Anisotropic magnetoresistance in altermagnetic MnTe

. 2024 ; 2 (1) : 45. [epub] 20240813

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39148893

Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical resistivity. In particular, we establish which components of anisotropic magnetoresistance are present when the magnetic order is rotated within the hexagonal basal plane. Our experimental results, which are in agreement with our symmetry analysis of the magnetotransport components, showcase the existence of an anisotropic magnetoresistance linked to both the relative orientation of current and magnetic order, as well as crystal and magnetic order. Altermagnetism is manifested as a three-fold component in the transverse magnetoresistance which arises due to the anomalous Hall effect.

Zobrazit více v PubMed

Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X12, 040501 (2022).

Mazin, I. The PRX Editors. Editorial: Altermagnetism—a new punch line of fundamental magnetism. Phys. Rev. X12, 040002 (2022).

Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X12, 031042 (2022).

Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature626, 517 (2024). 10.1038/s41586-023-06907-7 PubMed DOI PMC

Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv.10, eadj4883 (2024). 10.1126/sciadv.adj4883 PubMed DOI PMC

Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. https://arxiv.org/abs/2402.04995 (2024).

Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun.15, 2116 (2024). 10.1038/s41467-024-46476-5 PubMed DOI PMC

Lee, S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett.132, 036702 (2024). 10.1103/PhysRevLett.132.036702 PubMed DOI

Wasscher, J. D. Evidence of weak ferromagnetism in MnTe from galvanomagnetic measurements. Solid State Commun.3, 169 (1965).10.1016/0038-1098(65)90284-X DOI

Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun.15, 4961 (2024) PubMed PMC

Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron.5, 735 (2022).10.1038/s41928-022-00866-z DOI

Tschirner, T. et al. Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2. APL Mater.11, 101103 (2023).10.1063/5.0160335 DOI

Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett.130, 036702 (2023). 10.1103/PhysRevLett.130.036702 PubMed DOI

Kluczyk, K. P. et al. Coexistence of anomalous hall effect and weak net magnetization in collinear antiferromagnet MnTe. https://arxiv.org/abs/2310.09134 (2023).

Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett.132, 176701 (2024). 10.1103/PhysRevLett.132.176701 PubMed DOI

McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn.11, 1018 (1975).10.1109/TMAG.1975.1058782 DOI

Ritzinger, P. & Výborný, K. Anisotropic magnetoresistance: materials, models and applications. R. Soc. Open Sci.10, 230564 (2023). 10.1098/rsos.230564 PubMed DOI PMC

Kokado, S. & Tsunoda, M. Twofold and fourfold symmetric anisotropic magnetoresistance effect in a model with crystal field. J. Phys. Soc. Jpn.84, 094710 (2015).10.7566/JPSJ.84.094710 DOI

Limmer, W. et al. Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga, Mn)As layers. Phys. Rev. B77, 205210 (2008).10.1103/PhysRevB.77.205210 DOI

Ritzinger, P. et al. Anisotropic magnetothermal transport in Co2MnGa thin films. Phys. Rev. B104, 094406 (2021).10.1103/PhysRevB.104.094406 DOI

Rout, P. K., Agireen, I., Maniv, E., Goldstein, M. & Dagan, Y. Six-fold crystalline anisotropic magnetoresistance in the (111) LaAlO3/SrTiO3 oxide interface. Phys. Rev. B95, 241107 (2017).10.1103/PhysRevB.95.241107 DOI

Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun.7, 11623 (2016). 10.1038/ncomms11623 PubMed DOI PMC

Kriegner, D. et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B96, 214418 (2017).10.1103/PhysRevB.96.214418 DOI

Mazin, I. I. Altermagnetism in MnTe: Origin, predicted manifestations, and routes to detwinning. Phys. Rev. B107, L100418 (2023).10.1103/PhysRevB.107.L100418 DOI

Allen, J. W., Lucovsky, G. & Mikkelsen, J. C. Optical properties and electronic structure of crossroads material MnTe. Solid State Commun.24, 367 (1977).10.1016/0038-1098(77)90984-X DOI

Przeździecka, E. et al. Preparation and characterization of hexagonal MnTe and ZnO layers. Phys. Status Solidi (C)2, 1218 (2005).10.1002/pssc.200460667 DOI

Wasscher, J. D. Electrical Transport Phenomena in MnTe, an Antiferromagnetic Semiconductor (Ph.D. thesis), (Technische Hogeschool Eindhoven, 1969).

