., Auffret S., Bandiera S., Rodmacq B., Schuhl A., Gambardella P., Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011). PubMed
Liu L., Pai C.-F., Li Y., Tseng H. W., Ralph D. C., Buhrman R. A., Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012). PubMed
Bedau D., Liu H., Sun J. Z., Katine J. A., Fullerton E. E., Mangin S., Kent A. D., Spin-transfer pulse switching: From the dynamic to the thermally activated regime. Appl. Phys. Lett. 97, 262502 (2010).
Garello K., Avci C. O., Miron I. M., Baumgartner M., Ghosh A., Auffret S., Boulle O., Gaudin G., Gambardella P., Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).
Prenat G., Jabeur K., Vanhauwaert P., Pendina G. D., Oboril F., Bishnoi R., Ebrahimi M., Lamard N., Boulle O., Garello K., Langer J., Ocker B., Cyrille M. C., Gambardella P., Tahoori M., Gaudin G., Ultra-fast and high-reliability SOT-MRAM: From cache replacement to normally-off computing. IEEE Trans. Multi-Scale Comput. Syst. 2, 49–60 (2016).
Baumgartner M., Garello K., Mendil J., Avci C. O., Grimaldi E., Murer C., Feng J., Gabureac M., Stamm C., Acremann Y., Finizio S., Wintz S., Raabe J., Gambardella P., Spatially and time-resolved magnetization dynamics driven by spin-orbit torques. Nat. Nanotechnol. 12, 980–986 (2017). PubMed
Marrows C. H., Perspectives: Addressing an antiferromagnetic memory. Science 351, 558–559 (2016). PubMed
Wadley P., Howells B., Žlezný J., Andrews C., Hills V., Campion R. P., Novák V., Olejnik K., Maccherozzi F., Dhesi S. S., Martin S. Y., Wagner T., Wunderlich J., Freimuth F., Mokrousov Y., Kuneš J., Chauhan J. S., Grzybowski M. J., Rushforth A. W., Edmonds K. W., Gallagher B. L., Jungwirth T., Electrical switching of an antiferromagnet. Science 351, 587–590 (2016). PubMed
Železný J., Gao H., Výborný K., Zemen J., Mašek J., Manchon A., Wunderlich J., Sinova J., Jungwirth T., Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014). PubMed
Olejník K., Schuler V., Marti X., Novák V., Kašpar Z., Wadley P., Campion R. P., Edmonds K. W., Gallagher B. L., Garces J., Baumgartner M., Gambardella P., Jungwirth T., Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 8, 15434 (2017). PubMed PMC
Jungwirth T., Marti X., Wadley P., Wunderlich J., Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). PubMed
P. Wadley, S. Reimers, M. J. Grzybowski, C. Andrews, M. Wang, B. L. Gallagher, R. P. Campion, K. W. Edmonds, S. S. Dhesi, V. Novák, J. Wunderlich, T. Jungwirth, Current-polarity dependent manipulation of antiferromagnetic domains. http://arxiv.org/abs/1711.05146 (2017). PubMed
Bodnar S. Y., Šmejkal L., Turek I., Jungwirth T., Gomonay O., Sinova J., Sapozhnik A. A., Elmers H.-J., Kläui M., Jourdan M., Writing and reading antiferromagnetic Mn2Au: Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018). PubMed PMC
M. Meinert, D. Graulich, T. Matalla-Wagner, Key role of thermal activation in the electrical switching of antiferromagnetic Mn2Au. http://arxiv.org/abs/1706.06983 (2017).
Roy P. E., Otxoa R. M., Wunderlich J., Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields. Phys. Rev. B 94, 014439 (2016).
Wadley P., Novák V., Campion R., Rinaldi C., Martí X., Reichlová H., Železný J., Gazquez J., Roldan M., Varela M., Khalyavin D., Langridge S., Kriegner D., Máca F., Mašek J., Bertacco R., Holý V., Rushforth A., Edmonds K., Gallagher B., Foxon C., Wunderlich J., Jungwirth T., Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 4, 2322 (2013). PubMed
Železný J., Gao H., Manchon A., Freimuth F., Mokrousov Y., Zemen J., Mašek J., Sinova J., Jungwirth T., Spin-orbit torques in locally and globally noncentrosymmetric crystals: Antiferromagnets and ferromagnets. Phys. Rev. B 95, 014403 (2017).
Kriegner D., Výborný K., Olejník K., Reichlová H., Novák V., Marti X., Gazquez J., Saidl V., Němec P., Volobuev V. V., Springholz G., Holý V., Jungwirth T., Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016). PubMed PMC
Fukami S., Zhang C., DuttaGupta S., Kurenkov A., Ohno H., Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016). PubMed
Grzybowski M. J., Wadley P., Edmonds K. W., Beardsley R., Hills V., Campion R. P., Gallagher B. L., Chauhan J. S., Novák V., Jungwirth T., Maccherozzi F., Dhesi S. S., Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 118, 057701 (2017). PubMed
Sajadi M., Wolf M., Kampfrath T., Terahertz-field-induced optical birefringence in common window and substrate materials. Opt. Express 23, 28985–28992 (2015). PubMed
Kampfrath T., Sell A., Klatt G., Pashkin A., Mährlein S., Dekorsy T., Wolf M., Fiebig M., Leitenstorfer A., Huber R., Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5, 31–34 (2011).
Baierl S., Hohenleutner M., Kampfrath T., Zvezdin A. K., Kimel A. V., Huber R., Mikhaylovskiy R. V., Nonlinear spin control by terahertz-driven anisotropy fields. Nat. Photonics 10, 715–718 (2016).
R. Jacobsson, in Progress in Optics, E. Wolf, Ed. (North-Holland, 1965), chap. 5, pp. 250–255.
Novitsky A., Ivinskaya A. M., Zalkovskij M., Malureanu R., Jepsen P. U., Lavrinenko A. V., Non-resonant terahertz field enhancement in periodically arranged nanoslits. J. Appl. Phys. 12, 074318 (2012).
McMahon J. M., Gray S. K., Schatz G. C., Fundamental behavior of electric field enhancements in the gaps between closely spaced nanostructures. Phys. Rev. B 83, 115428 (2011).
Bedau D., Liu H., Bouzaglou J.-J., Kent A. D., Sun J. Z., Katine J. A., Fullerton E. E., Mangin S., Ultrafast spin-transfer switching in spin valve nanopillars with perpendicular anisotropy. Appl. Phys. Lett. 96, 022514 (2010).
Kittel C., Theory of antiferromagnetic resonance. Phys. Rev. 82, 565 (1951).
Saidl V., Němec P., Wadley P., Hills V., Campion R. P., Novák V., Edmonds K. W., Maccherozzi F., Dhesi S. S., Gallagher B. L., Trojánek F., Kuneš J., Železný J., Malý P., Jungwirth T., Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photonics 11, 91–96 (2017).
Hirori H., Doi A., Blanchard F., Tanaka K., Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Appl. Phys. Lett. 98, 091106 (2011).
Hebling J., Almási G., Kozma I. Z., Velocity matching by pulse front tilting for large-area THz-pulse generation. Opt. Express 10, 1161–1166 (2002). PubMed
Kužel P., Němec H., Kadlec F., Kadlec C., Gouy shift correction for highly accurate refractive index retrieval in time-domain terahertz spectroscopy. Opt. Express 18, 15338–15348 (2010). PubMed
Kadlec C., Kadlec F., Němec H., Kužel P., Schubert J., Panaitov G., High tunability of the soft mode in strained SrTiO3/DyScO3 multilayers. J. Phys. Condens. Matter 21, 115902 (2009). PubMed
Karpowicz N., Dai J., Lu X., Chen Y., Yamaguchi M., Zhao H., Zhang X. C., Zhang L., Zhang C., Price-Gallagher M., Fletcher C., Mamer O., Lesimple A., Johnson K., Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap”. Appl. Phys. Lett. 92, 011131 (2008).
Antiferromagnetic half-skyrmions electrically generated and controlled at room temperature
Terahertz Spin-to-Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers