Preparation of Fouling-Resistant Nanofibrous Composite Membranes for Separation of Oily Wastewater

. 2017 Dec 06 ; 9 (12) : . [epub] 20171206

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30965978

A facile and low-cost method has been developed for separation of oily wastewater. Polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) nanofibers laminated on a supporting layer were tested. In order to create highly permeable and fouling-resistant membranes, surface modifications of both fibers were conducted. The results of oily wastewater separation showed that, after low vacuum microwave plasma treatment with Argon (Ar) and chemical modification with sodium hydroxide (NaOH), the membranes had excellent hydrophilicity, due to the formation of active carboxylic groups. However, the membrane performance failed during the cleaning procedures. Titanium dioxide (TiO₂) was grafted onto the surface of membranes to give them highly permeable and fouling-resistance properties. The results of the self-cleaning experiment indicated that grafting of TiO₂ on the surface of the membranes after their pre-treatment with Ar plasma and NaOH increased the permeability and the anti-fouling properties. A new surface modification method using a combination of plasma and chemical treatment was introduced.

Zobrazit více v PubMed

Cheng M., Gao Y., Guo X., Shi Z., Chen J., Shi F. A functionally integrated device for effective and facile oil spill cleanup. Langmuir. 2011;27:7371–7375. doi: 10.1021/la201168j. PubMed DOI

Ahmad A.L., Sumathi S., Hameed B.H. Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem. Eng. J. 2006;118:99–105. doi: 10.1016/j.cej.2006.02.001. DOI

Paul U.C., Fragouli D., Bayer I.S., Athanassiou A. Functionalized cellulose networks for efficient oil removal from oil–water emulsions. Polymers. 2016;8:52. doi: 10.3390/polym8020052. PubMed DOI PMC

Liu T., Chen S., Liu H. Oil adsorption and reuse performance of multi-walled carbon nanotubes. Procedia Eng. 2015;102:1896–1902. doi: 10.1016/j.proeng.2015.01.329. DOI

Okiel K., El-Sayed M., El-Kady M.Y. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egypt. J. Pet. 2011;20:9–15. doi: 10.1016/j.ejpe.2011.06.002. DOI

Al-Shamrani A.A., James A., Xiao H. Destabilisation of oil–water emulsions and separation by dissolved air flotation. Water Res. 2002;36:1503–1512. doi: 10.1016/S0043-1354(01)00347-5. PubMed DOI

Felizardo P., Joana Neiva Correia M., Raposo I., Mendes J.F., Berkemeier R., Bordado J.M. Production of biodiesel from waste frying oils. Waste Manag. 2006;26:487–494. doi: 10.1016/j.wasman.2005.02.025. PubMed DOI

Mi Y., Li J., Zhou W., Zhang R., Ma G., Su Z. Improved stability of emulsions in preparation of uniform small-sized konjac glucomanna (KGM) microspheres with epoxy-based polymer membrane by premix membrane emulsification. Polymers. 2016;8:53. doi: 10.3390/polym8030053. PubMed DOI PMC

Zhu Y., Xie W., Zhang F., Xing T., Jin J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl. Mater. Interfaces. 2017;9:9603–9613. doi: 10.1021/acsami.6b15682. PubMed DOI

Cao Z., Hao T., Wang P., Zhang Y., Cheng B., Yuan T., Meng J. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation. Chem. Eng. J. 2017;309:30–40. doi: 10.1016/j.cej.2016.10.013. DOI

Cumming I.W., Holdich R.G., Smith I.D. The rejection of oil using an asymmetric metal microfilter to separate an oil in water dispersion. Water Res. 1999;33:3587–3594. doi: 10.1016/S0043-1354(99)00085-8. DOI

Koehler J.A., Ulbricht M., Belfort G. Intermolecular forces between proteins and polymer films with relevance to filtration. Langmuir. 1997;13:4162–4171. doi: 10.1021/la970010m. DOI

Jiang J., Zhu L., Zhu L., Zhang H., Zhu B., Xu Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone) ACS Appl. Mater. Interfaces. 2013;5:12895–12904. doi: 10.1021/am403405c. PubMed DOI

Zhang G., Jiang J., Zhang Q., Gao F., Zhan X., Chen F. Ultralow oil-Fouling heterogeneous poly(ether sulfone) ultrafiltration membrane via blending with novel amphiphilic fluorinated gradient copolymers. Langmuir. 2016;32:1380–1388. doi: 10.1021/acs.langmuir.5b04044. PubMed DOI

Zhou S., Xue A., Zhao Y., Li M., Wang H., Xing W. Grafting polyacrylic acid brushes onto zirconia membranes: Fouling reduction and easy-cleaning properties. Sep. Purif. Technol. 2013;114:53–63. doi: 10.1016/j.seppur.2013.04.023. DOI

Zhao X., Su Y., Chen W., Peng J., Jiang Z. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. J. Membr. Sci. 2012;415–416:824–834. doi: 10.1016/j.memsci.2012.05.075. DOI

Ju H., McCloskey B.D., Sagle A.C., Wu Y.H., Kusuma V.A., Freeman B.D. Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. J. Membr. Sci. 2008;307:260–267. doi: 10.1016/j.memsci.2007.09.028. DOI

Jing B., Wang H., Lin K.Y., McGinn P., Na C., Zhu Y. A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation. Polymer. 2013;54:5771–5778. doi: 10.1016/j.polymer.2013.08.030. DOI

Zhou T., Yang J., Zhu D., Zheng J., Handschuh-Wang S., Zhou X., Zhang J., Liu Y., Liu Z., He C., et al. Hydrophilic sponges for leaf-inspired continuous pumping of liquids. Adv. Sci. 2017;4:1700028. doi: 10.1002/advs.201700028. PubMed DOI PMC

Zhang J., Xue Q., Pan X., Jin Y., Lu W., Ding D., Guo Q. Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chem. Eng. J. 2017;307:643–649. doi: 10.1016/j.cej.2016.08.124. DOI

Schulze A., Breite D., Kim Y., Schmidt M., Thomas I., Went M., Fischer K., Prager A. bio-inspired polymer membrane surface cleaning. Polymers. 2017;9:97. doi: 10.3390/polym9030097. PubMed DOI PMC

Yang J., Zhang Z., Xu X., Zhu X., Men X., Zhou X. Superhydrophilic–superoleophobic coatings. J. Mater. Chem. 2012;22:2834–2837. doi: 10.1039/c2jm15987b. DOI

Wei X., Fei Y., Shi Y., Chen J., Lv B., Chen Y., Xiang H. Hemocompatibility and ultrafiltration performance of PAN membranes surface-modified by hyperbranched polyesters. Polym. Adv. Technol. 2016;27:1569–1576. doi: 10.1002/pat.3832. DOI

Wang Y., Lai C., Wang X., Liu Y., Hu H., Guo Y., Ma K., Fei B., Xin J. Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property. ACS Appl. Mater. Interfaces. 2016;8:25612–25620. doi: 10.1021/acsami.6b08747. PubMed DOI

Daoud W.A., Leung S.K., Tung W.S., Xin J.H., Cheuk K., Qi K. Self-cleaning keratins. Chem. Mater. 2008;20:1242–1244. doi: 10.1021/cm702661k. DOI

Kaihong Q., Wang X., Xin J.H. Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text. Res. J. 2011;81:101–110. doi: 10.1177/0040517510383618. DOI

Homaeigohar S., Elbahri M. Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials. 2014;7:1017–1045. doi: 10.3390/ma7021017. PubMed DOI PMC

Yalcinkaya F. Mechanically enhanced electrospun nanofibers for wastewater treatment; Proceedings of the International Conference on Advances in Energy Systems and Environmental Engineering; Wroclaw, Poland. 2–5 July 2017;

Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016;12 doi: 10.1016/j.arabjc.2016.12.012. DOI

Jiříček T., Komárek M., Chaloupek J., Lederer T. Flux enhancement in membrane distillation using nanofiber membranes. J. Nanomater. 2016;2016:9327431. doi: 10.1155/2016/9327431. DOI

Wang Z., Hou D., Lin S. Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation. Environ. Sci. Technol. 2016;50:3866–3874. doi: 10.1021/acs.est.5b05976. PubMed DOI

Liao Y., Wang R., Tian M., Qiu C., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013;425–426:30–39. doi: 10.1016/j.memsci.2012.09.023. DOI

Mei Y., Yao C., Fan K., Li X. Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers. J. Membr. Sci. 2012;417–418:20–27. doi: 10.1016/j.memsci.2012.06.021. DOI

Yalcinkaya F., Yalcinkaya B., Pazourek A., Mullerova J., Stuchlik M., Maryska J. Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/4671658. DOI

Kang Y.H., Ahn K., Jeong S.Y., Bae J.S., Jin J.S., Kim H.G., Hong S.W., Cho C.R. Effect of plasma treatment on surface chemical-bonding states and electrical properties of polyacrylonitrile nanofibers. Thin Solid Films. 2011;519:7090–7094. doi: 10.1016/j.tsf.2011.04.056. DOI

Yalcinkaya F., Siekierka A., Bryjak M., Maryska J. IOP Conference Series: Materials Science and Engineering. Volume 254. IOP Publishing Ltd.; Bristol, UK: 2017. Preparation of various nanofibrous composite membranes using wire electrospinning for oil-water separation; p. 102011.

Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin film nanofibrous composite membrane for dead-end seawater desalination. J. Nanomater. 2016;2016:2694373. doi: 10.1155/2016/2694373. DOI

Gancarz I., Bryjak M., Wolska J., Siekierka A., Kujawski W. Membranes with a plasma deposited titanium isopropoxide layer. Chem. Pap. 2016;70 doi: 10.1515/chempap-2015-0206. DOI

Siekierka A., Kujawa J., Kujawski W., Bryjak M. Lithium dedicated adsorbent for the preparation of electrodes useful in the ion pumping method. Sep. Purif. Technol. 2018;194:231–238. doi: 10.1016/j.seppur.2017.11.045. DOI

Bessekhouad Y., Robert D., Weber J.V. Preparation of TiO2 nanoparticles by Sol-Gel route. Int. J. Photoenergy. 2003;5:153–158. doi: 10.1155/S1110662X03000278. DOI

Uosaki K., Yano T., Nihonyanagi S. Interfacial water structure at as-prepared and UV-induced hydrophilic TiO2 surfaces studied by sum frequency generation spectroscopy and quartz crystal microbalance. J. Phys. Chem. B. 2004;108:19086–19088. doi: 10.1021/jp045173f. DOI

Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T. Light-induced amphiphilic surfaces. Nature. 1997;388:431–432. doi: 10.1038/41233. DOI

Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of nanofibrous membrane structures on the treatment of wastewater microfiltration. Sci. Adv. Mater. 2017;9:747–757. doi: 10.1166/sam.2017.3027. DOI

Na L., Liu Z., Xu S. Dynamically formed poly(vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics. J. Membr. Sci. 2000;169:17–28. doi: 10.1016/S0376-7388(99)00327-0. DOI

Clouet F., Shi M.K. Interactions of polymer model surfaces with cold plasmas: Hexatriacontane as a model molecule of high-density polyethylene and octadecyl octadecanoate as a model of polyester. I. Degradation rate versus time and power. J. Appl. Polym. Sci. 1992;46:1955–1966. doi: 10.1002/app.1992.070461108. DOI

Li J.H., Xu Y.Y., Zhu L.P., Wang J.H., Du C.H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. 2009;326:659–666. doi: 10.1016/j.memsci.2008.10.049. DOI

Bryjak M., Hodge H., Dach B. Modification of porous polyacrylonitrile membrane. Die Angew. Makromol. Chem. 1998;260:25–29. doi: 10.1002/(SICI)1522-9505(19981101)260:1<25::AID-APMC25>3.0.CO;2-K. DOI

Yang M.C., Tong J.H. Loose ultrafiltration of proteins using hydrolyzed polyacrylonitrile hollow fiber. J. Membr. Sci. 1997;132:63–71. doi: 10.1016/S0376-7388(97)00038-0. DOI

Abedi M., Sadeghi M., Pourafshari Chenar M. Improving antifouling performance of PAN hollow fiber membrane using surface modification method. J. Taiwan Inst. Chem. Eng. 2015;55:42–48. doi: 10.1016/j.jtice.2015.03.038. DOI

Grujic-Brojcin M., Scepanovic M., Dohcevic-Mitrovic Z., Popovic Z.V. Infrared study of nonstoichiometric anatase TiO2 nanopowders. Sci. Sinter. 2006;38:183–189. doi: 10.2298/SOS0602183G. DOI

León A., Reuquen P., Garín C., Segura R., Vargas P., Zapata P., Orihuela P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017;7:49. doi: 10.3390/app7010049. DOI

Kumar P.M., Badrinarayanan S., Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films. 2000;358:122–130. doi: 10.1016/S0040-6090(99)00722-1. DOI

Pan H., Wang X., Xiao S., Yu L., Zhang Z. Preparation and characterization of TiO2 nanoparticles surface-modified by octadecyltrimethoxysilane. Indian J. Eng. Mater. Sci. 2013;20:561–567.

Chen F., Lu Y., Liu X., Song J., He G., Tiwari M.K., Carmalt C.J., Parkin I.P. Table salt as a template to prepare reusable porous PVDF–MWCNT foam for separation of immiscible oils/organic solvents and corrosive aqueous solutions. Adv. Funct. Mater. 2017;27:1702926. doi: 10.1002/adfm.201702926. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Efficacy of Electrospun Nanofiber Membranes on Fouling Mitigation: A Review

. 2022 Dec 06 ; 7 (48) : 43346-43363. [epub] 20221120

Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation

. 2021 Jan 07 ; 13 (2) : . [epub] 20210107

Electron-Beam Irradiation of the PLLA/CMS/β-TCP Composite Nanofibers Obtained by Electrospinning

. 2020 Jul 17 ; 12 (7) : . [epub] 20200717

A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment

. 2020 Jan 20 ; 13 (2) : . [epub] 20200120

Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology

. 2019 Aug 23 ; 12 (17) : . [epub] 20190823

Electrospun Polyacrylonitrile Nanofibrous Membranes for Point-of-Use Water and Air Cleaning

. 2019 Jan ; 8 (1) : 97-103. [epub] 20190124

Incorporation of PVDF Nanofibre Multilayers into Functional Structure for Filtration Applications

. 2018 Sep 29 ; 8 (10) : . [epub] 20180929

Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration

. 2018 Apr 24 ; 8 (5) : . [epub] 20180424

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...