Preparation of Fouling-Resistant Nanofibrous Composite Membranes for Separation of Oily Wastewater
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
30965978
PubMed Central
PMC6418811
DOI
10.3390/polym9120679
PII: polym9120679
Knihovny.cz E-zdroje
- Klíčová slova
- modified nanofiber, nanocomposite, nanofiber,
- Publikační typ
- časopisecké články MeSH
A facile and low-cost method has been developed for separation of oily wastewater. Polyvinylidene fluoride/polyacrylonitrile (PVDF/PAN) nanofibers laminated on a supporting layer were tested. In order to create highly permeable and fouling-resistant membranes, surface modifications of both fibers were conducted. The results of oily wastewater separation showed that, after low vacuum microwave plasma treatment with Argon (Ar) and chemical modification with sodium hydroxide (NaOH), the membranes had excellent hydrophilicity, due to the formation of active carboxylic groups. However, the membrane performance failed during the cleaning procedures. Titanium dioxide (TiO₂) was grafted onto the surface of membranes to give them highly permeable and fouling-resistance properties. The results of the self-cleaning experiment indicated that grafting of TiO₂ on the surface of the membranes after their pre-treatment with Ar plasma and NaOH increased the permeability and the anti-fouling properties. A new surface modification method using a combination of plasma and chemical treatment was introduced.
Zobrazit více v PubMed
Cheng M., Gao Y., Guo X., Shi Z., Chen J., Shi F. A functionally integrated device for effective and facile oil spill cleanup. Langmuir. 2011;27:7371–7375. doi: 10.1021/la201168j. PubMed DOI
Ahmad A.L., Sumathi S., Hameed B.H. Coagulation of residue oil and suspended solid in palm oil mill effluent by chitosan, alum and PAC. Chem. Eng. J. 2006;118:99–105. doi: 10.1016/j.cej.2006.02.001. DOI
Paul U.C., Fragouli D., Bayer I.S., Athanassiou A. Functionalized cellulose networks for efficient oil removal from oil–water emulsions. Polymers. 2016;8:52. doi: 10.3390/polym8020052. PubMed DOI PMC
Liu T., Chen S., Liu H. Oil adsorption and reuse performance of multi-walled carbon nanotubes. Procedia Eng. 2015;102:1896–1902. doi: 10.1016/j.proeng.2015.01.329. DOI
Okiel K., El-Sayed M., El-Kady M.Y. Treatment of oil–water emulsions by adsorption onto activated carbon, bentonite and deposited carbon. Egypt. J. Pet. 2011;20:9–15. doi: 10.1016/j.ejpe.2011.06.002. DOI
Al-Shamrani A.A., James A., Xiao H. Destabilisation of oil–water emulsions and separation by dissolved air flotation. Water Res. 2002;36:1503–1512. doi: 10.1016/S0043-1354(01)00347-5. PubMed DOI
Felizardo P., Joana Neiva Correia M., Raposo I., Mendes J.F., Berkemeier R., Bordado J.M. Production of biodiesel from waste frying oils. Waste Manag. 2006;26:487–494. doi: 10.1016/j.wasman.2005.02.025. PubMed DOI
Mi Y., Li J., Zhou W., Zhang R., Ma G., Su Z. Improved stability of emulsions in preparation of uniform small-sized konjac glucomanna (KGM) microspheres with epoxy-based polymer membrane by premix membrane emulsification. Polymers. 2016;8:53. doi: 10.3390/polym8030053. PubMed DOI PMC
Zhu Y., Xie W., Zhang F., Xing T., Jin J. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsion separation. ACS Appl. Mater. Interfaces. 2017;9:9603–9613. doi: 10.1021/acsami.6b15682. PubMed DOI
