Effect of Laminating Pressure on Polymeric Multilayer Nanofibrous Membranes for Liquid Filtration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29695111
PubMed Central
PMC5977286
DOI
10.3390/nano8050272
PII: nano8050272
Knihovny.cz E-zdroje
- Klíčová slova
- lamination, nanofiber, water filtration,
- Publikační typ
- časopisecké články MeSH
In the new century, electrospun nanofibrous webs are widely employed in various applications due to their specific surface area and porous structure with narrow pore size. The mechanical properties have a major influence on the applications of nanofiber webs. Lamination technology is an important method for improving the mechanical strength of nanofiber webs. In this study, the influence of laminating pressure on the properties of polyacrylonitrile (PAN) and polyvinylidene fluoride (PVDF) nanofibers/laminate was investigated. Heat-press lamination was carried out at three different pressures, and the surface morphologies of the multilayer nanofibrous membranes were observed under an optical microscope. In addition, air permeability, water filtration, and contact angle experiments were performed to examine the effect of laminating pressure on the breathability, water permeability and surface wettability of multilayer nanofibrous membranes. A bursting strength test was developed and applied to measure the maximum bursting pressure of the nanofibers from the laminated surface. A water filtration test was performed using a cross-flow unit. Based on the results of the tests, the optimum laminating pressure was determined for both PAN and PVDF multilayer nanofibrous membranes to prepare suitable microfilters for liquid filtration.
Zobrazit více v PubMed
Gao J., Zhu J., Luo J., Xiong J. Investigation of microporous composite scaffolds fabricated by embedding sacrificial polyethylene glycol microspheres in nanofibrous membrane. Compos. Part A Appl. Sci. Manuf. 2016;91:20–29. doi: 10.1016/j.compositesa.2016.09.015. DOI
Tang Y., Chen L., Zhao K., Wu Z., Wang Y., Tan Q. Fabrication of PLGA/HA (core)-collagen/amoxicillin (shell) nanofiber membranes through coaxial electrospinning for guided tissue regeneration. Compos. Sci. Technol. 2016;125:100–107. doi: 10.1016/j.compscitech.2016.02.005. DOI
Zhang W., Ronca S., Mele E. Electrospun nanofibres containing antimicrobial plant extracts. Nanomaterials. 2017;7:42. doi: 10.3390/nano7020042. PubMed DOI PMC
Sill T.J., von Recum H.A. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989–2006. doi: 10.1016/j.biomaterials.2008.01.011. PubMed DOI
Tan L., Gan L., Hu J., Zhu Y., Han J. Functional shape memory composite nanofibers with graphene oxide filler. Compos. Part A Appl. Sci. Manuf. 2015;76:115–123. doi: 10.1016/j.compositesa.2015.04.015. DOI
Zhao X.G., Jin E.M., Park J.Y., Gu H.B. Hybrid polymer electrolyte composite with SiO2 nanofiber filler for solid-state dye-sensitized solar cells. Compos. Sci. Technol. 2014;103:100–105. doi: 10.1016/j.compscitech.2014.08.020. DOI
Yoon B., Lee S. Designing waterproof breathable materials based on electrospun nanofibers and assessing the performance characteristics. Fibers Polym. 2011;12:57–64. doi: 10.1007/s12221-011-0057-9. DOI
Fehse M., Cavaliere S., Lippens P.E., Savych I., Iadecola A., Monconduit L., Jones D.J., Rozière J., Fischer F., Tessier C., et al. Nb-doped TiO2 nanofibers for lithium ion batteries. J. Phys. Chem. C. 2013;117:13827–13835. doi: 10.1021/jp402498p. DOI
Aydın H., Çelik S.Ü., Bozkurt A. Electrolyte loaded hexagonal boron nitride/polyacrylonitrile nanofibers for lithium ion battery application. Solid State Ionics. 2017;309:71–76. doi: 10.1016/j.ssi.2017.07.004. DOI
Wang X., Drew C., Lee S.H., Senecal K.J., Kumar J., Samuelson L.A. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Lett. 2002;2:1273–1275. doi: 10.1021/nl020216u. DOI
Liu P., Wu S., Zhang Y., Zhang H., Qin X. A fast response ammonia sensor based on coaxial PPy–PAN nanofiber yarn. Nanomaterials. 2016;6:121. doi: 10.3390/nano6070121. PubMed DOI PMC
Macagnano A., Perri V., Zampetti E., Bearzotti A., De Cesare F., Sprovieri F., Pirrone N. A smart nanofibrous material for adsorbing and detecting elemental mercury in air. Atmos. Chem. Phys. 2017;17:6883–6893. doi: 10.5194/acp-17-6883-2017. DOI
Zhang X.F., Feng Y., Huang C., Pan Y., Yao J. Temperature-induced formation of cellulose nanofiber film with remarkably high gas separation performance. Cellulose. 2017;24:5649–5656. doi: 10.1007/s10570-017-1529-x. DOI
Zampetti E., Pantalei S., Bearzotti A., Bongiorno C., De Cesare F., Spinella C., Macagnano A. Procedia Engineering. Volume 47. Elsevier; Amsterdam, The Netherlands: 2012. TiO2 nanofibrous chemoresistors coated with PEDOT and PANi blends for high performance gas sensors; pp. 937–940.
Ge J., Choi N. Fabrication of functional polyurethane/rare earth nanocomposite membranes by electrospinning and its VOCs absorption capacity from air. Nanomaterials. 2017;7:60. doi: 10.3390/nano7030060. PubMed DOI PMC
Desai K., Kit K., Li J., Michael Davidson P., Zivanovic S., Meyer H. Nanofibrous chitosan non-wovens for filtration applications. Polymer. 2009;50:3661–3669. doi: 10.1016/j.polymer.2009.05.058. DOI
Liao Y., Tian M., Wang R. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure. J. Memb. Sci. 2017;543:123–132. doi: 10.1016/j.memsci.2017.08.056. DOI
Li Z., Kang W., Zhao H., Hu M., Wei N., Qiu J., Cheng B. A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration. Nanomaterials. 2016;6:152. doi: 10.3390/nano6080152. PubMed DOI PMC
Sood R., Cavaliere S., Jones D.J., Rozière J. Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy. 2016;26:729–745. doi: 10.1016/j.nanoen.2016.06.027. DOI
Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arab. J. Chem. 2016 doi: 10.1016/j.arabjc.2016.12.012. DOI
Ding Y., Zhang P., Long Z., Jiang Y., Xu F., Di W. The ionic conductivity and mechanical property of electrospun P(VdF-HFP)/PMMA membranes for lithium ion batteries. J. Memb. Sci. 2009;329:56–59. doi: 10.1016/j.memsci.2008.12.024. DOI
Jahanbaani A.R., Behzad T., Borhani S., Darvanjooghi M.H.K. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym. 2016;17:1438–1448. doi: 10.1007/s12221-016-6424-9. DOI
Charles L.E., Kramer E.R., Shaw M.T., Olson J.R., Wei M. Self-reinforced composites of hydroxyapatite-coated PLLA fibers: Fabrication and mechanical characterization. J. Mech. Behav. Biomed. Mater. 2012;17:269–277. doi: 10.1016/j.jmbbm.2012.09.007. PubMed DOI
Iqbal Q., Bernstein P., Zhu Y., Rahamim J., Cebe P., Staii C. Quantitative analysis of mechanical and electrostatic properties of poly(lactic) acid fibers and poly(lactic) acid-carbon nanotube composites using atomic force microscopy. Nanotechnology. 2015;26:105702. doi: 10.1088/0957-4484/26/10/105702. PubMed DOI
Charles L.F., Shaw M.T., Olson J.R., Wei M. Fabrication and mechanical properties of PLLA/PCL/HA composites via a biomimetic, dip coating, and hot compression procedure. J. Mater. Sci. Mater. Med. 2010;21:1845–1854. doi: 10.1007/s10856-010-4051-3. PubMed DOI
Xu Y., Zhang X., Wang X., Wang X., Li X., Shen C., Li Q. Simultaneous enhancements in the strength, modulus and toughness of electrospun polymeric membranes. RSC Adv. 2017;7 doi: 10.1039/C7RA07739D. DOI
Jiříček T., Komárek M., Chaloupek J., Lederer T. Maximising flux in direct contact membrane distillation using nanofibre membranes. Desalin. Water Treat. 2017;73:249–255. doi: 10.5004/dwt.2017.20761. DOI
