Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration

. 2018 Apr 24 ; 8 (5) : . [epub] 20180424

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29695111

In the new century, electrospun nanofibrous webs are widely employed in various applications due to their specific surface area and porous structure with narrow pore size. The mechanical properties have a major influence on the applications of nanofiber webs. Lamination technology is an important method for improving the mechanical strength of nanofiber webs. In this study, the influence of laminating pressure on the properties of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) nanofibers/laminate was investigated. Heat-press lamination was carried out at three different pressures, and the surface morphologies of the multilayer nanofibrous membranes were observed under an optical microscope. In addition, air permeability, water filtration, and contact angle experiments were performed to examine the effect of laminating pressure on the breathability, water permeability and surface wettability of multilayer nanofibrous membranes. A bursting strength test was developed and applied to measure the maximum bursting pressure of the nanofibers from the laminated surface. A water filtration test was performed using a cross-flow unit. Based on the results of the tests, the optimum laminating pressure was determined for both PAN and PVDF multilayer nanofibrous membranes to prepare suitable microfilters for liquid filtration.

Zobrazit více v PubMed

Gao J., Zhu J., Luo J., Xiong J. Investigation of microporous composite scaffolds fabricated by embedding sacrificial polyethylene glycol microspheres in nanofibrous membrane. Compos. Part A Appl. Sci. Manuf. 2016;91:20–29. doi: 10.1016/j.compositesa.2016.09.015. DOI

Tang Y., Chen L., Zhao K., Wu Z., Wang Y., Tan Q. Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration. Compos. Sci. Technol. 2016;125:100–107. doi: 10.1016/j.compscitech.2016.02.005. DOI

Zhang W., Ronca S., Mele E. Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials. 2017;7:42. doi: 10.3390/nano7020042. PubMed DOI PMC

Sill T.J., von Recum H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. doi: 10.1016/j.biomaterials.2008.01.011. PubMed DOI

Tan L., Gan L., Hu J., Zhu Y., Han J. Functional shape memory composite nanofibers with graphene oxide filler. Compos. Part A Appl. Sci. Manuf. 2015;76:115–123. doi: 10.1016/j.compositesa.2015.04.015. DOI

Zhao X.G., Jin E.M., Park J.Y., Gu H.B. Hybrid polymer electrolyte composite with SiO2 nanofiber filler for solid-state dye-sensitized solar cells. Compos. Sci. Technol. 2014;103:100–105. doi: 10.1016/j.compscitech.2014.08.020. DOI

Yoon B., Lee S. Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fibers Polym. 2011;12:57–64. doi: 10.1007/s12221-011-0057-9. DOI

Fehse M., Cavaliere S., Lippens P.E., Savych I., Iadecola A., Monconduit L., Jones D.J., Rozière J., Fischer F., Tessier C., et al. Nb-doped TiO2 nanofibers for lithium ion batteries. J. Phys. Chem. C. 2013;117:13827–13835. doi: 10.1021/jp402498p. DOI

Aydın H., Çelik S.Ü., Bozkurt A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics. 2017;309:71–76. doi: 10.1016/j.ssi.2017.07.004. DOI

Wang X., Drew C., Lee S.H., Senecal K.J., Kumar J., Samuelson L.A. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2002;2:1273–1275. doi: 10.1021/nl020216u. DOI

Liu P., Wu S., Zhang Y., Zhang H., Qin X. A fast response ammonia sensor based on coaxial PPy–PAN nanofiber yarn. Nanomaterials. 2016;6:121. doi: 10.3390/nano6070121. PubMed DOI PMC

Macagnano A., Perri V., Zampetti E., Bearzotti A., De Cesare F., Sprovieri F., Pirrone N. A smart nanofibrous material for adsorbing and detecting elemental mercury in air. Atmos. Chem. Phys. 2017;17:6883–6893. doi: 10.5194/acp-17-6883-2017. DOI

Zhang X.F., Feng Y., Huang C., Pan Y., Yao J. Temperature-induced formation of cellulose nanofiber film with remarkably high gas separation performance. Cellulose. 2017;24:5649–5656. doi: 10.1007/s10570-017-1529-x. DOI

Zampetti E., Pantalei S., Bearzotti A., Bongiorno C., De Cesare F., Spinella C., Macagnano A. Procedia Engineering. Volume 47. Elsevier; Amsterdam, The Netherlands: 2012. TiO2 nanofibrous chemoresistors coated with PEDOT and PANi blends for high performance gas sensors; pp. 937–940.

