Band structure analysis of the magneto-optical effect in bcc Fe
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
34697375
PubMed Central
PMC8546123
DOI
10.1038/s41598-021-00478-1
PII: 10.1038/s41598-021-00478-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Magneto-optical effects are among the basic tools for characterization of magnetic materials. Although these effects are routinely calculated by the ab initio codes, there is very little knowledge about their origin in the electronic structure. Here, we analyze the magneto-optical effect in bcc Fe and show that it originates in avoided band-crossings due to the spin-orbit interaction. Therefore, only limited number of bands and k-points in the Brillouin zone contribute to the effect. Furthermore, these contributions always come in pairs with opposite sign but they do not cancel out due to different band curvatures providing different number of contributing reciprocal points. The magneto-optical transitions are classified by the dimensionality of the manifold that is formed by the hybridization of the generating bands as one- or two-dimensional, and by the position relative to the magnetization direction as parallel and perpendicular. The strongest magneto-optical signal is provided by two-dimensional parallel transitions.
Zobrazit více v PubMed
Krinchik GS, Artemjev VA. Magneto-optic properties of nickel, iron, and cobalt. J. Appl. Phys. 1968;39:1276–1278. doi: 10.1063/1.1656263. DOI
Ferguson PE, Romagnoli RJ. Transverse Kerr magneto-optic effect and optical properties of transition-rare-earth alloys. J. Appl. Phys. 1969;40:1236–1238. doi: 10.1063/1.1657607. DOI
Silber R, et al. Scaling of quadratic and linear magneto-optic Kerr effect spectra with L2 DOI
Ješko R, et al. Spectral permittivity tensor and density functional theory calculations on the Heusler compound Co DOI
McCord J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D Appl. Phys. 2015;48:333001. doi: 10.1088/0022-3727/48/33/333001. DOI
Urs NO, et al. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited) AIP Adv. 2016;6:055605. doi: 10.1063/1.4943760. DOI
Liu C, Zhang X, Zhou Y-H. A novel design for magneto-optical microscopy and its calibration. Meas. Sci. Technol. 2019;30:115904. doi: 10.1088/1361-6501/ab27fa. DOI
Kim D, et al. Extreme anti-reflection enhanced magneto-optic Kerr effect microscopy. Nat. Commun. 2020;11:5937. doi: 10.1038/s41467-020-19724-7. PubMed DOI PMC
Huisman TJ, Mikhaylovskiy RV, Tsukamoto A, Rasing T, Kimel AV. Simultaneous measurements of terahertz emission and magneto-optical Kerr effect for resolving ultrafast laser-induced demagnetization dynamics. Phys. Rev. B. 2015;92:104419. doi: 10.1103/PhysRevB.92.104419. DOI
Wieczorek J, et al. Separation of ultrafast spin currents and spin-flip scattering in Co/Cu(001) driven by femtosecond laser excitation employing the complex magneto-optical Kerr effect. Phys. Rev. B. 2015;92:174410. doi: 10.1103/PhysRevB.92.174410. DOI
Razdolski I, et al. Analysis of the time-resolved magneto-optical Kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films. J. Phys. Condens. Matter. 2017;29:174002. doi: 10.1088/1361-648X/aa63c6. PubMed DOI
Wang C, Liu Y. Ultrafast optical manipulation of magnetic order in ferromagnetic materials. Nano Converg. 2020;7:35. doi: 10.1186/s40580-020-00246-3. PubMed DOI PMC
Takagi H, Nakamura K, Goto T, Lim PB, Inoue M. Magneto-optic spatial light modulator with submicron-size magnetic pixels for wide-viewing-angle holographic displays. Opt. Lett. 2014;39:3344–3347. doi: 10.1364/OL.39.003344. PubMed DOI
Aoshima K, et al. A magneto-optical spatial light modulator driven by spin transfer switching for 3D holography applications. J. Display Technol. 2015;11:129–135. doi: 10.1109/JDT.2014.2341243. DOI
Shirakashi Z, et al. Reconstruction of non-error magnetic hologram data by magnetic assist recording. Sci. Rep. 2017;7:12835. doi: 10.1038/s41598-017-12442-z. PubMed DOI PMC
Shoji Y, Mizumoto T, Yokoi H, Hsieh I-W, Osgood RM. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 2008;92:071117. doi: 10.1063/1.2884855. DOI
Stadler BJH, Mizumoto T. Integrated magneto-optical materials and isolators: A review. IEEE Photonics J. 2014;6:1–15. doi: 10.1109/JPHOT.2013.2293618. DOI
Yan W, et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica. 2020;7:1555–1562. doi: 10.1364/OPTICA.408458. DOI