Cao Z., Hao T., Wang P., Zhang Y., Cheng B., Yuan T., Meng J. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation. Chem. Eng. J. 2017;309:30–40. doi: 10.1016/j.cej.2016.10.013. DOI
Cumming I.W., Holdich R.G., Smith I.D. The rejection of oil using an asymmetric metal microfilter to separate an oil in water dispersion. Water Res. 1999;33:3587–3594. doi: 10.1016/S0043-1354(99)00085-8. DOI
Koehler J.A., Ulbricht M., Belfort G. Intermolecular forces between proteins and polymer films with relevance to filtration. Langmuir. 1997;13:4162–4171. doi: 10.1021/la970010m. DOI
Jiang J., Zhu L., Zhu L., Zhang H., Zhu B., Xu Y. Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly(N-vinyl pyrrolidone) ACS Appl. Mater. Interfaces. 2013;5:12895–12904. doi: 10.1021/am403405c. PubMed DOI
Zhang G., Jiang J., Zhang Q., Gao F., Zhan X., Chen F. Ultralow oil-Fouling heterogeneous poly(ether sulfone) ultrafiltration membrane via blending with novel amphiphilic fluorinated gradient copolymers. Langmuir. 2016;32:1380–1388. doi: 10.1021/acs.langmuir.5b04044. PubMed DOI
Zhou S., Xue A., Zhao Y., Li M., Wang H., Xing W. Grafting polyacrylic acid brushes onto zirconia membranes: Fouling reduction and easy-cleaning properties. Sep. Purif. Technol. 2013;114:53–63. doi: 10.1016/j.seppur.2013.04.023. DOI
Zhao X., Su Y., Chen W., Peng J., Jiang Z. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. J. Membr. Sci. 2012;415–416:824–834. doi: 10.1016/j.memsci.2012.05.075. DOI
Ju H., McCloskey B.D., Sagle A.C., Wu Y.H., Kusuma V.A., Freeman B.D. Crosslinked poly(ethylene oxide) fouling resistant coating materials for oil/water separation. J. Membr. Sci. 2008;307:260–267. doi: 10.1016/j.memsci.2007.09.028. DOI
Jing B., Wang H., Lin K.Y., McGinn P., Na C., Zhu Y. A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation. Polymer. 2013;54:5771–5778. doi: 10.1016/j.polymer.2013.08.030. DOI
Zhou T., Yang J., Zhu D., Zheng J., Handschuh-Wang S., Zhou X., Zhang J., Liu Y., Liu Z., He C., et al. Hydrophilic sponges for leaf-inspired continuous pumping of liquids. Adv. Sci. 2017;4:1700028. doi: 10.1002/advs.201700028. PubMed DOI PMC
Zhang J., Xue Q., Pan X., Jin Y., Lu W., Ding D., Guo Q. Graphene oxide/polyacrylonitrile fiber hierarchical-structured membrane for ultra-fast microfiltration of oil-water emulsion. Chem. Eng. J. 2017;307:643–649. doi: 10.1016/j.cej.2016.08.124. DOI
Schulze A., Breite D., Kim Y., Schmidt M., Thomas I., Went M., Fischer K., Prager A. bio-inspired polymer membrane surface cleaning. Polymers. 2017;9:97. doi: 10.3390/polym9030097. PubMed DOI PMC
Yang J., Zhang Z., Xu X., Zhu X., Men X., Zhou X. Superhydrophilic–superoleophobic coatings. J. Mater. Chem. 2012;22:2834–2837. doi: 10.1039/c2jm15987b. DOI
Wei X., Fei Y., Shi Y., Chen J., Lv B., Chen Y., Xiang H. Hemocompatibility and ultrafiltration performance of PAN membranes surface-modified by hyperbranched polyesters. Polym. Adv. Technol. 2016;27:1569–1576. doi: 10.1002/pat.3832. DOI
Wang Y., Lai C., Wang X., Liu Y., Hu H., Guo Y., Ma K., Fei B., Xin J. Beads-on-string structured nanofibers for smart and reversible oil/water separation with outstanding antifouling property. ACS Appl. Mater. Interfaces. 2016;8:25612–25620. doi: 10.1021/acsami.6b08747. PubMed DOI
