Wear Debris Characterization and Corresponding Biological Response: Artificial Hip and Knee Joints

. 2014 Feb 10 ; 7 (2) : 980-1016. [epub] 20140210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28788496

Wear debris, of deferent sizes, shapes and quantities, generated in artificial hip and knees is largely confined to the bone and joint interface. This debris interacts with periprosthetic tissue and may cause aseptic loosening. The purpose of this review is to summarize and collate findings of the recent demonstrations on debris characterization and their biological response that influences the occurrence in implant migration. A systematic review of peer-reviewed literature is performed, based on inclusion and exclusion criteria addressing mainly debris isolation, characterization, and biologic responses. Results show that debris characterization largely depends on their appropriate and accurate isolation protocol. The particles are found to be non-uniform in size and non-homogeneously distributed into the periprosthetic tissues. In addition, the sizes, shapes, and volumes of the particles are influenced by the types of joints, bearing geometry, material combination, and lubricant. Phagocytosis of wear debris is size dependent; high doses of submicron-sized particles induce significant level of secretion of bone resorbing factors. However, articles on wear debris from engineered surfaces (patterned and coated) are lacking. The findings suggest considering debris morphology as an important parameter to evaluate joint simulator and newly developed implant materials.

Zobrazit více v PubMed

Blagosklonny M.V. Why human life span is rapidly increasing: Solving “longevity riddle” with “revealed-slow-aging” hypothesis. Aging. 2010;2:177–182. PubMed PMC

Kurtz S., Ong K., Lau E., Mowat F., Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 2007;89:780–785. PubMed

Harris W.H. The problem is osteolysis. Clin. Orthop. Relat. Res. 1995;311:46–53. PubMed

Callaghan J.J., O’rourke M.R., Saleh K.J. Why knees fail: Lessons learned. J. Arthroplast. 2004;19:31–34. PubMed

Ingham E., Fisher J. The role of macrophages in osteolysis of total joint replacement. Biomaterials. 2005;26:1271–1286. PubMed

Ren W., Yang S.Y., Fang H.W., Hsu S., Wooley P.H. Distinct gene expression of receptor activator of nuclear factor-κB and rank ligand in the inflammatory response to variant morphologies of UHMWPE particles. Biomaterials. 2003;24:4819–4826. PubMed

Bozic K.J., Ong K., Lau E., Kurtz S.M., Vail T.P., Rubash H.E., Berry D.J. Risk of complication and revision total hip arthroplasty among medicare patients with different bearing surfaces. Clin. Orthop. Relat. Res. 2010;468:2357–2362. PubMed PMC

Slonaker M., Goswami T. Review of wear mechanisms in hip implants: Paper II—Ceramics IG004712. Mater. Des. 2004;25:395–405.

Smith A.J., Dieppe P., Porter M., Blom A.W. National Joint Registry of England and Wales. Risk of cancer in first seven years after metal-on-metal hip replacement compared with other bearings and general population: Linkage study between the national joint registry of England and Wales and hospital episode statistics. BMJ. 2012;344 doi: 10.1136/bmj.e2383. PubMed DOI PMC

Holding C.A., Findlay D.M., Stamenkov R., Neale S.D., Lucas H., Dharmapatni A.S., Callary S.A., Shrestha K.R., Atkins G.J., Howie D.W., et al. The correlation of RANK, RANKL and TNF-α expression with bone loss volume and polyethylene wear debris around hip implants. Biomaterials. 2006;27:5212–5219. PubMed

Jacobs J.J., Hallab N.J., Urban R.M., Wimmer M.A. Wear particles. J. Bone Joint Surg. 2006;2:99–102. PubMed

Williams P.A., Clarke I.C. Understanding polyethylene wear mechanisms by modeling of debris size distributions. Wear. 2009;267:646–652.

Billi F., Benya P., Ebramzadeh E., Campbell P., Chan F., Mckellop H.A. Metal wear particles: What we know, what we do not know, and why. SAS J. 2009;3:133–142. PubMed PMC

Kowandy C., Mazouz H., Richard C. Isolation and analysis of articular joints wear debris generated in vitro. Wear. 2006;261:966–970.

Ingham E., Fisher J. Biological reactions to wear debris in total joint replacement. Proc Inst. Mech. Eng. 2000;214:21–37. PubMed

Goodman S.B., Ma T., Chiu R., Ramachandran R., Smith R. L. Effects of orthopaedic wear particles on osteoprogenitor cells. Biomaterials. 2006;27:6096–6101. PubMed

Kurtz S.M. UHMWPE Biomaterials Handbook: Ultra High Molecular Weight Polyethylene in Total Joint Replacement. Elsevier; Amsterdam, the Netherland: 2004.

Charnley J., Follacci F. M., Hammond B.T. The long term reaction of bone to self curing acrylic cement. J. Bone Joint Surg. 1968;50:822–829. PubMed

Galante J.O., Rostoker W. Wear in total hip protheses. Acta Orthp. Scand. Suppl. 1973;145:1–46. PubMed

Dowson D. ASM Handbook 18 Gereland. ASM International; Geauga County, OH, USA: 1992. Friction and Wear of Medical Implants and Prosthetic Devices; pp. 656–664.

Willert H.G., Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J. Biomed. Mater. Res. 1977;11:157–164. PubMed

Muratoglu O.K., Bragdon C.R., O’Connor D.O., Jasty M., Harris W.H. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear reduce oxidation, and retain mechanical properties. J. Arthroplast. 2001;16:149–160. PubMed

Kurtz S.M., Muratoglu O.K., Evans M., Edidin A.A. Advances in the processing sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials. 1999;20:1659–1688. PubMed

Laurent M.P., Johnson T.S., Crowninshield R.D., Blanchard C.R., Bhambri S.K., Yao J.Q. Characterization of a highly cross-linked ultrahigh molecular-weight polyethylene in clinical use in total hip arthroplasty. J. Arthroplast. 2008;23:751–760. PubMed

Sakoda H., Voice A.M., McEwen H.M.J., Isaac G.H., Hardaker C., Wroblewski B.M., Fisher J. A comparison of the wear and physical properties of silane cross-linked polyethylene and ultra-high molecular weight polyethylene. J. Arthroplast. 2001;16:1018–1023. PubMed

Heiner A.D., Callaghan J.J., Brown T.D., Galvin A.L., Fisher J. Scratching vulnerability of conventional vs. highly cross-linked polyethylene liners because of large embedded third-body particles. J. Arthroplast. 2012;27:742–749. PubMed PMC

Wang A., Sun D.C., Stark C., Dumbleton J.H. Wear mechanisms of UHMWPE in total joint replacements. Wear. 1995;181–183:241–249.

Gahr Z.K.H. Microstructure and Wear of Materials. Elsevier; Amsterdam, the Netherland: 1987.

Hood R.W., Wright T.W., Burstein A.H. Retrieval analysis of total knee prostheses: A method and its application to 48 total condylar prostheses. J. Biomed. Mater. Res. 1983;17:829–842. PubMed

Suh N.P. An overview of the delamination theory of wear. Wear. 1977;44:1–16.

Savio J.A., Overcamp L.M., Black J. Size and shape of biomaterial wear debris. J. Clin. Mater. 1994;15:101–147. PubMed

McKellop H.A., Campbell P., Park S.H., Schmalzried T.P., Grigoris P., Amstutz H.C., Sarmiento A. The origin of submicron polyethylene wear debris in total hip arthroplasty. Clin. Orthop. Relat. Res. 1995;311:3–20. PubMed

Middleton R.G., Howie D.W., Costi K., Sharpe P. Effects of design changes on tapered stem fixation using the same cementing technique. Clin. Orthop. Relat. Res. 1998;355:47–56. PubMed

Hongtao L., Shirong G., Shoufan C., Shibo W. Comparison of wear debris generated from ultra high molecular weight polyethylene in vivo and in artificial joint simulator. Wear. 2011;271:647–652.

Wang A. A unified theory of wear for ultra-high molecular weight polyethylene in multi-directional sliding. Wear. 2001;248:38–47.

Muratoglu O.K., Bragdon C.R., O’Connor D.O., Jasty M., Harris W.H., Gul R., McGarry F. Unified wear model for highly crosslinked ultra-high molecular weight polyethylenes (UHMWPE) Biomaterials. 1999;20:1463–1470. PubMed

McKellop H., Shen F.W., Lu B., Campbell P., Salovey R. Development of an extremely wear-resistant ultra high molecular weight polyethylene for total hip replacements. J. Orthop. Res. 1999;17:157–167. PubMed

McKee G.K., Watson-Farrar J. Replacement of arthritic hips by the McKee-Farrar prosthesis. J. Bone Joint Surg. 1996;48:245–259. PubMed

Walker P.S., Gold B.L. The tribology (friction lubrication and wear) of all-metal artificial hip joints. Wear. 1971;17:285–299. PubMed

Weber B.G. Metall-Metall-Totalprothese des Huftgelekes: Zuruck in die Zukunft. Z. Orthop. 1992;130:306–309. PubMed

Heisel C., Silva M., Schmalzried T.P. Bearing surface options for total hip replacements in young patients. J. Bone Joint Surg. 2003;85:1366–1379. PubMed

Dumbleton J.H. Wear and Prosthetic Joints. In: Morrey B.F., editor. Joint Replacement Arthroplasty. Churchill Livingstone; London, UK: 1991. pp. 47–49.

Davidson J.A. Characteristics of metal and ceramic total hip bearing surfaces and their effect on long-term ultra high molecular weight polyethylene wear. Clin. Orthop. Relat. Res. 1993;294:361–378. PubMed

Buscher R., Tager G., Dudzinski W., Gleising B., Wimmer M.A., Fischer A. Subsurface microstructure of metal-on-metal hip joints and its relationship to wear particle generation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005;72:206–214. PubMed

Wimmer M.A., Loos J., Nassutt R., Heitkemper M., Fischer A. The acting wear mechanisms on metal-on-metal hip joint bearings—In vitro results. Wear. 2001;250:129–139.

Wimmer M.A., Sprecher C., Hauert R., Täger G., Fischer A. Tribochemical reaction on metal-on-metal hip joint bearings—A comparison between in-vitro and in-vivo results. Wear. 2003;255:1007–1014.

Wimmer M.A., Fischer A., Büscher R., Pourzal R., Sprecher C., Hauert R., Jacobs J.J. The importance of tribochemical reaction layers. J. Orthop. Res. 2010;28:436–443. PubMed

Leslie I., Williams S., Brown C., Isaac G., Jin Z., Ingham E., Fisher J. Effect of bearing size on the long-term wear, wear debris and ion levels of large diameter metal-on-metal hip replacements—An in vitro study. J. Biomed. Mater. Res. Appl. Biomater. 2008;87:163–172. PubMed

Brockett C.L., Harper P., Williams S., Isaac G.H., Dwyer-Joyce R.S., Jin Z., Fisher J. The influence of clearance on friction, lubrication and squeaking in large diameter metal-on-metal hip replacements. J. Mater. Sci. Mater. Med. 2008;19:1575–1579. PubMed

National Joint Registry for England and Wales. NJR 8th Annual Report. [(accessed 1 September 2013)]. Available online: http://www.njrcentre.org.uk/njrcentre/portals/0/documents/NJR%208th%20annual%20report%202011.pdf.

Boutin P. Total arthroplasty of the hip by fritted aluminum prosthesis. Experimental study and 1st clinical applications. Rev. Chir. Orthop. Reparatrice Appar. Mot. 1972;58:229–246. PubMed

Langer G. Ceramic tibial plateau of the 70s ceramics for total knee replacement: Status and options. In: Garino J.P., Willmann G., editors. Proceedings of the 7th International Biolox® Symposium. Stuttgart, NY, Thieme Publishing Group; New York, NY, USA: 2002. pp. 128–130.

Nevelos J.E., Ingham E., Doyle C., Fisher J., Nevelos A.B. Analysis of retrieved alumina ceramic components from Mittelmeier total hip prostheses. Biomaterials. 1999;20:1833–1840. PubMed

Wang A., Dumbleton J., Manley M., Serekian P. Role of ceramic components in the era of crosslinked polyethylene for THR. Bioceram. Joint Arthroplast. Ceram. Orthop. 2003;219:49–62.

