The wettability of electron spun membranes by synovial fluid
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34950485
PubMed Central
PMC8692967
DOI
10.1098/rsos.210892
PII: rsos210892
Knihovny.cz E-zdroje
- Klíčová slova
- electron spun membranes, periprosthetic osteolysis, surface energy, synovial fluid, wettability,
- Publikační typ
- časopisecké články MeSH
Aseptic loosening due to periprosthetic osteolysis has been accepted as one of the leading causes of revision procedures in patients with previous joint arthroplasty. Recently, several strategies for suppression of osteolysis were proposed, mostly based on biological treatment such as mitigation of chronic inflammatory reactions. However, these biological treatments do not stop the debris migration but only reduce the inflammatory reaction. To address this shortcoming, we propose the concept of ultrahigh molecular weighted polyethylene particles filtration storage by electrospun membranes. Firstly, the surface tension of synovial fluid (SF) is obtained by use of a pendant droplet. Secondly, the contact angle of the electrospun membranes wetted by two different liquids is measured to obtain the free surface energy using of the Owens-Wendt model. Additionally, the wettability of electrospun membranes by SF as a function of technology parameters is studied.
Department of Mechanical Engineering KU Leuven Leuven Flanders Belgium
Faculty of Textile Engineering TU Liberec Liberec 46117 Czechia
Zobrazit více v PubMed
Agarwal S, Wendorff JH, Greiner A. 2008. Use of electrospinning technique for biomedical applications. Polymer 49, 5603-5621. (10.1016/j.polymer.2008.09.014) DOI
Stoddard RJ, Steger AL, Blakney AK, Woodrow KA. 2016. In pursuit of functional electrospun materials for clinical applications in humans. Ther. Deliv. 7, 387-409. (10.4155/tde-2016-0017) PubMed DOI PMC
Wendorff JH, Agarwal S, Greiner A. 2012. Electrospinning: materials, processing, and applications. New York, NY: John Wiley & Sons.
Schoolaert E, Cossu L, Becelaere J, Van Guyse JFR, Tigrine A, Vergaelen M, Hoogenboom R, De Clerck K. 2020. Nanofibers with a tunable wettability by electrospinning and physical crosslinking of poly(2-n-propyl-2-oxazoline). Mater. Des. 192, 108747. (10.1016/j.matdes.2020.108747) DOI
Yang C, Cao Y, Sun K, Liu J, Wang H. 2011. Functional groups grafted nonwoven fabrics for blood filtration—the effects of functional groups and wettability on the adhesion of leukocyte and platelet. Appl. Surf. Sci. 257, 2978-2983. (10.1016/j.apsusc.2010.10.103) DOI
Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. 2013. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux. Adv. Mater. 25, 2071-2076. (10.1002/adma.201204520) PubMed DOI
Kandahari AM, Yang X, Laroche KA, Dighe AS, Pan D, Cui Q. 2016. A review of UHMWPE wear-induced osteolysis: the role for early detection of the immune response. Bone Res. 4, 1-13. (10.1038/boneres.2016.14) PubMed DOI PMC
Goodman SB, et al. 2014. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J. R. Soc. Interface 11, 20130962. (10.1098/rsif.2013.0962) PubMed DOI PMC
Von Knoch F, et al. 2005. Suppression of polyethylene particle–induced osteolysis by exogenous osteoprotegerin. J. Biomed. Mater. Res. A 75, 288-294. PubMed
Goodman SB, Gallo J. 2019. Periprosthetic osteolysis: mechanisms, prevention and treatment. J. Clin. Med. 8, 2091. (10.3390/jcm8122091) PubMed DOI PMC
Moss SG, Schweitzer ME, Jacobson JA, Brossmann J, Lombardi JV, Dellose SM, Coralnick JR, Standiford KN, Resnick D. 1998. Hip joint fluid: detection and distribution at MR imaging and US with cadaveric correlation. Radiology 208, 43-48. (10.1148/radiology.208.1.9646791) PubMed DOI
Yen C-H, Leung H-B, Tse PY-T. 2009. Effects of hip joint position and intra-capsular volume on hip joint intra-capsular pressure: a human cadaveric model. J. Orthop. Surg. Res. 4, 1-6. (10.1186/1749-799X-4-1) PubMed DOI PMC
