Band structure analysis of the magneto-optical effect in bcc Fe

. 2021 Oct 25 ; 11 (1) : 21026. [epub] 20211025

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34697375
Odkazy

PubMed 34697375
PubMed Central PMC8546123
DOI 10.1038/s41598-021-00478-1
PII: 10.1038/s41598-021-00478-1
Knihovny.cz E-zdroje

Magneto-optical effects are among the basic tools for characterization of magnetic materials. Although these effects are routinely calculated by the ab initio codes, there is very little knowledge about their origin in the electronic structure. Here, we analyze the magneto-optical effect in bcc Fe and show that it originates in avoided band-crossings due to the spin-orbit interaction. Therefore, only limited number of bands and k-points in the Brillouin zone contribute to the effect. Furthermore, these contributions always come in pairs with opposite sign but they do not cancel out due to different band curvatures providing different number of contributing reciprocal points. The magneto-optical transitions are classified by the dimensionality of the manifold that is formed by the hybridization of the generating bands as one- or two-dimensional, and by the position relative to the magnetization direction as parallel and perpendicular. The strongest magneto-optical signal is provided by two-dimensional parallel transitions.

Zobrazit více v PubMed

Krinchik GS, Artemjev VA. Magneto-optic properties of nickel, iron, and cobalt. J. Appl. Phys. 1968;39:1276–1278. doi: 10.1063/1.1656263. DOI

Ferguson PE, Romagnoli RJ. Transverse Kerr magneto-optic effect and optical properties of transition-rare-earth alloys. J. Appl. Phys. 1969;40:1236–1238. doi: 10.1063/1.1657607. DOI

Silber R, et al. Scaling of quadratic and linear magneto-optic Kerr effect spectra with L2 DOI

Ješko R, et al. Spectral permittivity tensor and density functional theory calculations on the Heusler compound Co DOI

McCord J. Progress in magnetic domain observation by advanced magneto-optical microscopy. J. Phys. D Appl. Phys. 2015;48:333001. doi: 10.1088/0022-3727/48/33/333001. DOI

Urs NO, et al. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited) AIP Adv. 2016;6:055605. doi: 10.1063/1.4943760. DOI

Liu C, Zhang X, Zhou Y-H. A novel design for magneto-optical microscopy and its calibration. Meas. Sci. Technol. 2019;30:115904. doi: 10.1088/1361-6501/ab27fa. DOI

Kim D, et al. Extreme anti-reflection enhanced magneto-optic Kerr effect microscopy. Nat. Commun. 2020;11:5937. doi: 10.1038/s41467-020-19724-7. PubMed DOI PMC

Huisman TJ, Mikhaylovskiy RV, Tsukamoto A, Rasing T, Kimel AV. Simultaneous measurements of terahertz emission and magneto-optical Kerr effect for resolving ultrafast laser-induced demagnetization dynamics. Phys. Rev. B. 2015;92:104419. doi: 10.1103/PhysRevB.92.104419. DOI

Wieczorek J, et al. Separation of ultrafast spin currents and spin-flip scattering in Co/Cu(001) driven by femtosecond laser excitation employing the complex magneto-optical Kerr effect. Phys. Rev. B. 2015;92:174410. doi: 10.1103/PhysRevB.92.174410. DOI

Razdolski I, et al. Analysis of the time-resolved magneto-optical Kerr effect for ultrafast magnetization dynamics in ferromagnetic thin films. J. Phys. Condens. Matter. 2017;29:174002. doi: 10.1088/1361-648X/aa63c6. PubMed DOI

Wang C, Liu Y. Ultrafast optical manipulation of magnetic order in ferromagnetic materials. Nano Converg. 2020;7:35. doi: 10.1186/s40580-020-00246-3. PubMed DOI PMC

Takagi H, Nakamura K, Goto T, Lim PB, Inoue M. Magneto-optic spatial light modulator with submicron-size magnetic pixels for wide-viewing-angle holographic displays. Opt. Lett. 2014;39:3344–3347. doi: 10.1364/OL.39.003344. PubMed DOI

Aoshima K, et al. A magneto-optical spatial light modulator driven by spin transfer switching for 3D holography applications. J. Display Technol. 2015;11:129–135. doi: 10.1109/JDT.2014.2341243. DOI

Shirakashi Z, et al. Reconstruction of non-error magnetic hologram data by magnetic assist recording. Sci. Rep. 2017;7:12835. doi: 10.1038/s41598-017-12442-z. PubMed DOI PMC

Shoji Y, Mizumoto T, Yokoi H, Hsieh I-W, Osgood RM. Magneto-optical isolator with silicon waveguides fabricated by direct bonding. Appl. Phys. Lett. 2008;92:071117. doi: 10.1063/1.2884855. DOI

Stadler BJH, Mizumoto T. Integrated magneto-optical materials and isolators: A review. IEEE Photonics J. 2014;6:1–15. doi: 10.1109/JPHOT.2013.2293618. DOI

Yan W, et al. Waveguide-integrated high-performance magneto-optical isolators and circulators on silicon nitride platforms. Optica. 2020;7:1555–1562. doi: 10.1364/OPTICA.408458. DOI

Otmani H, et al. Magneto-optical properties of magnetic photonic crystal fiber of terbium gallium garnet filled with magnetic fluid. Photonics Nanostruct. Fundam. Appl. 2016;22:24–28. doi: 10.1016/j.photonics.2016.09.001. DOI