Ge J., Choi N. Fabrication of functional polyurethane/rare earth nanocomposite membranes by electrospinning and its VOCs absorption capacity from air. Nanomaterials. 2017;7:60. doi: 10.3390/nano7030060. PubMed DOI PMC

Desai K., Kit K., Li J., Michael Davidson P., Zivanovic S., Meyer H. Nanofibrous chitosan non-wovens for filtration applications. Polymer. 2009;50:3661–3669. doi: 10.1016/j.polymer.2009.05.058. DOI

Liao Y., Tian M., Wang R. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure. J. Memb. Sci. 2017;543:123–132. doi: 10.1016/j.memsci.2017.08.056. DOI

Li Z., Kang W., Zhao H., Hu M., Wei N., Qiu J., Cheng B. A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration. Nanomaterials. 2016;6:152. doi: 10.3390/nano6080152. PubMed DOI PMC

Sood R., Cavaliere S., Jones D.J., Rozière J. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy. 2016;26:729–745. doi: 10.1016/j.nanoen.2016.06.027. DOI

Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI

Ding Y., Zhang P., Long Z., Jiang Y., Xu F., Di W. The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. J. Memb. Sci. 2009;329:56–59. doi: 10.1016/j.memsci.2008.12.024. DOI

Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym. 2016;17:1438–1448. doi: 10.1007/s12221-016-6424-9. DOI

Charles L.E., Kramer E.R., Shaw M.T., Olson J.R., Wei M. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: Fabrication and mechanical characterization. J. Mech. Behav. Biomed. Mater. 2012;17:269–277. doi: 10.1016/j.jmbbm.2012.09.007. PubMed DOI

Iqbal Q., Bernstein P., Zhu Y., Rahamim J., Cebe P., Staii C. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy. Nanotechnology. 2015;26:105702. doi: 10.1088/0957-4484/26/10/105702. PubMed DOI

Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI

Xu Y., Zhang X., Wang X., Wang X., Li X., Shen C., Li Q. Simultaneous enhancements in the strength, modulus and toughness of electrospun polymeric membranes. RSC Adv. 2017;7 doi: 10.1039/C7RA07739D. DOI

Jiříček T., Komárek M., Chaloupek J., Lederer T. Maximising flux in direct contact membrane distillation using nanofibre membranes. Desalin. Water Treat. 2017;73:249–255. doi: 10.5004/dwt.2017.20761. DOI

Jiříček T., Komárek M., Chaloupek J., Lederer T. Flux enhancement in membrane distillation using nanofiber membranes. J. Nanomater. 2016;2016:1–7. doi: 10.1155/2016/9327431. DOI

Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin film nanofibrous composite membrane for dead-end seawater desalination. J. Nanomater. 2016;2016:1–12. doi: 10.1155/2016/2694373. DOI

Yalcinkaya B., Yalcinkaya F., Chaloupek J. Optimisation of thin film composite nanofiltration membranes based on laminated nanofibrous and nonwoven supporting material. Desalin. Water Treat. 2017;59:19–30. doi: 10.5004/dwt.2016.0254. DOI

Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of nanofibrous membrane structures on the treatment of wastewater microfiltration. Sci. Adv. Mater. 2016;9:747–757. doi: 10.1166/sam.2017.3027. DOI

Kanafchian M., Valizadeh M., Haghi A.K. A study on the effects of laminating temperature on the polymeric nanofiber web. Korean J. Chem. Eng. 2011;28:445–448. doi: 10.1007/s11814-010-0400-7. DOI

Yao M., Woo Y.C., Tijing L.D., Shim W.-G., Choi J.-S., Kim S.-H., Shon H.K. Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation. Desalination. 2016;378:80–91. doi: 10.1016/j.desal.2015.09.025. DOI

Mohammadian M., Haghi A.K. Study on the production of a new generation of electrospun nanofiber webs. Bulg. Chem. Commun. 2014;46:530–534.

Yalcinkaya F., Siekierka A., Bryjak M. Preparation of fouling-resistant nanofibrous composite membranes for separation of oily wastewater. Polymers. 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC

Yalcinkaya F., Yalcinkaya B., Pazourek A., Mullerova J., Stuchlik M., Maryska J. Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment. Int. J. Polym. Sci. 2016;2016:1–9. doi: 10.1155/2016/4671658. DOI

Gopalan A.I., Santhosh P., Manesh K.M., Nho J.H., Kim S.H., Hwang C.G., Lee K.P. Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J. Memb. Sci. 2008;325:683–690. doi: 10.1016/j.memsci.2008.08.047. DOI

Liu T.-Y., Lin W.-C., Huang L.-Y., Chen S.-Y., Yang M.-C. Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polym. Adv. Technol. 2005;16:413–419. doi: 10.1002/pat.592. DOI