Reimann I. 1976. Pathological human synovial fluids: viscosity and boundary lubricating properties. Clin. Orthop. Relat. Res. 119, 237-241. PubMed
Ribitsch V, Ribitsch G. 1980. Structure and rheological meaning of hyaluronic acid in human synovial fluid. Eur. Biophys. J. 6, 53. (10.1007/BF00647526) DOI
Kraus VB, Stabler TV, Kong SY, Varju G, Mcdaniel G. 2007. Measurement of synovial fluid volume using urea. Osteoarthr. Cartil. 15, 1217-1220. (10.1016/j.joca.2007.03.017) PubMed DOI PMC
Ghosh S, Choudhury D, Das NS, Pingguan-Murphy B. 2014. Tribological role of synovial fluid compositions on artificial joints—a systematic review of the last 10 years. Lubr. Sci. 26, 387-410. (10.1002/ls.1266) DOI
Bortel EL, Charbonnier B, Heuberger R. 2015. Development of a synthetic synovial fluid for tribological testing. Lubricants 3, 664-686. (10.3390/lubricants3040664) DOI
Hasan MMB, Calvimontes A, Synytska A, Dutschk V. 2008. Effects of topographic structure on wettability of differently woven fabrics. Text. Res. J. 78, 996-1003. (10.1177/0040517507087851) DOI
Ferrero F, Periolatto M. 2015. Modification of surface energy and wetting of textile fibers. In Wetting and wettability, pp. 139–168. IntechOpen. (10.5772/60812) DOI
Li Y, Wei Y, Liao J, Hao Y, Ning C, Jiang L, Wang S. 2016. Surface wettability switched cell adhesion and detachment on conducting polymer nanoarray. Adv. Mater. Interfaces 3, 1600598. (10.1002/admi.201600598) DOI
Wilhelmy L. 1863. Ueber die Abhängigkeit der Capillaritäts-Constanten des Alkohols von Substanz und Gestalt des benetzten festen Körpers. Ann. Phys. 195, 177-217. (10.1002/andp.18631950602) DOI
Du Nouy PL. 1925. An interfacial tensiometer for universal use. J. Gen. Physiol. 7, 625-631. (10.1085/jgp.7.5.625) PubMed DOI PMC
Mysels KJ. 1990. The maximum bubble pressure method of measuring surface tension, revisited. Colloids Surf. 43, 241-262. (10.1016/0166-6622(90)80291-B) DOI
Horozov T, Arnaudov L. 1999. A novel fast technique for measuring dynamic surface and interfacial tension of surfactant solutions at constant interfacial area. J. Colloid Interface Sci. 219, 99-109. (10.1006/jcis.1999.6423) PubMed DOI
Andreas JM, Hauser EA, Tucker WB. 2002. Boundary tension by pendant drops. J. Phys. Chem. 42, 1001-1019. (10.1021/j100903a002) DOI
Anastasiadis SH, Chen J-K, Koberstein JT, Siegel AF, Sohn JE, Emerson JA. 1987. The determination of interfacial tension by video image processing of pendant fluid drops. J. Colloid Interface Sci. 119, 55-66. (10.1016/0021-9797(87)90244-X) DOI
Raj MD, Mandal DK, Navaneethakrishnan S, Bakshi S. 2010. Measurement of the surface concentration (liquid) of an evaporating multicomponent droplet using pendant droplet method. Exp. Fluids 48, 715-719. (10.1007/s00348-009-0805-4) DOI
Rotenberg Y, Boruvka L, Neumann A. 1983. Determination of surface tension and contact angle from the shapes of axisymmetric fluid interfaces. J. Colloid Interface Sci. 93, 169-183. (10.1016/0021-9797(83)90396-X) DOI
Fordham S. 1948. On the calculation of surface tension from measurements of pendant drops. Proc. R. Soc. Lond. A 194, 1-16. (10.1098/rspa.1948.0063) DOI
Hansen FK, Rødsrud G. 1991. Surface tension by pendant drop: I. A fast standard instrument using computer image analysis. J. Colloid Interface Sci. 141, 1-9. (10.1016/0021-9797(91)90296-K) DOI
Young T. 1805. III. An essay on the cohesion of fluids. Phil. Trans. R. Soc. 95, 65-87. (10.1098/rstl.1805.0005) DOI
Owens DK, Wendt RC. 1969. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13, 1741-1747. (10.1002/app.1969.070130815) DOI
Jańczuk B, Wójcik W, Zdziennicka A. 1993. Determination of the components of the surface tension of some liquids from interfacial liquid-liquid tension measurements. J. Colloid Interface Sci. 157, 384-393. (10.1006/jcis.1993.1200) DOI
Rasband WS. 1997–2018 ImageJ. Bethesda, MD: National Institutes of Health. See https://imagej.nih.gov/ij/.
