Electron-Beam Irradiation of the PLLA/CMS/β-TCP Composite Nanofibers Obtained by Electrospinning
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
32709111
PubMed Central
PMC7408529
DOI
10.3390/polym12071593
PII: polym12071593
Knihovny.cz E-zdroje
- Klíčová slova
- PLLA, biodegradation, carboxy-methyl starch, electrospun, β-tricalcium phosphate,
- Publikační typ
- časopisecké články MeSH
Nanofibrous materials produced by electrospinning processes have potential advantages in tissue engineering because of their biocompatibility, biodegradability, biomimetic architecture, and excellent mechanical properties. The aim of the current work is to study the influence of the electron beam on the poly L-lactide acid/ carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers for potential applications as bone-tissue scaffolds. The composite nanofibers were prepared by electrospinning in the combination of 5% v/v carboxy-methyl starch (CMS) and 0.25 wt% of β-TCP with the PLLA as a matrix component. The composites nanofibers were exposed under 5, 30, and 100 kGy of irradiation dose. The electron-beam irradiation showed no morphological damage to the fibers, and slight reduction in the water-contact angle and mechanical strength at the higher-irradiation doses. The chain scission was found to be a dominant effect; the higher doses of electron-beam irradiation thus increased the in vitro degradation rate of the composite nanofibers. The chemical interaction due to irradiation was indicated by the Fourier transform infrared (FTIR) spectrum and thermal behavior was investigated by a differential scanning calorimeter (DSC). The results showed that the electron-beam-induced poly L-lactide acid/carboxy-methyl starch/β-tricalcium phosphate (PLLA/CMS/β-TCP) composite nanofibers may have great potential for bone-tissue engineering.
Zobrazit více v PubMed
Fokin N., Grothe T., Mamun A., Trabelsi M., Klöcker M., Sabantina L., Döpke C., Blachowicz T., HütteAn A., Ehrmann A. Magnetic Properties of Electrospun Magnetic Nanofiber Mats after Stabilization and Carbonization. Materials. 2020;13:1552. doi: 10.3390/ma13071552. PubMed DOI PMC
Kozior T., Mamun A., Trabelsi M., Wortmann M., Lilia S., Ehrmann A. Electrospinning on 3D Printed Polymers for Mech. Stab. Filter Compos. Polym. 2019;11:2034. doi: 10.3390/polym11122034. PubMed DOI PMC
Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. J. Eng. Fibers Fabr. 2019;14:1558925018824901. doi: 10.1177/1558925018824901. DOI
Yusof M.R., Shamsudin R., Abdullah Y., Yalcinkaya F., Yaacob N. Electrospinning of carboxymethyl starch/poly(L-lactide acid) composite nanofiber. Polym. Adv. Technol. 2018;29:1843–1851. doi: 10.1002/pat.4292. DOI
Wehlage D., Blattner H., Mamun A., Kutzli I., Diestelhorst E., Rattenholl A., Gudermann F., Lütkemeyer D., Ehrmann A. Cell growth on electrospun nanofiber mats from polyacrylonitrile (PAN) blends. Aims Bioeng. 2020;7:43. doi: 10.3934/bioeng.2020004. DOI
Blachowicz T., Ehrmann A. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 2020;15:1558925019900843. doi: 10.1177/1558925019900843. DOI
Blachowicz T., Ehrmann A. Recent developments in electrospun ZnO nanofibers: A short review. J. Eng. Fibers Fabr. 2020;15:1558925019899682. doi: 10.1177/1558925019899682. DOI
Blachowicz T., Ehrmann A. Conductive Electrospun Nanofiber Mats. Materials. 2019;13:152. doi: 10.3390/ma13010152. PubMed DOI PMC
Trabelsi M., Mamun A., Klöcker M., Sabantina L., Großerhode C., Blachowicz T., Ehrmann A. Increased Mechanical Properties of Carbon Nanofiber Mats for Possible Medical Applications. Fibers. 2019;7:98. doi: 10.3390/fib7110098. DOI
Yalcinkaya F., Komarek M., Lubasova D., Sanetrnik F., Maryska J. Preparation of Antibacterial Nanofibre/Nanoparticle Covered Composite Yarns. [(accessed on 25 June 2020)]; Available online: https://www.hindawi.com/journals/jnm/2016/7565972/
Yalcinkaya F., Siekierka A., Bryjak M. Preparation of Fouling-Resistant Nanofibrous Composite Membranes for Separation of Oily Wastewater. Polymers (Basel) 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC
He C., Feng W., Cao L., Fan L. Crosslinking of poly(L-lactide) nanofibers with triallyl isocyanutrate by gamma-irradiation for tissue engineering application. J. Biomed. Mater. Res. A. 2011;99:655–665. doi: 10.1002/jbm.a.33235. PubMed DOI
Hu X., Liu S., Zhou G., Huang Y., Xie Z., Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release. 2014;185:12–21. doi: 10.1016/j.jconrel.2014.04.018. PubMed DOI
Alghoraibi I., Alomari S. Different Methods for Nanofiber Design and Fabrication. In: Barhoum A., Bechelany M., Makhlouf A., editors. Handbook of Nanofibers. Springer International Publishing; Cham, Germany: 2018. pp. 1–46.
Yalcinkaya F., Yalcinkaya B., Jirsak O. Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions. J. Nanomater. 2015;2015:12. doi: 10.1155/2015/134251. DOI
Zeng J., Haoqing H., Schaper A., Wendorff J.H., Greiner A. Poly-L-lactide nanofibers by electrospinning—Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers. 2003;1:1–9. doi: 10.1515/epoly.2003.3.1.102. DOI
Ren K., Wang Y., Sun T., Yue W., Zhang H. Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Mater. Sci. Eng. C. 2017;78:324–332. doi: 10.1016/j.msec.2017.04.084. PubMed DOI
Morikawa K., Green M., Naraghi M. A Novel Approach for Melt Electrospinning of Polymer Fibers. Procedia Manuf. 2018;28:205–208. doi: 10.1016/j.promfg.2018.07.028. DOI
Koenig K., Beukenberg K., Langensiepen F., Seide G. A new prototype melt-electrospinning device for the production of biobased thermoplastic sub-microfibers and nanofibers. Biomater. Res. 2019;23:1–12. doi: 10.1186/s40824-019-0159-9. PubMed DOI PMC
Ramakrishna S., Fujihara K., Wee E.T., Teik C.L., Zuwei M. An Introduction to Electrospinning and Nanofibers 2019. World Scientific; Singapore: 2019.
Fang J., Shao H., Niu H., Lin T. Applications of Electrospun Nanofibers for Electronic Devices. In: Xiaoming T., editor. Handbook of Smart Textiles. Springer Science; Singapore: 2015. pp. 617–652.
Xue J., Xie J., Liu W., Xia Y. Electrospun nanofibers: New concepts, materials and applications. Acc. Chem. Res. 2017;50:1976–1987. doi: 10.1021/acs.accounts.7b00218. PubMed DOI PMC
Vasita R., Katti D.S. Nanofibers and their applications in tissue engineering. Int. J. Nanomed. 2006;1:15–30. doi: 10.2147/nano.2006.1.1.15. PubMed DOI PMC
Zulkifli F.H., Shahitha F., Yusuff M.M., Hamidon N.N., Chahal S. Cross-Linking Effect on Electrospun Hydroxyethyl Cellulose/Poly(Vinyl Alcohol) Nanofibrous Scaffolds. Procedia Eng. 2013;53:689–695. doi: 10.1016/j.proeng.2013.02.089. DOI
Shi Q., Zhou C., Yue Y., Guo W., Wu Y., Wu Q. Mechanical properties and in vitro degradation of electrospun bio-nanocomposite mats from PLA and cellulose nanocrystals. Carbohydr. Polym. 2012;90:301–308. doi: 10.1016/j.carbpol.2012.05.042. PubMed DOI
Cairns M.-L., Dickson G.R., Orr J.F., Farrar D., Hawkins K., Buchanan F.J. Electron-beam treatment of poly(lactic acid) to control degradation profiles. Polym. Degrad. Stab. 2011;96:76–83. doi: 10.1016/j.polymdegradstab.2010.10.016. DOI
Said H.M. Effects of gamma irradiation on the crystallization, thermal and mechanical properties of poly(l-lactic acid)/ethylene-co-vinyl acetate blends. J. Radiat. Res. Appl. Sci. 2013;6:11–20. doi: 10.1016/j.jrras.2013.10.001. DOI
Walo M., Przybytniak G., Nowicki A., Świeszkowski W. Radiation-induced effects in gamma-irradiated PLLA and PCL at ambient and dry ice temperatures. J. Appl. Polym. Sci. 2011;122:375–383. doi: 10.1002/app.34079. DOI
Lee J.B., Ko Y.-G., Cho D., Park W.H., Kim B.N., Lee B.C., Kang I.-K., Kwon O.H. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration. [(accessed on 25 June 2020)]; Available online: https://www.hindawi.com/journals/jnm/2015/295807/
Loo S.C.J., Ooi C.P., Boey Y.C.F. Radiation effects on poly(lactide-co-glycolide) (PLGA) and poly(l-lactide) (PLLA) Polym. Degrad. Stab. 2004;83:259–265. doi: 10.1016/S0141-3910(03)00271-4. DOI
Jeun J.P., Jeon Y.K., Nho Y.C., Kang P.H. Effects of gamma irradiation on the thermal and mechanical properties of chitosan/PVA nanofibrous mats. J. Ind. Eng. Chem. 2009;15:430–433. doi: 10.1016/j.jiec.2009.02.001. DOI
Zhang X., Kotaki M., Okubayashi S., Sukigara S. Effect of electron beam irradiation on the structure and properties of electrospun PLLA and PLLA/PDLA blend nanofibers. Acta Biomater. 2010;6:123–129. doi: 10.1016/j.actbio.2009.06.007. PubMed DOI
Yusof M.R. Ph.D. Thesis. Universiti Kebangsaan Malaysia; Bangi, Malaysia: 2020. Fabrikasi Ddan Pencirian Komposit Gentian Nano Asid Poli L-Laktik/Kanji Karboksimetil/β-Trikalsium Fosfat melalui Teknik Elektroputaran dan kesan Terhadap Iradiasi Alur Elektron.
Yusof M.R., Shamsudin R., Zakaria S., Abdul Hamid M.A., Yalcinkaya F., Abdullah Y., Yacob N. Fabrication and Characterization of Carboxymethyl Starch/Poly(l-Lactide) Acid/β-Tricalcium Phosphate Composite Nanofibers via Electrospinning. Polymers (Basel) 2019;11:1468. doi: 10.3390/polym11091468. PubMed DOI PMC
Bohari Y., Iqbal M.A.M.C., Kamaruddin H., Bukhori A.B. Optimization of Reaction Conditions for Carboxymethylated Sago Starch. Iran. Polym. J. 2011;20:195–204.
Randolph S.J., Fowlkes J.D., Rack P.D. Effects of heat generation during electron-beam-induced deposition of nanostructures. J. Appl. Phys. 2005;97:124312. doi: 10.1063/1.1942627. DOI
Malinowski R., Rytlewski P., Janczak K., Raszkowska-Kaczor A., Moraczewski K., Stepczyńska M., Żuk T. Studies on functional properties of PCL films modified by electron radiation and TAIC additive. Polym. Test. 2015;48:169–174. doi: 10.1016/j.polymertesting.2015.10.007. DOI
Nagasawa N., Kaneda A., Kanazawa S., Yagi T., Mitomo H., Yoshii F., Tamada M. Application of poly(lactic acid) modified by radiation crosslinking. Nucl. Instrum. Methods Phys. Res. B. 2005;236:611–616. doi: 10.1016/j.nimb.2005.04.052. DOI
Gómez-Pachón E.Y., Vera-Graziano R., Campos R.M. Structure of poly(lactic-acid) PLA nanofibers scaffolds prepared by electrospinning. IOP Conf. Ser. Mater. Sci. Eng. 2014;59:012003. doi: 10.1088/1757-899X/59/1/012003. DOI
Kim B.K., Cho D., Kwon O.H., Park W.H., Lee J.-H. Effects of electron beam irradiation on the gel fraction, thermal and mechanical properties of poly(butylene succinate) crosslinked by multi-functional monomer. Mater. Des. 2015;87:428–435. doi: 10.1016/j.matdes.2015.08.046. DOI
Bouscaud D., Pesci R., Berveiller S., Patoor E. Estimation of the electron beam-induced specimen heating and the emitted X-rays spatial resolution by Kossel microdiffraction in a scanning electron microscope. Ultramicroscopy. 2012;115:115–119. doi: 10.1016/j.ultramic.2012.01.018. PubMed DOI
Cho A.-R., Shin D.M., Jung H.W., Hyun J.C., Lee J.S., Cho D., Joo Y.L. Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. J. Appl. Polym. Sci. 2011;120:752–758. doi: 10.1002/app.33262. DOI
Ryuji I., Masaya K., Ramakrishna S. Structure and properties of electrospun PLLA single nanofibres. Nanotechnology. 2005;16:208–219. doi: 10.1088/0957-4484/16/2/005. PubMed DOI
Zulkifli F.H., Jahir Hussain F.S., Abdull Rasad M.S.B., Mohd Yusoff M. In vitro degradation study of novel HEC/PVA/collagen nanofibrous scaffold for skin tissue engineering applications. Polym. Degrad. Stab. 2014;110:473–481. doi: 10.1016/j.polymdegradstab.2014.10.017. DOI