Jiříček T., Komárek M., Chaloupek J., Lederer T. Flux enhancement in membrane distillation using nanofiber membranes. J. Nanomater. 2016;2016:1–7. doi: 10.1155/2016/9327431. DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Thin film nanofibrous composite membrane for dead-end seawater desalination. J. Nanomater. 2016;2016:1–12. doi: 10.1155/2016/2694373. DOI
Yalcinkaya B., Yalcinkaya F., Chaloupek J. Optimisation of thin film composite nanofiltration membranes based on laminated nanofibrous and nonwoven supporting material. Desalin. Water Treat. 2017;59:19–30. doi: 10.5004/dwt.2016.0254. DOI
Yalcinkaya F., Yalcinkaya B., Hruza J., Hrabak P. Effect of nanofibrous membrane structures on the treatment of wastewater microfiltration. Sci. Adv. Mater. 2016;9:747–757. doi: 10.1166/sam.2017.3027. DOI
Kanafchian M., Valizadeh M., Haghi A.K. A study on the effects of laminating temperature on the polymeric nanofiber web. Korean J. Chem. Eng. 2011;28:445–448. doi: 10.1007/s11814-010-0400-7. DOI
Yao M., Woo Y.C., Tijing L.D., Shim W.-G., Choi J.-S., Kim S.-H., Shon H.K. Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation. Desalination. 2016;378:80–91. doi: 10.1016/j.desal.2015.09.025. DOI
Mohammadian M., Haghi A.K. Study on the production of a new generation of electrospun nanofiber webs. Bulg. Chem. Commun. 2014;46:530–534.
Yalcinkaya F., Siekierka A., Bryjak M. Preparation of fouling-resistant nanofibrous composite membranes for separation of oily wastewater. Polymers. 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC
Yalcinkaya F., Yalcinkaya B., Pazourek A., Mullerova J., Stuchlik M., Maryska J. Surface modification of electrospun PVDF/PAN nanofibrous layers by low vacuum plasma treatment. Int. J. Polym. Sci. 2016;2016:1–9. doi: 10.1155/2016/4671658. DOI
Gopalan A.I., Santhosh P., Manesh K.M., Nho J.H., Kim S.H., Hwang C.G., Lee K.P. Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries. J. Memb. Sci. 2008;325:683–690. doi: 10.1016/j.memsci.2008.08.047. DOI
Liu T.-Y., Lin W.-C., Huang L.-Y., Chen S.-Y., Yang M.-C. Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polym. Adv. Technol. 2005;16:413–419. doi: 10.1002/pat.592. DOI
Hammami M.A., Krifa M., Harzallah O. Centrifugal force spinning of PA6 nanofibers—Processability and morphology of solution-spun fibers. J. Text. Inst. 2014;105:637–647. doi: 10.1080/00405000.2013.842680. DOI
Essalhi M., Khayet M. Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation. J. Memb. Sci. 2014;454:133–143. doi: 10.1016/j.memsci.2013.11.056. DOI
Beachley V., Wen X. Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C Mater. Biol. Appl. 2009;29:663–668. doi: 10.1016/j.msec.2008.10.037. PubMed DOI PMC
Lowery J.L., Datta N., Rutledge G.C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(ε-caprolactone) fibrous mats. Biomaterials. 2010;31:491–504. doi: 10.1016/j.biomaterials.2009.09.072. PubMed DOI
Bagherzadeh R., Najar S.S., Latifi M., Tehran M.A., Kong L. A theoretical analysis and prediction of pore size and pore size distribution in electrospun multilayer nanofibrous materials. J. Biomed. Mater. Res. Part A. 2013;101:2107–2117. doi: 10.1002/jbm.a.34487. PubMed DOI
Gockeln M., Pokhrel S., Meierhofer F., Glenneberg J., Schowalter M., Rosenauer A., Fritsching U., Busse M., Mädler L., Kun R. Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique. J. Power Sources. 2018;374:97–106. doi: 10.1016/j.jpowsour.2017.11.016. DOI
Stiubianu G., Nicolescu A., Nistor A., Cazacu M., Varganici C., Simionescu B.C. Chemical modification of cellulose acetate by allylation and crosslinking with siloxane derivatives. Polym. Int. 2012;61:1115–1126. doi: 10.1002/pi.4189. DOI
Law K.-Y., Zhao H. Surface Wetting. Springer International Publishing; Cham, Switwerland: 2016. Wetting on rough surfaces; pp. 55–98.
Youngblood J.P., McCarthy T.J. Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma. Am. Chem. Soc. Polym. Prepr. Div. Polym. Chem. 1999;40:563–564. doi: 10.1021/ma9903456. DOI
Chen W., Fadeev A.Y., Hsieh M.C., Öner D., Youngblood J., McCarthy T.J. Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir. 1999;15:3395–3399. doi: 10.1021/la990074s. DOI
Wenzel R.N. Surface roughness and contact angle. J. Phys. Colloid Chem. 1949;53:1466–1467. doi: 10.1021/j150474a015. DOI
Abuzade R.A., Zadhoush A., Gharehaghaji A.A. Air permeability of electrospun polyacrylonitrile nanoweb. J. Appl. Polym. Sci. 2012;126:232–243. doi: 10.1002/app.36774. DOI
Rajak A. Synthesis of electrospun nanofibers membrane and its optimization for aerosol filter application. KnE Eng. 2016;1 doi: 10.18502/keg.v1i1.524. DOI
Von Fraunhofer J.A. Adhesion and cohesion. Int. J. Dent. 2012;2012:1–8. doi: 10.1155/2012/951324. PubMed DOI PMC
Lee L.-H. Relationships between surface wettability and glass temperatures of high polymers. J. Appl. Polym. Sci. 1968;12:719–730. doi: 10.1002/app.1968.070120410. DOI
Pritykin L.M. Calculation of the surface energy of homo- and copolymers from the cohesion parameters and refractometric characterisics of the respective monomers. J. Colloid Interface Sci. 1986;112:539–543. doi: 10.1016/0021-9797(86)90123-2. DOI
Chen N., Hong L. Surface phase morphology and composition of the casting films of PVDF-PVP blend. Polymer. 2001;43:1429–1436. doi: 10.1016/S0032-3861(01)00671-1. DOI
Kim K.-M., Woo S., Lee J., Park H., Park J., Min B. Improved permeate flux of PVDF ultrafiltration membrane containing PVDF-g-PHEA synthesized via ATRP. Appl. Sci. 2015;5:1992–2008. doi: 10.3390/app5041992. DOI
Van den Berg G.B., Smolders C.A. Flux decline in ultrafiltration processes. Desalination. 1990;77:101–133. doi: 10.1016/0011-9164(90)85023-4. DOI
Meier-Haack J., Booker N.A., Carroll T. A permeability-controlled microfiltration membrane for reduced fouling in drinking water treatment. Water Res. 2003;37:585–588. doi: 10.1016/S0043-1354(02)00360-3. PubMed DOI
Li X., Lin J., Bian F., Zeng Y. Improving waterproof/breathable performance of electrospun poly(vinylidene fluoride) fibrous membranes by thermo-Pressing. J. Polym. Sci. Part B Polym. Phys. 2017;56:1–10. doi: 10.1002/polb.24534. DOI
The wettability of electron spun membranes by synovial fluid
Hydrophilic Surface-Modified PAN Nanofibrous Membranes for Efficient Oil-Water Emulsion Separation
Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces
Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology
Electrospun Polyacrylonitrile Nanofibrous Membranes for Point-of-Use Water and Air Cleaning
Incorporation of PVDF Nanofibre Multilayers into Functional Structure for Filtration Applications