Zholob SA, Makievski AV, Miller R, Fainerman VB. 2007. Optimisation of calculation methods for determination of surface tensions by drop profile analysis tensiometry. Adv. Colloid Interface Sci. 134, 322-329. (10.1016/j.cis.2007.04.011) PubMed DOI
Soori T, Rassoulinejad-Mousavi SM, Zhang L, Rokoni A, Sun Y. 2021. A machine learning approach for estimating surface tension based on pendant drop images. Fluid Phase Equilib. 538, 113012. (10.1016/j.fluid.2021.113012) DOI
Berry JD, Neeson MJ, Dagastine RR, Chan DYC, Tabor RF. 2015. Measurement of surface and interfacial tension using pendant drop tensiometry. J. Colloid Interface Sci. 454, 226-237. (10.1016/j.jcis.2015.05.012) PubMed DOI
Yalcinkaya F, Hruza J. 2018. Effect of laminating pressure on polymeric multilayer nanofibrous membranes for liquid filtration. Nanomaterials 8, 272. (10.3390/nano8050272) PubMed DOI PMC
Yalcinkaya F, Yalcinkaya B, Hruza J. 2019. Electrospun polyamide-6 nanofiber hybrid membranes for wastewater treatment. Fibers Polym. 20, 93-99. (10.1007/s12221-019-8820-4) DOI
Palabiyik M, Bahadur S. 2000. Mechanical and tribological properties of polyamide 6 and high density polyethylene polyblends with and without compatibilizer. Wear 246, 149-158. (10.1016/S0043-1648(00)00501-9) DOI
Millot C, Fillot L-A, Lame O, Sotta P, Seguela R. 2015. Assessment of polyamide-6 crystallinity by DSC. J. Therm. Anal. Calorim. 122, 307-314. (10.1007/s10973-015-4670-5) DOI
Lugscheider E, Bobzin K. 2001. The influence on surface free energy of PVD-coatings. Surf. Coat. Technol. 142, 755-760. (10.1016/S0257-8972(01)01315-9) DOI
Mabrey JD, Afsar-Keshmiri A, Engh GA, Sychterz CJ, Wirth MA, Rockwood CA, Agrawal CM. 2002. Standardized analysis of UHMWPE wear particles from failed total joint arthroplasties. J. Biomed. Mater. Res. 63, 475-483. (10.1002/jbm.10302) PubMed DOI
Nine MJ, Choudhury D, Hee AC, Mootanah R, Osman NAA. 2014. Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials (Basel) 7, 980-1016. (10.3390/ma7020980) PubMed DOI PMC
Sonntag R, Reinders J, Kretzer JP. 2012. What's next? Alternative materials for articulation in total joint replacement. Acta Biomater. 8, 2434-2441. (10.1016/j.actbio.2012.03.029) PubMed DOI
Chen Y, Feo T, Harvey TA, Prum RO. 2018. Controllable water surface to underwater transition through electrowetting in a hybrid terrestrial-aquatic microrobot. Nat. Commun. 9, 1-11. (10.1038/s41467-017-02088-w) PubMed DOI PMC
Górka A. 2018. Viscosity and surface tension in the biological microparticle filtration process. Biul. Wojsk. Akad. Tech. 67, 15-31. (10.5604/01.3001.0011.8015) DOI
Chen F, Ji Z, Qi Q. 2019. Effect of liquid surface tension on the filtration performance of coalescing filters. Sep. Purif. Technol. 209, 881-891. (10.1016/j.seppur.2018.09.035) DOI
Jeleniewicz R, Majdan M, Zwolak R, Parada-Turska J, Dryglewska M, Majdan M. 2005. Artykuł oryginalny/original paper synovial fluid surface tension in inflammatory joint diseases. Reumatol./Rheumatol. 43, 331-334.
Hills BA, Butler BD. 1984. Surfactants identified in synovial fluid and their ability to act as boundary lubricants. Ann. Rheum. Dis. 43, 641-648. (10.1136/ard.43.4.641) PubMed DOI PMC
Jebens EH, Monk-Jones ME. 1959. On the viscosity and pH of synovial fluid and the pH of blood. J. Bone Jt. Surg. Br. 41, 388-400. (10.1302/0301-620X.41B2.388) PubMed DOI
Hrouda A, Jirkovec R, Hamrikova P, Vanierschot M, Denis K, Capek L. 2021. The supplementary datasets of the study: the wettability of electron spun membranes by synovial fluid. Dryad Digital Repository. (10.5061/dryad.59zw3r28p) PubMed DOI PMC
The wettability of electron spun membranes by synovial fluid
Dryad
10.5061/dryad.59zw3r28p