Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2

. 2024 Feb 02 ; 10 (5) : eadj4883. [epub] 20240131

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38295181

Altermagnets are an emerging elementary class of collinear magnets. Unlike ferromagnets, their distinct crystal symmetries inhibit magnetization while, unlike antiferromagnets, they promote strong spin polarization in the band structure. The corresponding unconventional mechanism of time-reversal symmetry breaking without magnetization in the electronic spectra has been regarded as a primary signature of altermagnetism but has not been experimentally visualized to date. We directly observe strong time-reversal symmetry breaking in the band structure of altermagnetic RuO2 by detecting magnetic circular dichroism in angle-resolved photoemission spectra. Our experimental results, supported by ab initio calculations, establish the microscopic electronic structure basis for a family of interesting phenomena and functionalities in fields ranging from topological matter to spintronics, which are based on the unconventional time-reversal symmetry breaking in altermagnets.

Zobrazit více v PubMed

Nagaosa N., Sinova J., Onoda S., MacDonald A. H., Ong N. P., Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

Tokura Y., Yasuda K., Tsukazaki A., Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

Šmejkal L., MacDonald A. H., Sinova J., Nakatsuji S., Jungwirth T., Anomalous Hall antiferromagnets. Nat. Rev. Mater. 7, 482–496 (2022).

Chappert C., Fert A., Van Dau F. N., The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007). PubMed

Ralph D. C., Stiles M. D., Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

Bader S. D., Parkin S., Spintronics. Annu. Rev. Condens. Matter Phys. 1, 71–88 (2010).

Bhatti S., Sbiaa R., Hirohata A., Ohno H., Fukami S., Piramanayagam S., Spintronics based random access memory: A review. Mater. Today 20, 530–548 (2017).

Jungwirth T., Marti X., Wadley P., Wunderlich J., Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016). PubMed

Manchon A., Železný J., Miron I. M., Jungwirth T., Sinova J., Thiaville A., Garello K., Gambardella P., Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

Jungwirth T., Sinova J., Manchon A., Marti X., Wunderlich J., Felser C., The multiple directions of antiferromagnetic spintronics. Nat. Phys. 14, 200–203 (2018).

Baltz V., Manchon A., Tsoi M., Moriyama T., Ono T., Tserkovnyak Y., Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

Kimel A. V., Li M., Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 4, 189–200 (2019).

Šmejkal L., Sinova J., Jungwirth T., Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X 12, 031042 (2022).

Šmejkal L., Sinova J., Jungwirth T., Emerging research landscape of altermagnetism. Phys. Rev. X 12, 040501 (2022).

Elmers H.-J., Chernov S. V., D’Souza S. W., Bommanaboyena S. P., Bodnar S. Y., Medjanik K., Babenkov S., Fedchenko O., Vasilyev D., Agustsson S. Y., Schlueter C., Gloskovskii A., Matveyev Y., Strocov V. N., Skourski Y., Šmejkal L., Sinova J., Minár J., Kläui M., Schönhense G., Jourdan M., Néel vector induced manipulation of valence states in the collinear antiferromagnet Mn2Au. ACS Nano 14, 17554–17564 (2020). PubMed

Dzyaloshinkii I. E., J. Exptl. Theoret. Phys. 37, 881–882 (1959).

Moriya T., Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

Šmejkal L., González-Hernández R., Jungwirth T., Sinova J., Crystal time-reversal symmetry breaking and spontaneous Hall effect in collinear antiferromagnets. Sci. Adv. 6, eaaz8809 (2020). PubMed PMC

Samanta K., Ležaić M., Merte M., Freimuth F., Blügel S., Mokrousov Y., Crystal Hall and crystal magneto-optical effect in thin films of SrRuO3. J. Appl. Phys. 127, 213904 (2020).

Naka M., Hayami S., Kusunose H., Yanagi Y., Motome Y., Seo H., Anomalous Hall effect in κ-type organic antiferromagnets. Phys. Rev. B 102, 075112 (2020).

Hayami S., Kusunose H., Essential role of the anisotropic magnetic dipole in the anomalous Hall effect. Phys. Rev. B 103, L180407 (2021).

Mazin I. I., Koepernik K., Johannes M. D., González-Hernández R., Šmejkal L., Prediction of unconventional magnetism in doped FeSb2. Proc. Natl. Acad. Sci. U.S.A. 118, e2108924118 (2021). PubMed PMC

Gonzalez Betancourt R. D., Zubáč J., Gonzalez-Hernandez R., Geishendorf K., Šobáň Z., Springholz G., Olejník K., Šmejkal L., Sinova J., Jungwirth T., Goennenwein S. T. B., Thomas A., Reichlová H., Železný J., Kriegner D., Spontaneous anomalous hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett. 130, 036702 (2023). PubMed

Naka M., Motome Y., Seo H., Anomalous Hall effect in antiferromagnetic perovskites. Phys. Rev. B 106, 195149 (2022).

Naka M., Hayami S., Kusunose H., Yanagi Y., Motome Y., Seo H., Spin current generation in organic antiferromagnets. Nat. Commun. 10, 4305 (2019). PubMed PMC

González-Hernández R., Šmejkal L., Výborný K., Yahagi Y., Sinova J., Jungwirth T., Železný J., Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett. 126, 127701 (2021). PubMed

Naka M., Motome Y., Seo H., Perovskite as a spin current generator. Phys. Rev. B 103, 125114 (2021).

Ma H.-Y., Hu M., Li N., Liu J., Yao W., Jia J.-F., Liu J., Multifunctional antiferromagnetic materials with giant piezomagnetism and noncollinear spin current. Nat. Commun. 12, 2846 (2021). PubMed PMC

Šmejkal L., Hellenes A. B., González-Hernández R., Sinova J., Jungwirth T., Giant and tunneling magnetoresistance in unconventional collinear antiferromagnets with nonrelativistic spin-momentum coupling. Phys. Rev. X 12, 011028 (2022).

Feng Z., Zhou X., Šmejkal L., Wu L., Zhu Z., Guo H., González-Hernández R., Wang X., Yan H., Qin P., Zhang X., Wu H., Chen H., Meng Z., Liu L., Xia Z., Sinova J., Jungwirth T., Liu Z., An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron. 5, 735–743 (2022).

Bose A., Schreiber N. J., Jain R., Shao D. F., Nair H. P., Sun J., Zhang X. S., Muller D. A., Tsymbal E. Y., Schlom D. G., Ralph D. C., Tilted spin current generated by the collinear antiferromagnet ruthenium dioxide. Nat. Electron. 5, 267–274 (2022).

Bai H., Han L., Feng X., Zhou Y., Su R., Wang Q., Liao L., Zhu W., Chen X., Pan F., Fan X. L., Song C., Observation of spin splitting torque in a collinear antiferromagnet RuO2. Phys. Rev. Lett. 128, 197202 (2022). PubMed

Karube S., Tanaka T., Sugawara D., Kadoguchi N., Kohda M., Nitta J., Observation of spin-splitter torque in collinear antiferromagnetic RuO2. Phys. Rev. Lett. 129, 137201 (2022). PubMed

A. Hariki, T. Yamaguchi, D. Kriegner, K. W. Edmonds, P. Wadley, S. S. Dhesi, G. Springholz, L. Šmejkal, K. Výborný, T. Jungwirth, J. Kuneš, X-ray magnetic circular dichroism in altermagnetic α-MnTe. arXiv:2305.03588 [cond-mat.mtrl-sci] (2023). PubMed

Schneider C. M., Hammond M. S., Schuster P., Cebollada A., Miranda R., Kirschner J., Observation of magnetic circular dichroism in UV photoemission from fcc cobalt films. Phys. Rev. B 44, 12066–12069 (1991). PubMed

Bansmann J., Westphal C., Getzlaff M., Fegel F., Schönhense G., Magnetic circular dichroism in valence-band photo-emission from Fe(100). J. Magn. Magn. Mater. 104-107, 1691–1692 (1992).

Stöhr J., Wu Y., Hermsmeier B. D., Samant M. G., Harp G. R., Koranda S., Dunham D., Tonner B. P., Element-specific magnetic microscopy with circularly polarized x-rays. Science 259, 658–661 (1993).

van der Laan G., Thole B. T., Spin polarization and magnetic dichroism in photoemission from core and valence states in localized magnetic systems. II. Emission from open shells. Phys. Rev. B 48, 210–223 (1993). PubMed

Braun J., The theory of angle-resolved ultraviolet photoemission and its applications to ordered materials. Rep. Prog. Phys. 59, 1267–1338 (1996).

Ebert H., Schwitalla J., Magnetic dichroism in valence-band x-ray photoemission spectroscopy. Phys. Rev. B 55, 3100 (1997).

Henk J., Scheunemann T., Halilov S. V., Feder R., Magnetic dichroism and electron spin polarization in photoemission: Analytical results. J. Phys. Condens. Matter 8, 47–65 (1996).

Yokoyama T., Nakagawa T., Takagi Y., Magnetic circular dichroism for surface and thin film magnetism: Measurement techniques and surface chemical applications. Int. Rev. Phys. Chem. 27, 449–505 (2008).