Bader R., Bergschmidt P., Fritsche A., Ansorge S., Thomas P., Mittelmeier W. Alternative materials andsolutions in total knee arthroplasty for patients with metal allergy. Orthopade. 2008;37:136–142. PubMed

Tipper J.L., Hattona A., Nevelos J.E., Ingham E., Doyle C., Streicher R., Nevelos A.B., Fisher J. Alumina-alumina artificial hip joints. Part II: Characterisation of the wear debris from in vitro hip joint simulations. Biomaterials. 2002;23:3441–3488. PubMed

Tipper J.L., Firkins P.J., Besong A.A., Barbour P.S.M., Nevelos J., Stone M.H., Ingham E., Fisher J. Characterisation of wear debris from UHMWPE on zirconia ceramic, metal-on-metal and alumina ceramic-on-ceramic hip prostheses generated in a physiological anatomical hip joint simulator. Wear. 2001;250:120–128.

Hernigou P., Bahrami T. Zirconia and alumina ceramics in comparison with stainless-steel heads. Polyethylene wear after a minimum ten-year follow-up. J. Bone Joint Surg. 2003;85:504–509. PubMed

Piconi C., Maccauro G., Muratori F., Prever E.B.D. Alumina and zirconia ceramics in joint replacements. J. Appl. Biomater. Biomech. 2003;1:19–32. PubMed

Aza A.H.D., Chevalier J., Fantozzi G., Schehl M., Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials. 2002;23:937–945. PubMed

Lawn B. In: Fracture of Brittle Solids. 2nd ed. Suresh S., Ward I.M., et al., editors. Cambridge University Press; Cambridge, UK: 1993. (Cambridge Solid State Science Series).

Tsitskaris K., Mansouri R., Li P.L.S. Catastrophic ceramic failure in total hip arthroplasty: The role of microseparation. JRSM Short Rep. 2011;2:96. PubMed PMC

Toni A., Traina F., Stea S., Sudanese A., Visentin M., Bordini B., Squarzoni S. Early diagnosis of ceramic liner fracture. Guidelines based on a twelve-year clinical experience. J.Bone Joint Surg. 2006;88:55–63. PubMed

Regis D., Sandri A., Bartolozzi P. Delayed diagnosis of low-symptomatic ceramic acetabular liner fracture in ceramic-on-ceramic total hip arthroplasty. Orthopedics. 2008;31:1–3. PubMed

Kurtz S.M., Ong K. Contemporary total hip arthroplasty: Hard-on-hard bearings and highly crosslinked UHMWPE. In: Kurtz S., editor. UHMWPE Biomaterials Handbook. Elsevier; Amsterdam, the Netherlands: 2009. pp. 55–79.

Walter W.L., Insley G.M., Wlater W.K., Tuke M.A. Edge loading in third generation alumina ceramic-on-ceramic bearings: Stripe wear. J. Arthroplast. 2004;19:402–413. PubMed

Barrack R.L., Burak C., Skinner H.B. Concerns about ceramics in THA. Clin. Orthop. Relat. Res. 2004;429:73–79. PubMed

Salehi A., Tsai S., Pawar V., Sprague J., Hunter G., Varma S.K., Namavar F. Wettability analysis of orthopaedic materials using optical contact angle methods. Key Eng. Mater. 2006;309–311:1199–1202.

Currier J.H., Anderson D.E., Citters V.D.W. A proposed mechanism for squeaking of ceramic-on-ceramic hips. Wear. 2010;269:782–789.

Bonnaig N.S., Freiberg R.A., Freiberg A.A. Total hip arthroplasty with ceramic-on-ceramic bearing failure from third-body wear. Orthopedics. 2011;34:132. PubMed

Fisher J., Hu X.Q., Stewart T.D., Williams S., Tipper J.L., Ingham E., Stone M.H., Davies C., Hatto P., Bolton J., et al. Wear of surface engineered metal-on-metal hip prostheses. J. Mater. Sci. Mater. Med. 2004;15:225–235. PubMed

Grill A., Meyerson B.S. Development and Status of Diamond-Like Carbon. In: Spear K.E., Dismukes J.P., editors. Synthetic Diamond: Emerging CVD Science and Technology. Chapter 5. Wiley; New York, NY, USA: 1994. pp. 91–141.

Butter R.S., Lettington A.H. Third International Conference. NIST Special Publication; Washington, DC, USA: 1995. Applications of Diamond Films and Related Materials; p. 683.

Serro A.P., Completo C., Colaço R., Dos Santos F., Silva L., Cabral J.S.M., Araújo H., Pires E., Saramago B. A comparative study of titanium nitrides, TiN, TiNbN and TiCN, as coatings for biomedical applications. Surf. Coat. Technol. 2009;203:3701–3707.

Williams S., Tipper J.L., Ingham E., Stone M.H., Fisher J. In vitro analysis of the wear, wear debris and biological activity of surface-engineered coatings for use in metal-on-metal total hip replacements. Proc. Inst. Mech. Eng. 2003;217:155–163. PubMed

Sovak G., Weiss A., Gotman I. Osseointegration of Ti6Al4V alloy implants coated with titanium nitride by a new method. J. Bone Joint Surg. 2000;82:290–296. PubMed

Balagna C., Faga M.G., Spriano S. Tantalum-based multilayer coating on cobalt alloys in total hip and knee replacement. Mater. Sci. Eng. C. 2012;32:887–895.

Spriano S., Verne E., Faga M.G., Bugliosi S., Maina G. Surface treatment on an implant cobalt alloy for high biocompatibility and wear resistance. Wear. 2005;259:919–925.

Koseki H., Shindo H., Baba K., Fujikawa T., Sakai N., Sawae Y., Murakami T. Surface-engineered metal-on-metal bearings improve the friction and wear properties of local area contact in total joint arthroplasty. Surf. Coat. Technol. 2008;202:4775–4779.

Lappalainen R., Selenius M., Anttila A., Konttinen Y.T., Santavirta S.S. Reduction of wear in total hip replacement prostheses by amorphous diamond coatings. J. Biomed. Mater. Res. 2003;66:410–413. PubMed

Ito H., Kaneda K., Yuhta T., Nishimura I., Yasuda K., Matsuno T. Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints. J. Arthroplast. 2000;15:332–338. PubMed

Tarabolsi M., Klassen T., Mantwill F., Gartner F. Patterned CoCrMo and Al2O3 surfaces for reduced free wear debris in artificial joint arthroplasty. J. Biomed. Mater. Res. 2013;101:3447–3456. PubMed

Gao L., Yang P., Dymond I., Fisher J., Jin Z. Effect of surface texturing on the elastohydrodynamic lubrication analysis of metal-on-metal hip implants. Tribol. Int. 2010;43:1851–1860.

Liu Y., Erdemir A., Meletis E.I. A studyof the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 1996;82:48–56.

Erdemir A., Bindal C., Fenske G.R., Zuiker C., Wilbur P. Characterization of transfer layers forming on surfaces sliding against diamond-like carbon. Surf. Coat. Technol. 1996;86–87:692–697.

Niebuhr T., Bubert H., Steffens H.D., Haumann D., Kauder K., Dämgen U. Examination of wear mechanisms of hard coatings. Fresenius J. Anal. Chem. 1997;358:278–280.

Elfick A.P., Green S.M., Pinder I.M., Unsworth A. A novel technique for the detailed size characterization of wear debris. J. Mater. Sci. Mater. Med. 2000;11:267–271. PubMed

Mochida Y., Boehler M., Salzer M., Bauer T.W. Debris from failed ceramic-on-ceramic and ceramic-on-polyethylene hip prostheses. Clin. Orthop. Relat. Res. 2001;389:113–125. PubMed

Niedzwiecki S., Klapperich C., Short J., Jani S., Ries M., Pruitt L. Comparison of three joint simulator wear debris isolation techniques: Acid digestion, base digestion, and enzyme cleavage. J. Biomed. Mater. Res. 2001;56:245–249. PubMed

Huang C.H., Ho F.Y., Ma H.M., Yang C.T., Liau J.J., Kao H.C., Young T.H., Cheng C.K. Particle size and morphology of UHMWPE wear debris in failed total knee arthroplasties––A comparison between mobile bearing and fixed bearing knees. J. Orthop. Res. 2002;20:1038–1041. PubMed

Slouf M., Eklova S., Kumstatova J., Berger S., Synkova H., Sosna A., Pokorny D., Spundova M., Entlicher G. Isolation, characterization and quantification of polyethylene wear debris from periprosthetic tissues around total joint replacements. Wear. 2007;262:1171–1181.

Lapcikova M., Slouf M., Dybal J., Zolotarevova E., Entlicher G., Pokorny D., Gallo J., Sosna A. Nanometer size wear debris generated from ultra high molecular weight polyethylene in vivo. Wear. 2009;266:349–355.

Brown C., Williams S., Tipper J.L., Fisher J., Ingham E. Characterization of wear particles produced by metal on metal and ceramic on metal hip prostheses under standard and microseparation simulation. J. Mater. Sci. Mater. Med. 2007;18:819–827. PubMed

Catelas I., Bobyn J.D., Medley J.B., Krygier J.J., Zukor D.J., Petit A., Huk O.L. Effects of digestion protocols on the isolation and characterization of metal-metal wear particles. I. Analysis of particle size and shape. J. Biomed. Mater. Res. 2001;55:320–329. PubMed

Catelas I., Bobyn J.D., Medley J.B., Zukor D.J., Petit A., Huk O.L. Effects of digestion protocols on the isolation and characterization of metal-metal wear particles. II. Analysis of ion release and particle composition. J. Biomed. Mater. Res. 2001;55:330–337. PubMed

Tipper J.L., Galvin A.L., Williams S., McEwen H.M.J., Stone M.H., Ingham E., Fisher J. Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators. J. Biomed. Mater. Res. 2006;78:474–480. PubMed

Minoda Y., Kobayashi A., Iwaki H., Miyaguchi M., Kadoya Y., Ohashi H., Yamano Y., Takaoka K. Polyethylene wear particles in synovial fluid after total knee arthroplasty. Clin. Orthop. 2003;410:165–172. PubMed

Catelas I., Bobyn J.D., Medley J.B., Zukor D.J., Petit A., Huk O.L. Size, shape, and composition of wear particles from metal-metal hip simulator testing: Effects of alloy and number of loading cycles. J. Biomed. Mater. Res. 2003;67:312–327. PubMed

Mabrey J.D., Afsar-Keshmiri A., Engh G.A., Sychterz C.J., Wirth M.A., Rockwood C.A., Agrawal C.M. Standardized analysis of UHMWPE wear particles from failed total joint arthroplasties. J. Biomed. Mater. Res. 2002;63:475–483. PubMed

Baxter R.M., Steinbeck M.J., Tipper J.L., Parvizi J., Marcolongo M., Kurtz S.M. Comparison of periprosthetic tissue digestion methods for ultra-high molecular weight polyethylene wear debris extraction. J. Biomed. Mater. Res. Appl. Biomater. 2009;91:409–418. PubMed PMC

Visentin M., Stea S., Squarzoni S., Antonietti B., Reggiani M., Toni A. A new method for isolation of polyethylene wear debris from tissue and synovial fluid. Biomaterials. 2004;25:5531–5537. PubMed

Zolotarevova E., Fejfarkova Z., Entlicher G., Lapcikova M., Slouf M., Pokorny D., Sosna A. Can centrifugation affect the morphology of polyethylene wear debris? Wear. 2008;265:1914–1917.

Hatton A., Nevelos J.E., Nevelos A.A., Banks R.E., Fisher J., Ingham E. Alumina-alumina artificial hip joints. Part I: A histological analysis and characterization of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials. 2002;23:3429–3440. PubMed

Benz E.B., Federman M., Godleski J.J., Bierbaum B.E., Thornhill T.S., Spector M. Transmission electron microscopy of intracellular particles of polyethylene from joint replacement prostheses: Size distribution and cellular response. Biomaterials. 2001;22:2835–2842. PubMed

Koseki H., Matsumoto T., Ito S., Doukawa H., Enomoto H., Shindo H. Analysis of polyethylene particles isolated from periprosthetic tissue of loosened hip arthroplasty and comparison with radiographic appearance. J. Orthop. Sci. 2005;10:284–290. PubMed

Milosev I., Remskar M. In vivo production of nanosized metal wear debris formed by tribochemical reaction as confirmed by high-resolution TEM and XPS analyses. J. Biomed Mater. Res. 2008;91:1100–1110. PubMed