Pourali N, Bahador H. Tunable magneto-optical responses in a photonic crystal containing two plasma defect layers. Phys. Plasmas. 2019;26:013515. doi: 10.1063/1.5054662. DOI

Grishin AM, Khartsev SI. Waveguiding in all-garnet heteroepitaxial magneto-optical photonic crystals. JETP Lett. 2019;109:83–86. doi: 10.1134/S0021364019020012. DOI

Wittekoek S, Popma TJA, Robertson JM, Bongers PF. Magneto-optic spectra and the dielectric tensor elements of bismuth-substituted iron garnets at photon energies between 2.2–5.2 eV. Phys. Rev. B. 1975;12:2777–2788. doi: 10.1103/PhysRevB.12.2777. DOI

Bruno P, Suzuki Y, Chappert C. Magneto-optical Kerr effect in a paramagnetic overlayer on a ferromagnetic substrate: A spin-polarized quantum size effect. Phys. Rev. B. 1996;53:9214–9220. doi: 10.1103/PhysRevB.53.9214. PubMed DOI

Singh M, Wang CS, Callaway J. Spin-orbit coupling, Fermi surface, and optical conductivity of ferromagnetic iron. Phys. Rev. B. 1975;11:287–294. doi: 10.1103/PhysRevB.11.287. DOI

Oppeneer PM, Maurer T, Sticht J, Kübler J. Ab initio calculated magneto-optical Kerr effect of ferromagnetic metals: Fe and Ni. Phys. Rev. B. 1992;45:10924–10933. doi: 10.1103/PhysRevB.45.10924. PubMed DOI

Uspenskii Y, Kulatov E, Halilov S. Ab initio studies of optical and magneto-optical spectra in 3d- and 4f-atom-based compounds. Phys. A Stat. Mech. Appl. 1997;241:89–93. doi: 10.1016/S0378-4371(97)00064-2. DOI

Kunes J, Oppeneer P. Ab Initio calculations of magneto-optical effects. Trans. Magn. Soc. Japan. 2002;2:141–146. doi: 10.3379/tmjpn2001.2.141. DOI

Rosa P, Sangalli D, Onida G, Debernardi A. Ab initio electronic structure, optical, and magneto-optical properties of MnGaAs digital ferromagnetic heterostructures. Phys. Rev. B. 2015;91:075207. doi: 10.1103/PhysRevB.91.075207. DOI

Merikhi R, Bennecer B, Hamidani A. Magneto-optical Kerr effect in ZnTMO DOI

Thiering G, Gali A. Ab Initio magneto-optical spectrum of group-IV vacancy color centers in diamond. Phys. Rev. X. 2018;8:021063.

Wimmer S, Mankovsky S, Minár J, Yaresko AN, Ebert H. Magneto-optic and transverse-transport properties of noncollinear antiferromagnets. Phys. Rev. B. 2019;100:214429. doi: 10.1103/PhysRevB.100.214429. DOI

Silber R, et al. Quadratic magneto-optic Kerr effect spectroscopy of Fe epitaxial films on MgO(001) substrates. Phys. Rev. B. 2019;100:064403. doi: 10.1103/PhysRevB.100.064403. DOI

Graulich D, et al. Quantitative comparison of the magnetic proximity effect in Pt detected by XRMR and XMCD. Appl. Phys. Lett. 2021;118:012407. doi: 10.1063/5.0032584. DOI

Uba L, Uba S, Germash LP, Bekenov LV, Antonov VN. Electronic structure and magneto-optical spectra of La DOI

Uba S, et al. Electronic structure and magneto-optical Kerr effect spectra of ferromagnetic shape-memory Ni–Mn–Ga alloys: Experiment and density functional theory calculations. Phys. Rev. B. 2016;94:054427. doi: 10.1103/PhysRevB.94.054427. DOI

Kargarian M, Randeria M, Trivedi N. Theory of Kerr and Faraday rotations and linear dichroism in topological Weyl semimetals. Sci. Rep. 2015;5:12683. doi: 10.1038/srep12683. PubMed DOI PMC

Liu J, Balents L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn PubMed DOI

Yang H, et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn DOI

Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz) Wien: Techn. Universität; 2001.

Ambrosch-Draxl C, Sofo JO. Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun. 2006;175:1–14. doi: 10.1016/j.cpc.2006.03.005. DOI

Wang H, Ma P-W, Woo CH. Exchange interaction function for spin-lattice coupling in bcc iron. Phys. Rev. B. 2010;82:144304. doi: 10.1103/PhysRevB.82.144304. DOI

Perdew JP, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B. 1992;45:13244–13249. doi: 10.1103/PhysRevB.45.13244. PubMed DOI

Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Japan. 1957;12:570–586. doi: 10.1143/JPSJ.12.570. DOI

Callaway J. Quantum Theory of the Solid State. 2. San Diego: Academic Press; 1991.

Yao Y, et al. First principles calculation of anomalous Hall conductivity in ferromagnetic bcc Fe. Phys. Rev. Lett. 2004;92:037204. doi: 10.1103/PhysRevLett.92.037204. PubMed DOI

Stöhr J, Siegmann H. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer Series in Solid-State Sciences) Heidelberg: Springer; 2006.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Observation of time-reversal symmetry breaking in the band structure of altermagnetic RuO2

. 2024 Feb 02 ; 10 (5) : eadj4883. [epub] 20240131

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...