Hammami M.A., Krifa M., Harzallah O. Centrifugal force spinning of PA6 nanofibers—Processability and morphology of solution-spun fibers. J. Text. Inst. 2014;105:637–647. doi: 10.1080/00405000.2013.842680. DOI

Essalhi M., Khayet M. Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation. J. Memb. Sci. 2014;454:133–143. doi: 10.1016/j.memsci.2013.11.056. DOI

Beachley V., Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C Mater. Biol. Appl. 2009;29:663–668. doi: 10.1016/j.msec.2008.10.037. PubMed DOI PMC

Lowery J.L., Datta N., Rutledge G.C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε-caprolactone) fibrous mats. Biomaterials. 2010;31:491–504. doi: 10.1016/j.biomaterials.2009.09.072. PubMed DOI

Bagherzadeh R., Najar S.S., Latifi M., Tehran M.A., Kong L. A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. J. Biomed. Mater. Res. Part A. 2013;101:2107–2117. doi: 10.1002/jbm.a.34487. PubMed DOI

Gockeln M., Pokhrel S., Meierhofer F., Glenneberg J., Schowalter M., Rosenauer A., Fritsching U., Busse M., Mädler L., Kun R. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique. J. Power Sources. 2018;374:97–106. doi: 10.1016/j.jpowsour.2017.11.016. DOI

Stiubianu G., Nicolescu A., Nistor A., Cazacu M., Varganici C., Simionescu B.C. Chemical modification of cellulose acetate by allylation and crosslinking with siloxane derivatives. Polym. Int. 2012;61:1115–1126. doi: 10.1002/pi.4189. DOI

Law K.-Y., Zhao H. Surface Wetting. Springer International Publishing; Cham, Switwerland: 2016. Wetting on rough surfaces; pp. 55–98.

Youngblood J.P., McCarthy T.J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 1999;40:563–564. doi: 10.1021/ma9903456. DOI

Chen W., Fadeev A.Y., Hsieh M.C., Öner D., Youngblood J., McCarthy T.J. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir. 1999;15:3395–3399. doi: 10.1021/la990074s. DOI

Wenzel R.N. Surface roughness and contact angle. J. Phys. Colloid Chem. 1949;53:1466–1467. doi: 10.1021/j150474a015. DOI

Abuzade R.A., Zadhoush A., Gharehaghaji A.A. Air permeability of electrospun polyacrylonitrile nanoweb. J. Appl. Polym. Sci. 2012;126:232–243. doi: 10.1002/app.36774. DOI

Rajak A. Synthesis of electrospun nanofibers membrane and its optimization for aerosol filter application. KnE Eng. 2016;1 doi: 10.18502/keg.v1i1.524. DOI

Von Fraunhofer J.A. Adhesion and cohesion. Int. J. Dent. 2012;2012:1–8. doi: 10.1155/2012/951324. PubMed DOI PMC

Lee L.-H. Relationships between surface wettability and glass temperatures of high polymers. J. Appl. Polym. Sci. 1968;12:719–730. doi: 10.1002/app.1968.070120410. DOI

Pritykin L.M. Calculation of the surface energy of homo- and copolymers from the cohesion parameters and refractometric characterisics of the respective monomers. J. Colloid Interface Sci. 1986;112:539–543. doi: 10.1016/0021-9797(86)90123-2. DOI

Chen N., Hong L. Surface phase morphology and composition of the casting films of PVDF-PVP blend. Polymer. 2001;43:1429–1436. doi: 10.1016/S0032-3861(01)00671-1. DOI

Kim K.-M., Woo S., Lee J., Park H., Park J., Min B. Improved permeate flux of PVDF ultrafiltration membrane containing PVDF-g-PHEA synthesized via ATRP. Appl. Sci. 2015;5:1992–2008. doi: 10.3390/app5041992. DOI

Van den Berg G.B., Smolders C.A. Flux decline in ultrafiltration processes. Desalination. 1990;77:101–133. doi: 10.1016/0011-9164(90)85023-4. DOI

Meier-Haack J., Booker N.A., Carroll T. A permeability-controlled microfiltration membrane for reduced fouling in drinking water treatment. Water Res. 2003;37:585–588. doi: 10.1016/S0043-1354(02)00360-3. PubMed DOI

Li X., Lin J., Bian F., Zeng Y. Improving waterproof/breathable performance of electrospun poly(vinylidene fluoride) fibrous membranes by thermo-Pressing. J. Polym. Sci. Part B Polym. Phys. 2017;56:1–10. doi: 10.1002/polb.24534. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...