Bohler M., Mochida Y., Bauer T.W., Plenk H., Jr., Salzer M. Wear debris from two different alumina-on-alumina total hip arthroplasties. J. Bone Joint Surg. 2000;82:901–909. PubMed

Solis-Arrieta L., León-Hernández S.R., Villegas-Castrejón H. Quantitative analysis of worn and torn particles in periprosthetic tissue of hip and knee with scanning electron microscopy. Cir. Cir. 2012;80:222–228. PubMed

Scott M., Morrison M., Mishra S.R., Jani S. Particle analysis for the determination of UHMWPE wear. J. Biomed. Mater. Res. Appl. Biomater. 2005;73:325–337. PubMed

Zhang L., Li H., Zhang S., Lu J., Zhang Y., Zhao X., Gu C., Zeng X. Characterization of wear particles from biomedical carbon/carbon composites with different preforms in hip joint simulator. Trans. Nonferrous. Met. Soc. China. 2012;22:2562–2568.

Catelas I., Medley J.B., Campbell P.A., Huk O.L., Bobyn J.D. Comparison of in vitro with in vivo characteristics of wear particles from metal–metal hip implants. J. Biomed. Mater. Res. Part Appl. Biomater. 2004;70:167–178. PubMed

Tipper J.L., Ingham E., Hailey J.L., Besong A.A., Fisher J. Quantitative analysis of polyethylene wear debris, wear rate and head damage in retrieved Charnley hip prostheses. J. Mater. Sci. Mater. Med. 2000;11:117–124. PubMed

American Society for Testing and Materials. ASTM Subcommittee F1877-98; Standard Practice for Characterization of Particles. American Society for Testing and Materials; West Conshohocken, PA, USA: 2000.

Kretzer J.P., Jakubowitz E., Reinders J., Lietz E., Moradi B., Hofmann K., Sonntag R. Wear analysis of unicondylar mobile bearing and fixed bearing knee systems: A knee simulator study. Acta Biomater. 2011;7:710–715. PubMed

Minoda Y., Kobayashi A., Iwaki H., Miyaguchi M., Kadoya Y., Ohashi H., Takaoka K. Characteristics of polyethylene wear particles isolated from synovial fluid after mobile-bearing and posterior-stabilized total knee arthroplasties. J. Biomed. Mater. Res. Part Appl. Biomater. 2004;71:1–6. PubMed

Bowsher J.G., Hussain A., Williams P.A., Shelton J.C. Large Head Diameters have the Potential to Reduce Ion Release in Metal-on-Metal Hip Wear Simulations. ORS; Washington, DC, USA: 2005. p. 1626.

Williams P.A., Brown C.M., Tsukamoto R., Clarke I.C. Polyethylene wear debris produced in a knee simulator model: Effect of crosslinking and counterface material. J. Biomed. Mater. Res. Part Appl. Biomater. 2010;92:78–85. PubMed

Galvin A.L., Tipper J.L., Ingham E., Fisher J. Nanometre size wear debris generated from crosslinked and non-crosslinked ultra high molecular weight polyethylene in artificial joints. Wear. 2005;259:977–983.

Zolotarevova E., Entlicher G., Pavlova E., Slouf M., Pokorny D., Vesely F., Gallo J., Sosna A. Distribution of polyethylene wear particles and bone fragments in periprosthetic tissue around total hip joint replacements. Acta Biomater. 2010;6:3595–3600. PubMed

Wang S.B., Ge S.R., Liu H.T., Huang X.L. Wear behaviour and wear debris characterization of UHMWPE on alumina ceramic, stainless steel, CoCrMo and Ti6Al4V hip prostheses in a hip joint simulator. J. Biomim. Biomater. Tissue Eng. 2010;7:7–25.

Richards L., Brown C., Stone M.H., Fisher J., Ingham E., Tipper J.L. Identification of nanometre-sized ultra-high molecular weight polyethylene wear particles in samples retrieved in vivo. J. Bone Joint Surg. 2008;90:1106–1113. PubMed

Firkins P.J., Tipper J.L., Saadatzadeh M.R., Ingham E., Stone M.H., Farrar R., Fisher J. Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed. Mater. Eng. 2001;11:143–157. PubMed

Elfick A.P.D., Smith S.L., Green S.M., Unsworth A. The quantitative assessment of UHMWPE wear debris produced in hip simulator testing: The influence of head material and roughness, motion and loading. Wear. 2001;249:517–527.