Hild K., Maul J., Schönhense G., Elmers H. J., Amft M., Oppeneer P. M., Magnetic circular dichroism in two-photon photoemission. Phys. Rev. Lett. 102, 057207 (2009). PubMed

Berlijn T., Snijders P., Delaire O., Zhou H.-D., Maier T., Cao H.-B., Chi S.-X., Matsuda M., Wang Y., Koehler M., Kent P. R. C., Weitering H. H., Itinerant antiferromagnetism in RuO2. Phys. Rev. Lett. 118, 077201 (2017). PubMed

Zhu Z., Strempfer J., Rao R., Occhialini C., Pelliciari J., Choi Y., Kawaguchi T., You H., Mitchell J., Shao-Horn Y., Comin R., Anomalous antiferromagnetism in metallic RuO2 determined by resonant x-ray scattering. Phys. Rev. Lett. 122, 017202 (2019). PubMed

Ahn K.-H., Hariki A., Lee K.-W., Kuneš J., Antiferromagnetism in RuO2 as d-wave Pomeranchuk instability. Phys. Rev. B 99, 184432 (2019).

Jovic V., Koch R. J., Panda S. K., Berger H., Bugnon P., Magrez A., Smith K. E., Biermann S., Jozwiak C., Bostwick A., Rotenberg E., Moser S., Dirac nodal lines and flat-band surface state in the functional oxide RuO2. Phys. Rev. B 98, 241101 (2018).

Medjanik K., Fedchenko O., Chernov S., Kutnyakhov D., Ellguth M., Oelsner A., Schönhense B., Peixoto T. R. F., Lutz P., Min C.-H., Reinert F., Däster S., Acremann Y., Viefhaus J., Wurth W., Elmers H. J., Schönhense G., Direct 3D mapping of the Fermi surface and Fermi velocity. Nat. Mater. 16, 615–621 (2017). PubMed

Westphal C., Bansmann J., Getzlaff M., Schönhense G., Circular dichroism in the angular distribution of photoelectrons from oriented CO molecules. Phys. Rev. Lett. 63, 151–154 (1989). PubMed

Daimon H., Nakatani T., Imada S., Suga S., Circular dichroism from non-chiral and non-magnetic materials observed with display-type spherical mirror analyzer. J. Electron Spectrosc. Relat. Phenom. 76, 55–62 (1995).

Ebert H., Ködderitzsch D., Minár J., Calculating condensed matter properties using the KKR-Green's function method—Recent developments and applications. Rep. Prog. Phys. 74, 096501 (2011).

Braun J., Minár J., Ebert H., Correlation, temperature and disorder: Recent developments in the one-step description of angle-resolved photoemission. Phys. Rep. 740, 1–34 (2018).

L. Šmejkal, A. Marmodoro, K.-H. Ahn, R. Gonzalez-Hernandez, I. Turek, S. Mankovsky, H. Ebert, S. W. D’Souza, O. Šipr, J. Sinova, T. Jungwirth, Chiral magnons in altermagnetic RuO2. arXiv:2211.13806 [cond-mat.mes-hall] (2022). PubMed

Scholz M. R., Sánchez-Barriga J., Braun J., Marchenko D., Varykhalov A., Lindroos M., Wang Y. J., Lin H., Bansil A., Minár J., Ebert H., Volykhov A., Yashina L. V., Rader O., Reversal of the circular dichroism in angle-resolved photoemission from Bi2 Te3. Phys. Rev. Lett. 110, 216801 (2013). PubMed

Baruchel J., Schlenker M., Barbara B., 180° Antiferromagnetic domains in MnF2 by neutron topography. J. Magn. Magn. Mater. 15-18, 1510–1512 (1980).

Schönhense G., Circular dichroism and spin polarization in photoemission from adsorbates and non-magnetic solids. Phys. Scr. 1990, 255–275 (1990).

Derondeau G., Bisti F., Kobayashi M., Braun J., Ebert H., Rogalev V. A., Shi M., Schmitt T., Ma J., Ding H., Strocov V. N., Minár J., Fermi surface and effective masses in photoemission response of the (Ba1−x Kx )Fe2As2 superconductor. Sci. Rep. 7, 8787 (2017). PubMed PMC

Stejskal O., Veis M., Hamrle J., Band structure analysis of the magneto-optical effect in bcc Fe. Sci. Rep. 11, 21026 (2021). PubMed PMC

Ebert H., Perlov A., Mankovsky S., Incorporation of the rotationally invariant LDA + U scheme into the SPR-KKR formalism: Application to disordered alloys. Solid State Commun. 127, 443–446 (2003).

Lloyd P., Wave propagation through an assembly of spheres: II. The density of single-particle eigenstates. Proc. Phys. Soc. 90, 207–216 (1967).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...