Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology

. 2019 Aug 23 ; 12 (17) : . [epub] 20190823

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31450788

Grantová podpora
FV10409 Ministerstvo Průmyslu a Obchodu
CZ.02.1.01/0.0/0.0/16_019/0000843 The Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education project

Preparing easily scaled up, cost-effective, and recyclable membranes for separation technology is challenging. In the present study, a unique and new type of modified polyvinylidene fluoride (PVDF) nanofibrous membrane was prepared for the separation of oil-water emulsions. Surface modification was done in two steps. In the first step, dehydrofluorination of PVDF membranes was done using an alkaline solution. After the first step, oil removal and permeability of the membranes were dramatically improved. In the second step, TiO2 nanoparticles were grafted onto the surface of the membranes. After adding TiO2 nanoparticles, membranes exhibited outstanding anti-fouling and self-cleaning performance. The as-prepared membranes can be of great use in new green separation technology and have great potential to deal with the separation of oil-water emulsions in the near future.

Zobrazit více v PubMed

Zhang W., Shi Z., Zhang F., Liu X., Jin J., Jiang L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 2013;25:2071–2076. doi: 10.1002/adma.201204520. PubMed DOI

Zhang F., Gao S., Zhu Y., Jin J. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation. J. Memb. Sci. 2016;513:67–73. doi: 10.1016/j.memsci.2016.04.020. DOI

Fan L., Yan J., He H., Deng N., Zhao Y., Kang W., Cheng B. Electro-blown spun PS/PAN fibrous membrane for highly efficient oil/water separation. Fibers Polym. 2017;18:1988–1994. doi: 10.1007/s12221-017-7429-8. DOI

Yalcinkaya F., Siekierka A., Bryjak M. Preparation of fouling-resistant nanofibrous composite membranes for separation of oily wastewater. Polymers. 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC

Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI

Grimmelsmann N., Grothe T., Homburg S.V., Ehrmann A. Electrospinning and stabilization of chitosan nanofiber mats; Proceedings of the IOP Conference Series: Materials Science and Engineering; Beijing, China. 24–27 October 2017; p. 102006.

Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI

Roche R., Yalcinkaya F. Incorporation of PVDF nanofibre multilayers into functional structure for filtration applications. Nanomaterials. 2018;8:771. doi: 10.3390/nano8100771. PubMed DOI PMC

Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym. 2016;17:1438–1448. doi: 10.1007/s12221-016-6424-9. DOI

Liu R., Ma L., Mei J., Huang S., Yang S., Li E., Yuan G. Large areal mass, mechanically tough and freestanding electrode based on heteroatom-doped carbon nanofibers for flexible supercapacitors. Chem. A Eur. J. 2017;23:2610–2618. doi: 10.1002/chem.201604535. PubMed DOI

Wirth E., Sabantina L., Weber M., Finsterbusch K., Ehrmann A. Preliminary study of ultrasonic welding as a joining process for electrospun nanofiber mats. Nanomaterials. 2018;8:746. doi: 10.3390/nano8100746. PubMed DOI PMC

Sabantina L., Hes L., Mirasol J.R., Cordero T., Ehrmann A. Water vapor permeability through PAN nanofiber mat with varying membrane-like areas. Fibres Text. East. Eur. 2019;27:12–15. doi: 10.5604/01.3001.0012.7502. DOI

Roche R., Yalcinkaya F. Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. ChemistryOpen. 2019;8:97–103. doi: 10.1002/open.201800267. PubMed DOI PMC

Sabantina L., Kinzel F., Hauser T., Többer A., Klöcker M., Döpke C., Böttjer R., Wehlage D., Rattenholl A., Ehrmann A. Comparative Study of Pleurotus ostreatus Mushroom Grown on Modified PAN Nanofiber Mats. Nanomaterials. 2019;9:475. doi: 10.3390/nano9030475. PubMed DOI PMC

Yalcinkaya F., Hruza J. Effect of laminating pressure on polymeric multilayer nanofibrous membranes for liquid filtration. Nanomaterials. 2018;8:272. doi: 10.3390/nano8050272. PubMed DOI PMC

Yalcinkaya F., Siekierka A., Bryjak M. Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv. 2017;7:56704–56712. doi: 10.1039/C7RA11904F. DOI

Zhou Z., Wu X.F. Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation. Mater. Lett. 2015;160:423–427. doi: 10.1016/j.matlet.2015.08.003. DOI

Xiao L., Davenport D.M., Ormsbee L., Bhattacharyya D. Polymerization and functionalization of membrane pores for water related applications. Ind. Eng. Chem. Res. 2015;54:4174–4182. doi: 10.1021/ie504149t. PubMed DOI PMC

Martakov I.S., Torlopov M.A., Mikhaylov V.I., Krivoshapkina E.F., Silant’ev V.E., Krivoshapkin P.V. Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation. J. Sol-Gel Sci. Technol. 2018;88:13–21. doi: 10.1007/s10971-017-4447-3. DOI

Dong L., Liu X., Xiong Z., Sheng D., Lin C., Zhou Y., Yang Y. Preparation of UV-blocking poly(vinylidene fluoride) films through SI-AGET ATRP using a colorless polydopamine initiator layer. Ind. Eng. Chem. Res. 2018;57:12662–12669. doi: 10.1021/acs.iecr.8b02373. DOI

Shi F., Wu J., Zhao B. Preparation and investigation of intelligent polymeric nanocapsule for enhanced oil recovery. Materials. 2019;12:1093. doi: 10.3390/ma12071093. PubMed DOI PMC

Naseeb N., Mohammed A.A., Laoui T., Khan Z. A novel PAN-GO-SiO2 hybrid membrane for separating oil and water from emulsified mixture. Materials. 2019;12:212. doi: 10.3390/ma12020212. PubMed DOI PMC

Hobbs C., Hong S., Taylor J. Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater. J. Water Supply Res. Technol. AQUA. 2006;55:559–570. doi: 10.2166/aqua.2006.038. DOI

Martins P.M., Ribeiro J.M., Teixeira S., Petrovykh D.Y., Cuniberti G., Pereira L., Lanceros-Méndez S. Photocatalytic microporous membrane against the increasing problem of water emerging pollutants. Materials. 2019;12:1649. doi: 10.3390/ma12101649. PubMed DOI PMC

Montazer M., Seifollahzadeh S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem. Photobiol. 2011;87:877–883. doi: 10.1111/j.1751-1097.2011.00917.x. PubMed DOI

Tavares M.T.S., Santos A.S.F., Santos I.M.G., Silva M.R.S., Bomio M.R.D., Longo E., Paskocimas C.A., Motta F.V. TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surf. Coatings Technol. 2014;239:16–19. doi: 10.1016/j.surfcoat.2013.11.009. DOI

Xu Q.F., Liu Y., Lin F.J., Mondal B., Lyons A.M. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl. Mater. Interfaces. 2013;5:8915–8924. doi: 10.1021/am401668y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...