Fabrication and Characterization of Carboxymethyl Starch/Poly(l-Lactide) Acid/β-Tricalcium Phosphate Composite Nanofibers via Electrospinning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1. FRGS/1/2018/STG 07/UKM/02/03 2. HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843
1. Hybrid Nanofibers under Ionizing Radiation as a Guided Bone Regeneration Membrane, Universiti Kebangsaan Malaysia, Ministry of Higher Education. 2. the Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Stru
PubMed
31505735
PubMed Central
PMC6780157
DOI
10.3390/polym11091468
PII: polym11091468
Knihovny.cz E-zdroje
- Klíčová slova
- carboxymethyl starch (CMS), electrospinning, nanofibers, poly l-lactide (PLLA), β-tricalcium phosphate (β-TCP),
- Publikační typ
- časopisecké články MeSH
A natural polymer of carboxymethyl starch (CMS) was used in combination with the inorganic mineral of β-Tricalcium Phosphate (β-TCP) and Poly l-lactide (PLLA) to prepare composite nanofibers with the potential to be used as a biomedical membrane. β-TCP contents varied in the range of 0.25% to 1% in the composition of PLLA and CMS. A mixed composition of these organic and inorganic materials was electro-spun to produce composite nanofibers. Morphological investigation indicated that smooth and uniform nanofibers could be produced via this technique. The average of the nanofiber diameters was slightly increased from 190 to 265 nm with the β-TCP content but some agglomeration of particles began to impede in the fiber at a higher content of β-TCP. It was observed that the fibers were damaged at a higher content of β-TCP nanoparticles. With the presence of higher β-TCP, the wettability of the PLLA was also improved, as indicated by the water contact angle measurement from 127.3° to 118°. The crystallization in the composite decreased, as shown in the changes in glass transition (Tg) and melting temperature (Tm) by differential scanning calorimeter (DSC) and X-ray diffraction analysis. Increases in β-TCP contributed to weaker mechanical strength, from 8.5 to 5.7 MPa, due to imperfect fiber structure.
Faculty of Sciences and Technology National University of Malaysia Bandar Baru Bangi 43600 Selangor
Material Technology Group Malaysian Nuclear Agency Bangi Kajang 43300 Selangor
Zobrazit více v PubMed
Ramakrishna S., Fujihara K., Teo W.E., Lim T.C., Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific; Singapore: 2005.
Lv D., Wang R., Tang G., Mou Z., Lei J., Han J. Ecofriendly Electrospun Membranes Loaded with Visible-Light-Responding Nanoparticles for Multifunctional Usages: Highly Efficient Air Filtration, Dye Scavenging, and Bactericidal Activity. ACS Appl. Mater. Inter. 2019;11:12880–12889. doi: 10.1021/acsami.9b01508. PubMed DOI
Hanis H., Reusmaazran Y.M., Rashid M.R.Z., Rusymah I., Roy C.S. Human Amniotic Membrane with Aligned Electrospun Fiber as Scaffold for Aligned Tissue Regeneration. Tissue Eng. Part C Methods. 2018;24:368–378. PubMed
Zhou S., Zhou G., Jiang S., Fan P., Hou H. Flexible and refractory tantalum carbide-carbon electrospun nanofibers with high modulus and electric conductivity. Mater. Lett. 2017;200:97–100. doi: 10.1016/j.matlet.2017.04.115. DOI
Sundarrajan S., Luck Tan K., Huat Lim S., Ramakrishna S. Electrospun Nanofibers for Air Filtration Applications. Procedia Eng. 2014;75:159–163. doi: 10.1016/j.proeng.2013.11.034. DOI
Yalcinkaya F., Siekierka A., Bryjak M. Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv. 2017;7:56704–56712. doi: 10.1039/C7RA11904F. DOI
Lv D., Zhu M., Jiang Z., Jiang S., Zhang Q., Xiong R. Green Electrospun Nanofibers and Their Application in Air Filtration. Macromol. Mater. Eng. 2018;303:1800336. doi: 10.1002/mame.201800336. DOI
Jiang S., Chen Y., Duan G., Mei C., Greiner A., Agarwal S. Electrospun nanofiber reinforced composites: A review. Polymer Chem. 2018;9:2685–2720. doi: 10.1039/C8PY00378E. DOI
Roche R., Yalcinkaya F. Electrospun Polyacrylonitrile Nanofibrous Membranes for Point-of-Use Water and Air Cleaning. Chem. Open. 2019;8:97–103. doi: 10.1002/open.201800267. PubMed DOI PMC
Yalcinkaya F., Hruza J. Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration. Nanomaterials. 2018;8:272. doi: 10.3390/nano8050272. PubMed DOI PMC
Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. J. Eng. Fiber. Fabr. 2019;14:1–12. doi: 10.1177/1558925018824901. DOI
Sill T.J., Von Recum H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. doi: 10.1016/j.biomaterials.2008.01.011. PubMed DOI
Hu X., Liu S., Zhou G., Huang Y., Xie Z., Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release. 2014;185:12–21. doi: 10.1016/j.jconrel.2014.04.018. PubMed DOI
Pillay V., Dott C., Choonara Y.E., Tyagi C., Tomar L., Kumar P., du Toit L.C., Ndesendo V.M.K. A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. J. Nanomater. 2013;2013:1–22. doi: 10.1155/2013/789289. DOI
Sundarrajan S., Ramakrishna S. Smart Textiles for Protection. Woodhead Publishing Limited; Sawston, Cambridge, UK: 2012. The use of nanomaterials in smart protective clothing; pp. 127–147.
Mirjalili M., Zohoori S. Review for application of electrospinning and electrospun nanofibers technology in textile industry. J. Nanostructure Chem. 2016;6:207–213. doi: 10.1007/s40097-016-0189-y. DOI
Lou T., Wang X., Song G., Gu Z., Yang Z. Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering. Int. J. Biol. Macromol. 2014;69:464–470. doi: 10.1016/j.ijbiomac.2014.06.004. PubMed DOI
Thomas S., Grohens Y., Ninan N. Nanotechnology Applications for Tissue Engineering. Elsevier; Amsterdam, The Netherlands: 2015.
Arahira T., Maruta M., Matsuya S., Todo M. Development and characterization of a novel porous β-TCP scaffold with a three-dimensional PLLA network structure for use in bone tissue engineering. Mater. Lett. 2015;152:148–150. doi: 10.1016/j.matlet.2015.03.128. DOI
Balagangadharan K., Dhivya S., Selvamurugan N. Chitosan based nanofibers in bone tissue engineering. Int. J. Biol. Macromol. 2017;104:1372–1382. doi: 10.1016/j.ijbiomac.2016.12.046. PubMed DOI
Yalcinkaya F., Komarek M., Lubasova D., Sanetrnik F., Maryska J. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns. J. Nanomater. 2016;2016:1–7. doi: 10.1155/2016/7565972. DOI
Spasova M., Stoilova O., Manolova N., Rashkov I., Altankov G. Preparation of PLLA/PEG nanofibers by electrospinning and potential applications. J. Bioact. Compat. Polym. 2007;22:62–76. doi: 10.1177/0883911506073570. DOI
Xu X., Zhong W., Zhou S., Trajtman A., Alfa M. Electrospun PEG-PLA nanofibrous membrane for sustained Release of hydrophilic antibiotics. J. Appl. Polym. Sci. 2010;118:588–595. doi: 10.1002/app.32415. DOI
Cooper A., Bhattarai N., Zhang M. Fabrication and cellular compatibility of aligned chitosan-PCL fibers for nerve tissue regeneration. Carbohydr. Polym. 2011;85:149–156. doi: 10.1016/j.carbpol.2011.02.008. DOI
Nguyen T.T.T., Chung O.H., Park J.S. Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr. Polym. 2011;86:1799–1806. doi: 10.1016/j.carbpol.2011.07.014. DOI
Frone A.N., Berlioz S., Chailan J.F., Panaitescu D.M. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydr. Polym. 2013;91:377–384. doi: 10.1016/j.carbpol.2012.08.054. PubMed DOI
Lemma S.M., Bossard F., Rinaudo M. Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly(ethylene oxide) Int. J. Mol. Sci. 2016;17:1790. doi: 10.3390/ijms17111790. PubMed DOI PMC
Zhao M.L., Sui G., Deng X.L., Lu J.G., Ryu S.K., Yang X.P. PLLA/HA Electrospin Hybrid Nanofiber Scaffolds: Morphology, In Vitro Degradation and Cell Culture Potential. Adv. Mater. Res. 2006;11–12:243–246. doi: 10.4028/www.scientific.net/AMR.11-12.243. DOI
Tang Y., Chen L., Zhao K., Wu Z., Wang Y., Tan Q. Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration. Compos. Sci. Technol. 2016;125:100–107. doi: 10.1016/j.compscitech.2016.02.005. DOI
Ma Z., Chen F., Zhu Y.J., Cui T., Liu X.Y. Amorphous calcium phosphate/poly(d,l-lactic acid) composite nanofibers: Electrospinning preparation and biomineralization. J. Colloid Interface Sci. 2011;359:371–379. doi: 10.1016/j.jcis.2011.04.023. PubMed DOI
Keivani F., Shokrollahi P., Zandi M., Irani S., Shokrolahi F., Khorasani S.C. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation. Mater. Sci. Eng. C. 2016;68:78–88. doi: 10.1016/j.msec.2016.05.098. PubMed DOI
Sharma P.R., Zheng B., Sharma S.K., Zhan C., Wang R., Bhatia S.R. High Aspect Ratio Carboxycellulose Nanofibers Prepared by Nitro-Oxidation Method and Their Nanopaper Properties. ACS Appl. Nano Mater. 2018;1:3969–3980. doi: 10.1021/acsanm.8b00744. DOI
Sharma P.R., Chattopadhyay A., Sharma S.K., Hsiao B.S. Efficient Removal of UO22+ from Water Using Carboxycellulose Nanofibers Prepared by the Nitro-Oxidation Method. Ind. Eng. Chem. Res. 2017;56:13885–13893. doi: 10.1021/acs.iecr.7b03659. DOI
Sharma P.R., Chattopadhyay A., Sharma S.K., Geng L., Amiralian N., Martin D. Nanocellulose from Spinifex as an Effective Adsorbent to Remove Cadmium(II) from Water. ACS Sustain. Chem. Eng. 2018;6:3279–3290. doi: 10.1021/acssuschemeng.7b03473. DOI
He M., Zhang B., Dou Y., Yin G., Cui Y., Chen X. Fabrication and characterization of electrospun feather keratin/poly(vinyl alcohol) composite nanofibers. RSC Adv. 2017;7:9854–9861. doi: 10.1039/C6RA25009B. DOI
Ahmed F.E., Lalia B.S., Hashaikeh R. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination. 2015;356:15–30. doi: 10.1016/j.desal.2014.09.033. DOI
Zulkifli F.H., Jahir Hussain F.S., Abdull Rasad M.S.B., Mohd Yusoff M. In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym. Degrad. Stab. 2014;110:473–481. doi: 10.1016/j.polymdegradstab.2014.10.017. DOI
Esmaeili A., Haseli M. Electrospinning of thermoplastic carboxymethyl cellulose/poly(ethylene oxide) nanofibers for use in drug-release systems. Mater. Sci. Eng. C. 2017;77:1117–1127. doi: 10.1016/j.msec.2017.03.252. PubMed DOI
Ren K., Wang Y., Sun T., Yue W., Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater. Sci. Eng. C. 2017;78:324–332. doi: 10.1016/j.msec.2017.04.084. PubMed DOI
Elgali I., Turri W., Xia B., Norlindh A., Johansson C. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomater. 2012;125:315–337. doi: 10.1016/j.actbio.2015.10.005. PubMed DOI
Kim H.W., Song J.H., Kim H.E. Nanofiber generation of gelatin-hydroxyapatite biomimetics for guided tissue regeneration. Adv. Funct. Mater. 2005;15:1988–1994. doi: 10.1002/adfm.200500116. DOI
Song X., Ling F., Ma L., Yang C., Chen X. Electrospun hydroxyapatite grafted poly(l-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Compos. Sci. Technol. 2013;79:8–14. doi: 10.1016/j.compscitech.2013.02.014. DOI
Yusof M.R., Shamsudin R., Abdullah Y., Yalcinkaya F., Yaacob N. Electrospinning of carboxymethyl starch/poly(l-lactide acid) composite nanofiber. Polym. Adv. Technol. 2018;29:1843–1851. doi: 10.1002/pat.4292. DOI
Yaacob B., Cairul M., Amin I.M., Kamaruddin H., Bakar B.A. Optimization of Reaction Conditions for Carboxymethylated Sago Starch. Iran. Polym. J. 2011;20:10–15.
Siqueira L., Passador F.R., Costa M.M., Lobo A.O., Sousa E. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly(lactic acid) fibers obtained by electrospinning. Mater. Sci. Eng. C. 2015;52:135–143. doi: 10.1016/j.msec.2015.03.055. PubMed DOI
Yener F., Jirsak O. Comparison between the Needle and Roller Electrospinning of Polyvinylbutyral. J. Nanomater. 2012;2012:1–6. doi: 10.1155/2012/839317. DOI
Bow J.S., Liou S.C., Chen S.Y. Structural characterization of room-temperature synthesized nano-sized β-tricalcium phosphate. Biomaterials. 2004;25:3155–3161. doi: 10.1016/j.biomaterials.2003.10.046. PubMed DOI
Chen Y., Liu S., Wang G. Kinetics and adsorption behavior of carboxymethyl starch on α-alumina in aqueous medium. J. Colloid Interface Sci. 2006;303:380–387. doi: 10.1016/j.jcis.2006.08.011. PubMed DOI
Gay S., Arostegui S., Lemaitre J. Preparation and characterization of dense nanohydroxyapatite/PLLA composites. Mater. Sci. Eng. C. 2009;29:172–177. doi: 10.1016/j.msec.2008.06.005. DOI
Ferri J.M., Gisbert I., García-Sanoguera D., Reig M.J., Balart R. The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid) J. Compos. Mater. 2016;50:4189–4198. doi: 10.1177/0021998316636205. DOI
Vert M., Li S.M., Spenlehauer G., Guerin P. Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Mater. Med. 1992;3:432–446. doi: 10.1007/BF00701240. DOI
Ma P.X. Scaffolds for tissue fabrication. Mater. Today. 2004;7:30–40. doi: 10.1016/S1369-7021(04)00233-0. DOI
Hu H.T., Lee S.Y., Chen C.C., Yang Y.C., Yang J.C. Processing and properties of hydrophilic electrospun polylactic acid/beta-tricalcium phosphate membrane for dental applications. Polym. Eng. Sci. 2013;53:833–842. doi: 10.1002/pen.23329. DOI
Deplaine H., Ribelles J.L.L.G., Ferrer G.G. Effect of the content of hydroxyapatite nanoparticles on the pr4operties and bioactivity of poly(l-lactide)—Hybrid membranes. Compos. Sci. Technol. 2010;70:1805–1812. doi: 10.1016/j.compscitech.2010.06.009. DOI
Tammaro L., Vittoria V., Wyrwa R., Weisser J., Beer B., Thein S., Schnabelrauch M. Fabrication and characterization of electrospun polylactide/β-tricalcium phosphate hybrid meshes for potential applications in hard tissue repair. BioNanoMaterials. 2014;15:9–20. doi: 10.1515/bnm-2014-0001. DOI
Sui G., Yang X., Mei F., Hu X., Chen G., Deng X., Ryu S. Poly-l-lactic acid/hydroxyapatite hybrid membrane for bone tissue regeneration. J. Biomed. Mater. Res. Part A. 2007;82:445–454. doi: 10.1002/jbm.a.31166. PubMed DOI
Liu X., Lim J.Y., Donahue H.J., Dhurjati R., Mastro A.M., Vogler E.A. Influence of substratum surface chemistry/energy and topography on the human fetal osteoblastic cell line hFOB 1.19: Phenotypic and genotypic responses observed in vitro. Biomaterials. 2007;28:4535–4550. doi: 10.1016/j.biomaterials.2007.06.016. PubMed DOI PMC
Ma F., Chen S., Liu P., Geng F., Li W., Liu X., He D., Pan D. Improvement of β-TCP/PLLA biodegradable material by surface modification with stearic acid. Mater. Sci. Eng. C. 2016;62:407–413. doi: 10.1016/j.msec.2016.01.087. PubMed DOI
Yang M., Di Z., Lee J.K. Facile control of surface wettability in TiO2/poly(methyl methacrylate) composite films. J. Colloid Interface Sci. 2012;368:603–607. doi: 10.1016/j.jcis.2011.11.037. PubMed DOI
Ngiam M., Liao S., Patil A.J., Cheng Z., Chan C.K., Ramakrishna S. The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering. Bone. 2009;45:4–16. doi: 10.1016/j.bone.2009.03.674. PubMed DOI
McCullen S.D., Zhu Y., Bernacki S.H., Narayan R.J., Pourdeyhimi B., Gorga R.E., Loboa E.G. Electrospun composite poly(l-lactic acid)/tricalcium phosphate scaffolds induce proliferation and osteogenic differentiation of human adipose-derived stem cells. Biomed. Mater. 2009;4:035002. doi: 10.1088/1748-6041/4/3/035002. PubMed DOI
Cai N., Dai Q., Wang Z., Luo X., Xue Y., Yu F. Toughening of electrospun poly(l-lactic acid) nanofiber scaffolds with unidirectionally aligned halloysite nanotubes. J. Mater. Sci. 2015;50:1435–1445. doi: 10.1007/s10853-014-8703-4. DOI
Heydary H.A., Karamian E., Poorazizi E., Heydaripour J., Khandan A. Electrospun of polymer/bioceramic nanocomposite as a new soft tissue for biomedical applications. J. Asian Ceram. Soc. 2015;3:417–425. doi: 10.1016/j.jascer.2015.09.003. DOI
Ba Linh N.T., Lee K.H., Lee B.T. Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects. J. Biomed. Mater. Res. Part A. 2013;101 A:2412–2423. doi: 10.1002/jbm.a.34533. PubMed DOI