González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett.126, 127701 (2021). 10.1103/PhysRevLett.126.127701 PubMed DOI

Kunitomi, N., Hamaguchi, Y. & Anzai, S. Neutron diffraction study on manganese telluride. J. Phys.25, 568 (1964).10.1051/jphys:01964002505056800 DOI

Szuszkiewicz, W., Dynowska, E., Witkowska, B. & Hennion, B. Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering. Phys. Rev. B73, 104403 (2006).10.1103/PhysRevB.73.104403 DOI

Komatsubara, T., Murakami, M. & Hirahara, E. Magnetic properties of manganese telluride single crystals. J. Phys. Soc. Jpn.18, 356 (1963).10.1143/JPSJ.18.356 DOI

Moseley, D. H. et al. Giant doping response of magnetic anisotropy in MnTe. Phys. Rev. Mater.6, 014404 (2022).10.1103/PhysRevMaterials.6.014404 DOI

Yin, G. et al. Planar Hall effect in antiferromagnetic MnTe Thin Films. Phys. Rev. Lett.122, 106602 (2019). 10.1103/PhysRevLett.122.106602 PubMed DOI

Faria Junior, P. E. et al. Sensitivity of the MnTe valence band to the orientation of magnetic moments. Phys. Rev. B107, L100417 (2023).10.1103/PhysRevB.107.L100417 DOI

Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.240, 599 (1948).

Villars, P.& Cenzual, K. MnTe crystal structure: datasheet from “PAULING FILE Multinaries Edition−2012" in Springer Materials (https://materials.springer.com/isp/crystallographic/docs/sd_0379437), Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan.

Železný, J. Symmetr - linear-response-symmetry. https://bitbucket.org/zeleznyj/linear-response-symmetry.

Ferrer-Roca, C. H., Segura, A., Reig, C. & Muñoz, V. Temperature and pressure dependence of the optical absorption in hexagonal MnTe. Phys. Rev. B61, 13679 (2000).10.1103/PhysRevB.61.13679 DOI

Fina, I. et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun.5, 4671 (2014). 10.1038/ncomms5671 PubMed DOI

Wang, H. et al. Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet Sr2IrO4. Nat. Commun.10, 2280 (2019). 10.1038/s41467-019-10299-6 PubMed DOI PMC

Wu, J., Karigerasi, M. H., Shoemaker, D. P., Lorenz, V. O. & Cahill, D. G. Temperature dependence of the anisotropic magnetoresistance of the metallic antiferromagnet Fe2As. Phys. Rev. Appl.15, 054038 (2021).10.1103/PhysRevApplied.15.054038 DOI

Nakagawa, K., Kimata, M., Yokouchi, T. & Shiomi, Y. Surface anisotropic magnetoresistance in the antiferromagnetic semiconductor CrSb2. Phys. Rev. B107, L180405 (2023).10.1103/PhysRevB.107.L180405 DOI

Oh, D. G. et al. Spin-flip-driven anomalous Hall effect and anisotropic magnetoresistance in a layered Ising antiferromagnet. Sci. Rep.13, 3391 (2023). 10.1038/s41598-023-30076-2 PubMed DOI PMC

Výborný, K. et al. Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga, Mn)As. Phys. Rev. B80, 165204 (2009).10.1103/PhysRevB.80.165204 DOI

Železný, J. et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: antiferromagnets and ferromagnets. Phys. Rev. B95, 014403 (2017).10.1103/PhysRevB.95.014403 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...