Anisotropic magnetoresistance in altermagnetic MnTe
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39148893
PubMed Central
PMC11321990
DOI
10.1038/s44306-024-00046-z
PII: 46
Knihovny.cz E-zdroje
- Klíčová slova
- Magnetic properties and materials, Spintronics,
- Publikační typ
- časopisecké články MeSH
Recently, MnTe was established as an altermagnetic material that hosts spin-polarized electronic bands as well as anomalous transport effects like the anomalous Hall effect. In addition to these effects arising from altermagnetism, MnTe also hosts other magnetoresistance effects. Here, we study the manipulation of the magnetic order by an applied magnetic field and its impact on the electrical resistivity. In particular, we establish which components of anisotropic magnetoresistance are present when the magnetic order is rotated within the hexagonal basal plane. Our experimental results, which are in agreement with our symmetry analysis of the magnetotransport components, showcase the existence of an anisotropic magnetoresistance linked to both the relative orientation of current and magnetic order, as well as crystal and magnetic order. Altermagnetism is manifested as a three-fold component in the transverse magnetoresistance which arises due to the anomalous Hall effect.
Charles University Faculty of Mathematics and Physics Prague 2 Czechia
Hochfeld Magnetlabor Dresden Helmholtz Zentrum Dresden Rossendorf Dresden Germany
Institut für Festkörper und Materialphysik Technical University Dresden Dresden Germany
Institute of Physics ASCR v v i Prague Czechia
Institute of Semiconductor and Solid State Physics Johannes Kepler University Linz Linz Austria
Leibniz Institute for Solid State and Materials Research IFW Dresden Dresden Germany
School of Physics and Astronomy University of Nottingham Nottingham UK
Zobrazit více v PubMed
Šmejkal, L., Sinova, J. & Jungwirth, T. Emerging research landscape of altermagnetism. Phys. Rev. X12, 040501 (2022).
Mazin, I. The PRX Editors. Editorial: Altermagnetism—a new punch line of fundamental magnetism. Phys. Rev. X12, 040002 (2022).
Šmejkal, L., Sinova, J. & Jungwirth, T. Beyond conventional ferromagnetism and antiferromagnetism: a phase with nonrelativistic spin and crystal rotation symmetry. Phys. Rev. X12, 031042 (2022).
Krempaský, J. et al. Altermagnetic lifting of Kramers spin degeneracy. Nature626, 517 (2024). 10.1038/s41586-023-06907-7 PubMed DOI PMC
Fedchenko, O. et al. Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2. Sci. Adv.10, eadj4883 (2024). 10.1126/sciadv.adj4883 PubMed DOI PMC
Lin, Z. et al. Observation of giant spin splitting and d-wave spin texture in room temperature altermagnet RuO2. https://arxiv.org/abs/2402.04995 (2024).
Reimers, S. et al. Direct observation of altermagnetic band splitting in CrSb thin films. Nat. Commun.15, 2116 (2024). 10.1038/s41467-024-46476-5 PubMed DOI PMC
Lee, S. et al. Broken Kramers degeneracy in altermagnetic MnTe. Phys. Rev. Lett.132, 036702 (2024). 10.1103/PhysRevLett.132.036702 PubMed DOI
Wasscher, J. D. Evidence of weak ferromagnetism in MnTe from galvanomagnetic measurements. Solid State Commun.3, 169 (1965).10.1016/0038-1098(65)90284-X DOI
Reichlova, H. et al. Observation of a spontaneous anomalous Hall response in the Mn5Si3 d-wave altermagnet candidate. Nat. Commun.15, 4961 (2024) PubMed PMC
Feng, Z. et al. An anomalous Hall effect in altermagnetic ruthenium dioxide. Nat. Electron.5, 735 (2022).10.1038/s41928-022-00866-z DOI
Tschirner, T. et al. Saturation of the anomalous Hall effect at high magnetic fields in altermagnetic RuO2. APL Mater.11, 101103 (2023).10.1063/5.0160335 DOI
Gonzalez Betancourt, R. D. et al. Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor. Phys. Rev. Lett.130, 036702 (2023). 10.1103/PhysRevLett.130.036702 PubMed DOI
Kluczyk, K. P. et al. Coexistence of anomalous hall effect and weak net magnetization in collinear antiferromagnet MnTe. https://arxiv.org/abs/2310.09134 (2023).
Hariki, A. et al. X-ray magnetic circular dichroism in altermagnetic α-MnTe. Phys. Rev. Lett.132, 176701 (2024). 10.1103/PhysRevLett.132.176701 PubMed DOI
McGuire, T. & Potter, R. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn.11, 1018 (1975).10.1109/TMAG.1975.1058782 DOI
Ritzinger, P. & Výborný, K. Anisotropic magnetoresistance: materials, models and applications. R. Soc. Open Sci.10, 230564 (2023). 10.1098/rsos.230564 PubMed DOI PMC
Kokado, S. & Tsunoda, M. Twofold and fourfold symmetric anisotropic magnetoresistance effect in a model with crystal field. J. Phys. Soc. Jpn.84, 094710 (2015).10.7566/JPSJ.84.094710 DOI
Limmer, W. et al. Advanced resistivity model for arbitrary magnetization orientation applied to a series of compressive- to tensile-strained (Ga, Mn)As layers. Phys. Rev. B77, 205210 (2008).10.1103/PhysRevB.77.205210 DOI
Ritzinger, P. et al. Anisotropic magnetothermal transport in Co2MnGa thin films. Phys. Rev. B104, 094406 (2021).10.1103/PhysRevB.104.094406 DOI
Rout, P. K., Agireen, I., Maniv, E., Goldstein, M. & Dagan, Y. Six-fold crystalline anisotropic magnetoresistance in the (111) LaAlO3/SrTiO3 oxide interface. Phys. Rev. B95, 241107 (2017).10.1103/PhysRevB.95.241107 DOI
Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun.7, 11623 (2016). 10.1038/ncomms11623 PubMed DOI PMC
Kriegner, D. et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B96, 214418 (2017).10.1103/PhysRevB.96.214418 DOI
Mazin, I. I. Altermagnetism in MnTe: Origin, predicted manifestations, and routes to detwinning. Phys. Rev. B107, L100418 (2023).10.1103/PhysRevB.107.L100418 DOI
Allen, J. W., Lucovsky, G. & Mikkelsen, J. C. Optical properties and electronic structure of crossroads material MnTe. Solid State Commun.24, 367 (1977).10.1016/0038-1098(77)90984-X DOI
Przeździecka, E. et al. Preparation and characterization of hexagonal MnTe and ZnO layers. Phys. Status Solidi (C)2, 1218 (2005).10.1002/pssc.200460667 DOI
Wasscher, J. D. Electrical Transport Phenomena in MnTe, an Antiferromagnetic Semiconductor (Ph.D. thesis), (Technische Hogeschool Eindhoven, 1969).
González-Hernández, R. et al. Efficient electrical spin splitter based on nonrelativistic collinear antiferromagnetism. Phys. Rev. Lett.126, 127701 (2021). 10.1103/PhysRevLett.126.127701 PubMed DOI
Kunitomi, N., Hamaguchi, Y. & Anzai, S. Neutron diffraction study on manganese telluride. J. Phys.25, 568 (1964).10.1051/jphys:01964002505056800 DOI
Szuszkiewicz, W., Dynowska, E., Witkowska, B. & Hennion, B. Spin-wave measurements on hexagonal MnTe of NiAs-type structure by inelastic neutron scattering. Phys. Rev. B73, 104403 (2006).10.1103/PhysRevB.73.104403 DOI
Komatsubara, T., Murakami, M. & Hirahara, E. Magnetic properties of manganese telluride single crystals. J. Phys. Soc. Jpn.18, 356 (1963).10.1143/JPSJ.18.356 DOI
Moseley, D. H. et al. Giant doping response of magnetic anisotropy in MnTe. Phys. Rev. Mater.6, 014404 (2022).10.1103/PhysRevMaterials.6.014404 DOI
Yin, G. et al. Planar Hall effect in antiferromagnetic MnTe Thin Films. Phys. Rev. Lett.122, 106602 (2019). 10.1103/PhysRevLett.122.106602 PubMed DOI
Faria Junior, P. E. et al. Sensitivity of the MnTe valence band to the orientation of magnetic moments. Phys. Rev. B107, L100417 (2023).10.1103/PhysRevB.107.L100417 DOI
Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci.240, 599 (1948).
Villars, P.& Cenzual, K. MnTe crystal structure: datasheet from “PAULING FILE Multinaries Edition−2012" in Springer Materials (https://materials.springer.com/isp/crystallographic/docs/sd_0379437), Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan.
Železný, J. Symmetr - linear-response-symmetry. https://bitbucket.org/zeleznyj/linear-response-symmetry.
Ferrer-Roca, C. H., Segura, A., Reig, C. & Muñoz, V. Temperature and pressure dependence of the optical absorption in hexagonal MnTe. Phys. Rev. B61, 13679 (2000).10.1103/PhysRevB.61.13679 DOI
Fina, I. et al. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat. Commun.5, 4671 (2014). 10.1038/ncomms5671 PubMed DOI
Wang, H. et al. Giant anisotropic magnetoresistance and nonvolatile memory in canted antiferromagnet Sr2IrO4. Nat. Commun.10, 2280 (2019). 10.1038/s41467-019-10299-6 PubMed DOI PMC
Wu, J., Karigerasi, M. H., Shoemaker, D. P., Lorenz, V. O. & Cahill, D. G. Temperature dependence of the anisotropic magnetoresistance of the metallic antiferromagnet Fe2As. Phys. Rev. Appl.15, 054038 (2021).10.1103/PhysRevApplied.15.054038 DOI
Nakagawa, K., Kimata, M., Yokouchi, T. & Shiomi, Y. Surface anisotropic magnetoresistance in the antiferromagnetic semiconductor CrSb2. Phys. Rev. B107, L180405 (2023).10.1103/PhysRevB.107.L180405 DOI
Oh, D. G. et al. Spin-flip-driven anomalous Hall effect and anisotropic magnetoresistance in a layered Ising antiferromagnet. Sci. Rep.13, 3391 (2023). 10.1038/s41598-023-30076-2 PubMed DOI PMC
Výborný, K. et al. Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga, Mn)As. Phys. Rev. B80, 165204 (2009).10.1103/PhysRevB.80.165204 DOI
Železný, J. et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: antiferromagnets and ferromagnets. Phys. Rev. B95, 014403 (2017).10.1103/PhysRevB.95.014403 DOI