Otmani H, et al. Magneto-optical properties of magnetic photonic crystal fiber of terbium gallium garnet filled with magnetic fluid. Photonics Nanostruct. Fundam. Appl. 2016;22:24–28. doi: 10.1016/j.photonics.2016.09.001. DOI
Pourali N, Bahador H. Tunable magneto-optical responses in a photonic crystal containing two plasma defect layers. Phys. Plasmas. 2019;26:013515. doi: 10.1063/1.5054662. DOI
Grishin AM, Khartsev SI. Waveguiding in all-garnet heteroepitaxial magneto-optical photonic crystals. JETP Lett. 2019;109:83–86. doi: 10.1134/S0021364019020012. DOI
Wittekoek S, Popma TJA, Robertson JM, Bongers PF. Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV. Phys. Rev. B. 1975;12:2777–2788. doi: 10.1103/PhysRevB.12.2777. DOI
Bruno P, Suzuki Y, Chappert C. Magneto-optical Kerr effect in a paramagnetic overlayer on a ferromagnetic substrate: A spin-polarized quantum size effect. Phys. Rev. B. 1996;53:9214–9220. doi: 10.1103/PhysRevB.53.9214. PubMed DOI
Singh M, Wang CS, Callaway J. Spin-orbit coupling, Fermi surface, and optical conductivity of ferromagnetic iron. Phys. Rev. B. 1975;11:287–294. doi: 10.1103/PhysRevB.11.287. DOI
Oppeneer PM, Maurer T, Sticht J, Kübler J. Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals: Fe and Ni. Phys. Rev. B. 1992;45:10924–10933. doi: 10.1103/PhysRevB.45.10924. PubMed DOI
Uspenskii Y, Kulatov E, Halilov S. Ab initio studies of optical and magneto-optical spectra in 3d- and 4f-atom-based compounds. Phys. A Stat. Mech. Appl. 1997;241:89–93. doi: 10.1016/S0378-4371(97)00064-2. DOI
Kunes J, Oppeneer P. Ab Initio calculations of magneto-optical effects. Trans. Magn. Soc. Japan. 2002;2:141–146. doi: 10.3379/tmjpn2001.2.141. DOI
Rosa P, Sangalli D, Onida G, Debernardi A. Ab initio electronic structure, optical, and magneto-optical properties of MnGaAs digital ferromagnetic heterostructures. Phys. Rev. B. 2015;91:075207. doi: 10.1103/PhysRevB.91.075207. DOI
Merikhi R, Bennecer B, Hamidani A. Magneto-optical Kerr effect in ZnTMO DOI
Thiering G, Gali A. Ab Initio magneto-optical spectrum of group-IV vacancy color centers in diamond. Phys. Rev. X. 2018;8:021063.
Wimmer S, Mankovsky S, Minár J, Yaresko AN, Ebert H. Magneto-optic and transverse-transport properties of noncollinear antiferromagnets. Phys. Rev. B. 2019;100:214429. doi: 10.1103/PhysRevB.100.214429. DOI
Silber R, et al. Quadratic magneto-optic Kerr effect spectroscopy of Fe epitaxial films on MgO(001) substrates. Phys. Rev. B. 2019;100:064403. doi: 10.1103/PhysRevB.100.064403. DOI
Graulich D, et al. Quantitative comparison of the magnetic proximity effect in Pt detected by XRMR and XMCD. Appl. Phys. Lett. 2021;118:012407. doi: 10.1063/5.0032584. DOI
Uba L, Uba S, Germash LP, Bekenov LV, Antonov VN. Electronic structure and magneto-optical spectra of La DOI
Uba S, et al. Electronic structure and magneto-optical Kerr effect spectra of ferromagnetic shape-memory Ni–Mn–Ga alloys: Experiment and density functional theory calculations. Phys. Rev. B. 2016;94:054427. doi: 10.1103/PhysRevB.94.054427. DOI
Kargarian M, Randeria M, Trivedi N. Theory of Kerr and Faraday rotations and linear dichroism in topological Weyl semimetals. Sci. Rep. 2015;5:12683. doi: 10.1038/srep12683. PubMed DOI PMC
Liu J, Balents L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn PubMed DOI
Yang H, et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn DOI
Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz) Wien: Techn. Universität; 2001.
Ambrosch-Draxl C, Sofo JO. Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 2006;175:1–14. doi: 10.1016/j.cpc.2006.03.005. DOI
Wang H, Ma P-W, Woo CH. Exchange interaction function for spin-lattice coupling in bcc iron. Phys. Rev. B. 2010;82:144304. doi: 10.1103/PhysRevB.82.144304. DOI
Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI
Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan. 1957;12:570–586. doi: 10.1143/JPSJ.12.570. DOI
Callaway J. Quantum Theory of the Solid State. 2. San Diego: Academic Press; 1991.
Yao Y, et al. First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 2004;92:037204. doi: 10.1103/PhysRevLett.92.037204. PubMed DOI
Stöhr J, Siegmann H. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer Series in Solid-State Sciences) Heidelberg: Springer; 2006.