Daoud W.A., Leung S.K., Tung W.S., Xin J.H., Cheuk K., Qi K. Self-cleaning keratins. Chem. Mater. 2008;20:1242–1244. doi: 10.1021/cm702661k. DOI
Kaihong Q., Wang X., Xin J.H. Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text. Res. J. 2011;81:101–110. doi: 10.1177/0040517510383618. DOI
Homaeigohar S., Elbahri M. Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials. 2014;7:1017–1045. doi: 10.3390/ma7021017. PubMed DOI PMC
Yalcinkaya F. Mechanically enhanced electrospun nanofibers for wastewater treatment; Proceedings of the International Conference on Advances in Energy Systems and Environmental Engineering; Wroclaw, Poland. 2–5 July 2017;
Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016;12 doi: 10.1016/j.arabjc.2016.12.012. DOI
Jiříček T., Komárek M., Chaloupek J., Lederer T. Flux enhancement in membrane distillation using nanofiber membranes. J. Nanomater. 2016;2016:9327431. doi: 10.1155/2016/9327431. DOI
Wang Z., Hou D., Lin S. Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation. Environ. Sci. Technol. 2016;50:3866–3874. doi: 10.1021/acs.est.5b05976. PubMed DOI
Liao Y., Wang R., Tian M., Qiu C., Fane A.G. Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci. 2013;425–426:30–39. doi: 10.1016/j.memsci.2012.09.023. DOI
Mei Y., Yao C., Fan K., Li X. Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers. J. Membr. Sci. 2012;417–418:20–27. doi: 10.1016/j.memsci.2012.06.021. DOI
Yalcinkaya F., Yalcinkaya B., Pazourek A., Mullerova J., Stuchlik M., Maryska J. Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment. Int. J. Polym. Sci. 2016;2016 doi: 10.1155/2016/4671658. DOI
Kang Y.H., Ahn K., Jeong S.Y., Bae J.S., Jin J.S., Kim H.G., Hong S.W., Cho C.R. Effect of plasma treatment on surface chemical-bonding states and electrical properties of polyacrylonitrile nanofibers. Thin Solid Films. 2011;519:7090–7094. doi: 10.1016/j.tsf.2011.04.056. DOI
Yalcinkaya F., Siekierka A., Bryjak M., Maryska J. IOP Conference Series: Materials Science and Engineering. Volume 254. IOP Publishing Ltd.; Bristol, UK: 2017. Preparation of various nanofibrous composite membranes using wire electrospinning for oil-water separation; p. 102011.
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin film nanofibrous composite membrane for dead-end seawater desalination. J. Nanomater. 2016;2016:2694373. doi: 10.1155/2016/2694373. DOI
Gancarz I., Bryjak M., Wolska J., Siekierka A., Kujawski W. Membranes with a plasma deposited titanium isopropoxide layer. Chem. Pap. 2016;70 doi: 10.1515/chempap-2015-0206. DOI
Siekierka A., Kujawa J., Kujawski W., Bryjak M. Lithium dedicated adsorbent for the preparation of electrodes useful in the ion pumping method. Sep. Purif. Technol. 2018;194:231–238. doi: 10.1016/j.seppur.2017.11.045. DOI
Bessekhouad Y., Robert D., Weber J.V. Preparation of TiO2 nanoparticles by Sol-Gel route. Int. J. Photoenergy. 2003;5:153–158. doi: 10.1155/S1110662X03000278. DOI
Uosaki K., Yano T., Nihonyanagi S. Interfacial water structure at as-prepared and UV-induced hydrophilic TiO2 surfaces studied by sum frequency generation spectroscopy and quartz crystal microbalance. J. Phys. Chem. B. 2004;108:19086–19088. doi: 10.1021/jp045173f. DOI
Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., Watanabe T. Light-induced amphiphilic surfaces. Nature. 1997;388:431–432. doi: 10.1038/41233. DOI
Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of nanofibrous membrane structures on the treatment of wastewater microfiltration. Sci. Adv. Mater. 2017;9:747–757. doi: 10.1166/sam.2017.3027. DOI
Na L., Liu Z., Xu S. Dynamically formed poly(vinyl alcohol) ultrafiltration membranes with good anti-fouling characteristics. J. Membr. Sci. 2000;169:17–28. doi: 10.1016/S0376-7388(99)00327-0. DOI
Clouet F., Shi M.K. Interactions of polymer model surfaces with cold plasmas: Hexatriacontane as a model molecule of high-density polyethylene and octadecyl octadecanoate as a model of polyester. I. Degradation rate versus time and power. J. Appl. Polym. Sci. 1992;46:1955–1966. doi: 10.1002/app.1992.070461108. DOI
Li J.H., Xu Y.Y., Zhu L.P., Wang J.H., Du C.H. Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J. Membr. Sci. 2009;326:659–666. doi: 10.1016/j.memsci.2008.10.049. DOI
Bryjak M., Hodge H., Dach B. Modification of porous polyacrylonitrile membrane. Die Angew. Makromol. Chem. 1998;260:25–29. doi: 10.1002/(SICI)1522-9505(19981101)260:1<25::AID-APMC25>3.0.CO;2-K. DOI
Yang M.C., Tong J.H. Loose ultrafiltration of proteins using hydrolyzed polyacrylonitrile hollow fiber. J. Membr. Sci. 1997;132:63–71. doi: 10.1016/S0376-7388(97)00038-0. DOI
Abedi M., Sadeghi M., Pourafshari Chenar M. Improving antifouling performance of PAN hollow fiber membrane using surface modification method. J. Taiwan Inst. Chem. Eng. 2015;55:42–48. doi: 10.1016/j.jtice.2015.03.038. DOI
Grujic-Brojcin M., Scepanovic M., Dohcevic-Mitrovic Z., Popovic Z.V. Infrared study of nonstoichiometric anatase TiO2 nanopowders. Sci. Sinter. 2006;38:183–189. doi: 10.2298/SOS0602183G. DOI
León A., Reuquen P., Garín C., Segura R., Vargas P., Zapata P., Orihuela P.A. FTIR and Raman Characterization of TiO2 Nanoparticles Coated with Polyethylene Glycol as Carrier for 2-Methoxyestradiol. Appl. Sci. 2017;7:49. doi: 10.3390/app7010049. DOI
Kumar P.M., Badrinarayanan S., Sastry M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films. 2000;358:122–130. doi: 10.1016/S0040-6090(99)00722-1. DOI
Pan H., Wang X., Xiao S., Yu L., Zhang Z. Preparation and characterization of TiO2 nanoparticles surface-modified by octadecyltrimethoxysilane. Indian J. Eng. Mater. Sci. 2013;20:561–567.
Chen F., Lu Y., Liu X., Song J., He G., Tiwari M.K., Carmalt C.J., Parkin I.P. Table salt as a template to prepare reusable porous PVDF–MWCNT foam for separation of immiscible oils/organic solvents and corrosive aqueous solutions. Adv. Funct. Mater. 2017;27:1702926. doi: 10.1002/adfm.201702926. DOI
Efficacy of Electrospun Nanofiber Membranes on Fouling Mitigation: A Review
Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation
Electron-Beam Irradiation of the PLLA/CMS/β-TCP Composite Nanofibers Obtained by Electrospinning
A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment
Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology
Electrospun Polyacrylonitrile Nanofibrous Membranes for Point-of-Use Water and Air Cleaning
Incorporation of PVDF Nanofibre Multilayers into Functional Structure for Filtration Applications
Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration