Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FV10409
Ministerstvo Průmyslu a Obchodu
CZ.02.1.01/0.0/0.0/16_019/0000843
The Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the frames of Operational Program Research, Development and Education project
PubMed
31450788
PubMed Central
PMC6747603
DOI
10.3390/ma12172702
PII: ma12172702
Knihovny.cz E-resources
- Keywords
- PVDF, electrospinning, filtration, membrane, nanofiber, surface modification,
- Publication type
- Journal Article MeSH
Preparing easily scaled up, cost-effective, and recyclable membranes for separation technology is challenging. In the present study, a unique and new type of modified polyvinylidene fluoride (PVDF) nanofibrous membrane was prepared for the separation of oil-water emulsions. Surface modification was done in two steps. In the first step, dehydrofluorination of PVDF membranes was done using an alkaline solution. After the first step, oil removal and permeability of the membranes were dramatically improved. In the second step, TiO2 nanoparticles were grafted onto the surface of the membranes. After adding TiO2 nanoparticles, membranes exhibited outstanding anti-fouling and self-cleaning performance. The as-prepared membranes can be of great use in new green separation technology and have great potential to deal with the separation of oil-water emulsions in the near future.
See more in PubMed
Zhang W., Shi Z., Zhang F., Liu X., Jin J., Jiang L. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 2013;25:2071–2076. doi: 10.1002/adma.201204520. PubMed DOI
Zhang F., Gao S., Zhu Y., Jin J. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation. J. Memb. Sci. 2016;513:67–73. doi: 10.1016/j.memsci.2016.04.020. DOI
Fan L., Yan J., He H., Deng N., Zhao Y., Kang W., Cheng B. Electro-blown spun PS/PAN fibrous membrane for highly efficient oil/water separation. Fibers Polym. 2017;18:1988–1994. doi: 10.1007/s12221-017-7429-8. DOI
Yalcinkaya F., Siekierka A., Bryjak M. Preparation of fouling-resistant nanofibrous composite membranes for separation of oily wastewater. Polymers. 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC
Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI
Grimmelsmann N., Grothe T., Homburg S.V., Ehrmann A. Electrospinning and stabilization of chitosan nanofiber mats; Proceedings of the IOP Conference Series: Materials Science and Engineering; Beijing, China. 24–27 October 2017; p. 102006.
Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI
Roche R., Yalcinkaya F. Incorporation of PVDF nanofibre multilayers into functional structure for filtration applications. Nanomaterials. 2018;8:771. doi: 10.3390/nano8100771. PubMed DOI PMC
Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym. 2016;17:1438–1448. doi: 10.1007/s12221-016-6424-9. DOI
Liu R., Ma L., Mei J., Huang S., Yang S., Li E., Yuan G. Large areal mass, mechanically tough and freestanding electrode based on heteroatom-doped carbon nanofibers for flexible supercapacitors. Chem. A Eur. J. 2017;23:2610–2618. doi: 10.1002/chem.201604535. PubMed DOI
Wirth E., Sabantina L., Weber M., Finsterbusch K., Ehrmann A. Preliminary study of ultrasonic welding as a joining process for electrospun nanofiber mats. Nanomaterials. 2018;8:746. doi: 10.3390/nano8100746. PubMed DOI PMC
Sabantina L., Hes L., Mirasol J.R., Cordero T., Ehrmann A. Water vapor permeability through PAN nanofiber mat with varying membrane-like areas. Fibres Text. East. Eur. 2019;27:12–15. doi: 10.5604/01.3001.0012.7502. DOI
Roche R., Yalcinkaya F. Electrospun polyacrylonitrile nanofibrous membranes for point-of-use water and air cleaning. ChemistryOpen. 2019;8:97–103. doi: 10.1002/open.201800267. PubMed DOI PMC
Sabantina L., Kinzel F., Hauser T., Többer A., Klöcker M., Döpke C., Böttjer R., Wehlage D., Rattenholl A., Ehrmann A. Comparative Study of Pleurotus ostreatus Mushroom Grown on Modified PAN Nanofiber Mats. Nanomaterials. 2019;9:475. doi: 10.3390/nano9030475. PubMed DOI PMC
Yalcinkaya F., Hruza J. Effect of laminating pressure on polymeric multilayer nanofibrous membranes for liquid filtration. Nanomaterials. 2018;8:272. doi: 10.3390/nano8050272. PubMed DOI PMC
Yalcinkaya F., Siekierka A., Bryjak M. Surface modification of electrospun nanofibrous membranes for oily wastewater separation. RSC Adv. 2017;7:56704–56712. doi: 10.1039/C7RA11904F. DOI
Zhou Z., Wu X.F. Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation. Mater. Lett. 2015;160:423–427. doi: 10.1016/j.matlet.2015.08.003. DOI
Xiao L., Davenport D.M., Ormsbee L., Bhattacharyya D. Polymerization and functionalization of membrane pores for water related applications. Ind. Eng. Chem. Res. 2015;54:4174–4182. doi: 10.1021/ie504149t. PubMed DOI PMC
Martakov I.S., Torlopov M.A., Mikhaylov V.I., Krivoshapkina E.F., Silant’ev V.E., Krivoshapkin P.V. Interaction of cellulose nanocrystals with titanium dioxide and peculiarities of hybrid structures formation. J. Sol-Gel Sci. Technol. 2018;88:13–21. doi: 10.1007/s10971-017-4447-3. DOI
Dong L., Liu X., Xiong Z., Sheng D., Lin C., Zhou Y., Yang Y. Preparation of UV-blocking poly(vinylidene fluoride) films through SI-AGET ATRP using a colorless polydopamine initiator layer. Ind. Eng. Chem. Res. 2018;57:12662–12669. doi: 10.1021/acs.iecr.8b02373. DOI
Shi F., Wu J., Zhao B. Preparation and investigation of intelligent polymeric nanocapsule for enhanced oil recovery. Materials. 2019;12:1093. doi: 10.3390/ma12071093. PubMed DOI PMC
Naseeb N., Mohammed A.A., Laoui T., Khan Z. A novel PAN-GO-SiO2 hybrid membrane for separating oil and water from emulsified mixture. Materials. 2019;12:212. doi: 10.3390/ma12020212. PubMed DOI PMC
Hobbs C., Hong S., Taylor J. Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater. J. Water Supply Res. Technol. AQUA. 2006;55:559–570. doi: 10.2166/aqua.2006.038. DOI
Martins P.M., Ribeiro J.M., Teixeira S., Petrovykh D.Y., Cuniberti G., Pereira L., Lanceros-Méndez S. Photocatalytic microporous membrane against the increasing problem of water emerging pollutants. Materials. 2019;12:1649. doi: 10.3390/ma12101649. PubMed DOI PMC
Montazer M., Seifollahzadeh S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochem. Photobiol. 2011;87:877–883. doi: 10.1111/j.1751-1097.2011.00917.x. PubMed DOI
Tavares M.T.S., Santos A.S.F., Santos I.M.G., Silva M.R.S., Bomio M.R.D., Longo E., Paskocimas C.A., Motta F.V. TiO2/PDMS nanocomposites for use on self-cleaning surfaces. Surf. Coatings Technol. 2014;239:16–19. doi: 10.1016/j.surfcoat.2013.11.009. DOI
Xu Q.F., Liu Y., Lin F.J., Mondal B., Lyons A.M. Superhydrophobic TiO2-polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties. ACS Appl. Mater. Interfaces. 2013;5:8915–8924. doi: 10.1021/am401668y. PubMed DOI
Chemical Cleaning Process of Polymeric Nanofibrous Membranes
Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation
A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment