Coupling between beta band and high frequency oscillations as a clinically useful biomarker for DBS
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
21-25953S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-25953S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-25953S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
21-25953S
Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
PubMed
38383550
PubMed Central
PMC10882016
DOI
10.1038/s41531-024-00656-8
PII: 10.1038/s41531-024-00656-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Beta hypersynchrony was recently introduced into clinical practice in Parkinson's disease (PD) to identify the best stimulation contacts and for adaptive deep brain stimulation (aDBS) sensing. However, many other oscillopathies accompany the disease, and beta power sensing may not be optimal for all patients. The aim of this work was to study the potential clinical usefulness of beta power phase-amplitude coupling (PAC) with high frequency oscillations (HFOs). Subthalamic nucleus (STN) local field potentials (LFPs) from externalized DBS electrodes were recorded and analyzed in PD patients (n = 19). Beta power and HFOs were evaluated in a resting-state condition; PAC was then studied and compared with the electrode contact positions, structural connectivity, and medication state. Beta-HFO PAC (mainly in the 200-500 Hz range) was observed in all subjects. PAC was detectable more specifically in the motor part of the STN compared to beta power and HFOs. Moreover, the presence of PAC better corresponds to the stimulation setup based on the clinical effect. PAC is also sensitive to the laterality of symptoms and dopaminergic therapy, where the greater PAC cluster reflects the more affected side and medication "off" state. Coupling between beta power and HFOs is known to be a correlate of the PD "off" state. Beta-HFO PAC seems to be more sensitive than beta power itself and could be more helpful in the selection of the best clinical stimulation contact and probably also as a potential future input signal for aDBS.
Zobrazit více v PubMed
Kühn AA, Kupsch A, Schneider G-H, Brown P. Reduction in subthalamic 8-35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. Eur. J. Neurosci. 2006;23:1956–1960. doi: 10.1111/j.1460-9568.2006.04717.x. PubMed DOI
Chen CC, et al. Complexity of subthalamic 13–35Hz oscillatory activity directly correlates with clinical impairment in patients with Parkinson’s disease. Exp. Neurol. 2010;224:234–240. doi: 10.1016/j.expneurol.2010.03.015. PubMed DOI
Oswal A, et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain. 2016;139:1482–1496. doi: 10.1093/brain/aww048. PubMed DOI PMC
Steiner LA, et al. Subthalamic beta dynamics mirror Parkinsonian bradykinesia months after neurostimulator implantation. Mov. Disord. 2017;32:1183–1190. doi: 10.1002/mds.27068. PubMed DOI PMC
Little S, et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann. Neurol. 2013;74:449–457. doi: 10.1002/ana.23951. PubMed DOI PMC
Rosa M, et al. Adaptive deep brain stimulation in a freely moving parkinsonian patient. Mov. Disord. 2015;30:1003–1005. doi: 10.1002/mds.26241. PubMed DOI PMC
Little S, Brown P. Debugging adaptive deep brain stimulation for parkinson’s disease. Mov. Disord. 2020;35:555–561. doi: 10.1002/mds.27996. PubMed DOI PMC
Pollo C, et al. Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137:2015–2026. doi: 10.1093/brain/awu102. PubMed DOI
Timmermann L, et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson’s disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol. 2015;14:693–701. doi: 10.1016/S1474-4422(15)00087-3. PubMed DOI
Giannicola G, et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson’s disease. Exp. Neurol. 2010;226:120–127. doi: 10.1016/j.expneurol.2010.08.011. PubMed DOI
Aleksovski D, Miljkovic D, Bravi D, Antonini A. Disease progression in Parkinson subtypes: the PPMI dataset. Neurol. Sci. 2018;39:1971–1976. doi: 10.1007/s10072-018-3522-z. PubMed DOI
Florin E, Pfeifer J, Visser-Vandewalle V, Schnitzler A, Timmermann L. Parkinson subtype-specific Granger-causal coupling and coherence frequency in the subthalamic area. Neuroscience. 2016;332:170–180. doi: 10.1016/j.neuroscience.2016.06.052. PubMed DOI
Castaño-Candamil S, et al. Identifying controllable cortical neural markers with machine learning for adaptive deep brain stimulation in Parkinson’s disease. NeuroImage Clin. 2020;28:102376. doi: 10.1016/j.nicl.2020.102376. PubMed DOI PMC
van Wijk BCM, de Bie RMA, Beudel M. A systematic review of local field potential physiomarkers in Parkinson’s disease: from clinical correlations to adaptive deep brain stimulation algorithms. J. Neurol. 2023;270:1162–1177. doi: 10.1007/s00415-022-11388-1. PubMed DOI PMC
López-Azcárate J, et al. Coupling between beta and high-frequency activity in the human subthalamic nucleus may be a pathophysiological mechanism in parkinson’s disease. J. Neurosci. 2010;30:6667–6677. doi: 10.1523/JNEUROSCI.5459-09.2010. PubMed DOI PMC
van Wijk BCM, et al. Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease. Clin. Neurophysiol. 2016;127:2010–2019. doi: 10.1016/j.clinph.2016.01.015. PubMed DOI PMC
Telkes I, et al. Local field potentials of subthalamic nucleus contain electrophysiological footprints of motor subtypes of Parkinson’s disease. Proc. Natl. Acad. Sci. USA. 2018;115:E8567–E8576. doi: 10.1073/pnas.1810589115. PubMed DOI PMC
Meidahl AC, et al. Synchronised spiking activity underlies phase amplitude coupling in the subthalamic nucleus of Parkinson’s disease patients. Neurobiol. Dis. 2019;127:101–113. doi: 10.1016/j.nbd.2019.02.005. PubMed DOI PMC
Tinkhauser G, et al. Directional local field potentials: a tool to optimize deep brain stimulation. Mov. Disord. 2018;33:159–164. doi: 10.1002/mds.27215. PubMed DOI PMC
Akram H, et al. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. NeuroImage. 2017;158:332–345. doi: 10.1016/j.neuroimage.2017.07.012. PubMed DOI PMC
Horn A, et al. Connectivity Predicts deep brain stimulation outcome in Parkinson disease. Ann. Neurol. 2017;82:67–78. doi: 10.1002/ana.24974. PubMed DOI PMC
Horn A, et al. Probabilistic conversion of neurosurgical DBS electrode coordinates into MNI space. NeuroImage. 2017;150:395–404. doi: 10.1016/j.neuroimage.2017.02.004. PubMed DOI PMC
Yang AI, Vanegas N, Lungu C, Zaghloul KA. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of parkinson’s disease. J. Neurosci. 2014;34:12816–12827. doi: 10.1523/JNEUROSCI.1895-14.2014. PubMed DOI PMC
van Wijk BCM, et al. Localization of beta and high-frequency oscillations within the subthalamic nucleus region. NeuroImage Clin. 2017;16:175–183. doi: 10.1016/j.nicl.2017.07.018. PubMed DOI PMC
Setsompop K, et al. Pushing the limits of in vivo diffusion MRI for the Human Connectome Project. NeuroImage. 2013;80:220–233. doi: 10.1016/j.neuroimage.2013.05.078. PubMed DOI PMC
Horn A, Neumann W-J, Degen K, Schneider G-H, Kühn AA. Toward an electrophysiological “sweet spot” for deep brain stimulation in the subthalamic nucleus. Hum. Brain Mapp. 2017;38:3377–3390. doi: 10.1002/hbm.23594. PubMed DOI PMC
Nguyen TAK, et al. Directional stimulation of subthalamic nucleus sweet spot predicts clinical efficacy: proof of concept. Brain Stimulat. 2019;12:1127–1134. doi: 10.1016/j.brs.2019.05.001. PubMed DOI
Tinkhauser G, et al. Beta burst dynamics in Parkinson’s disease OFF and ON dopaminergic medication. Brain. 2017;140:2968–2981. doi: 10.1093/brain/awx252. PubMed DOI PMC
Feldmann LK, et al. Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings. npj Parkinson’s Dis. 2022;8:44. doi: 10.1038/s41531-022-00301-2. PubMed DOI PMC
Horn A, Kühn AA. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations. NeuroImage. 2015;107:127–135. doi: 10.1016/j.neuroimage.2014.12.002. PubMed DOI
Ewert S, et al. Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. NeuroImage. 2018;170:271–282. doi: 10.1016/j.neuroimage.2017.05.015. PubMed DOI
Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods. 2004;134:9–21. doi: 10.1016/j.jneumeth.2003.10.009. PubMed DOI
Wennberg RA, Lozano AM. Intracranial volume conduction of cortical spikes and sleep potentials recorded with deep brain stimulating electrodes. Clin. Neurophysiol. 2003;114:1403–1418. doi: 10.1016/S1388-2457(03)00152-4. PubMed DOI
Wennberg R, Lozano AM. Restating the importance of bipolar recording in subcortical nuclei. Clin. Neurophysiol. 2006;117:474–475. doi: 10.1016/j.clinph.2005.09.020. PubMed DOI
Plesinger F, Jurco J, Halamek J, Jurak P. SignalPlant: an open signal processing software platform. Physiol. Meas. 2016;37:N38–N48. doi: 10.1088/0967-3334/37/7/N38. PubMed DOI
Canolty RT, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313:1626–1628. doi: 10.1126/science.1128115. PubMed DOI PMC
Onslow ACE, Bogacz R, Jones MW. Quantifying phase–amplitude coupling in neuronal network oscillations. Prog. Biophys. Mol. Biol. 2011;105:49–57. doi: 10.1016/j.pbiomolbio.2010.09.007. PubMed DOI
Kramer MA, Tort ABL, Kopell NJ. Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. J. Neurosci. Methods. 2008;170:352–357. doi: 10.1016/j.jneumeth.2008.01.020. PubMed DOI
Aru J, et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 2015;31:51–61. doi: 10.1016/j.conb.2014.08.002. PubMed DOI