Fang H., Su Y., Huang C., Yang C. Influence of biological lubricant on the morphology of UHMWPE wear particles generated with micro fabricated surfaces textures. Mater. Chem. Phys. 2006;95:280–288.

Gladkis L.G., Li R.W., Scarvell J.M., Smith P.N., Timmers H. Exploration of the size, shape and abundance of UHMWPE wear particles using atomic force microscopy. Wear. 2009;267:632–638.

Gladkis L.G., Timmers H., Scarvell J.M., Smith P.N. Detailed three-dimensional size and shape characterization of UHMWPE wear debris. Wear. 2011;270:455–463.

Minoda Y., Kobayashi A., Iwaki H., Miyaguchi M., Kadoya Y., Ohashi H., Takaoka K. Polyethylene wear particle generation in vivo in an alumina medial pivot total knee prosthesis. Biomaterials. 2005;26:6034–6040. PubMed

Slouf M., Pokornyb D., Entlicherc G., Dybala J., Synkovaa H., Lapcikovaa M., Fejfarkovac Z., Spundovac M., Veselyb F., Sosnab A. Quantification of UHMWPE wear in periprosthetic tissues of hip arthroplasty: Description of a new method based on IR and comparison with radiographic appearance. Wear. 2008;265:674–684.

Slouf M., Sloufova I., Entlicher G., Horak Z., Krejcik M., Stepanek P., Radonsky T., Pokorny D., Sosna A. New fast method for determination of numbers of UHMWPE wear particles. J. Mater. Sci. Mater. Med. 2004;15:1267–1278. PubMed

Schröder C., Reinders J., Zietz C., Utzschneider S., Bader R., Kretzer J.P. Characterization of polyethylene wear particle: The impact of methodology. Acta Biomater. 2013;9:9485–9491. PubMed

Yang S.Y., Ren W., Park Y., Sieving A., Hsu S., Nasser S., Wooley P.H. Diverse cellular and apoptotic responses to variant shapes of UHMWPE particles in a murine model of inflammation. Biomaterials. 2002;23:3535–3543. PubMed

Abu-Amer Y., Darwech I., Clohisy J.C. Aseptic loosening of total joint replacements: Mechanisms underlying osteolysis and potential therapies. Arthritis Res. Ther. 2007;9:1–7. PubMed PMC

Lohmann C.H., Schwartz Z., Koster G., Jahn U., Buchhorn G.H., MacDougall M.J., Casasola D., Liu Y., Sylvia V.L., Dean D.D., et al. Phagocytosis of wear debris by osteoblasts affects differentiation and local factor production in a manner dependent on particle composition. Biomaterials. 2000;21:551–561. PubMed

Ingham E., Green T.R., Stone M.H., Kowalski R., Watkins N., Fisher J. Production of TNF-α and bone resorbing activity by macrophages in response to different types of bone cement particles. Biomaterials. 2000;21:1005–1013. PubMed

Neale S.D., Haynes D.R., Howie D.W., Murray D.W., Athanasou N.A. The effect of particle phagocytosis and metallic wear particles on osteoclast formation and bone resorption in vitro. J. Arthroplast. 2000;15:654–562. PubMed

Matthews J.B., Green T.R., Stone M.H., Wroblewski B.M., Fisher J., Ingham E. Comparison of the response of primary human peripheral blood mononuclear phagocytes from different donors to challenge with model polyethylene particles of known size and dose. Biomaterials. 2000;21:2033–2044. PubMed

Matthews J.B., Besong A.A., Green T.R., Stone M.H., Wroblewski B.M., Fisher J., Ingham E. Evaluation of the response of primary human peripheral blood mononuclear phagocytes to challenge with in vitro generated clinically relevant UHMWPE particles of known size and dose. J. Biomed. Mater. Res. 2000;52:296–307. PubMed

Germain M.A., Hatton A., Williams S., Matthews J.B., Stone M.H., Fisher J., Ingham E. Comparison of the cytotoxicity of clinically relevant cobalt-chromium and alumina ceramic wear particles in vitro. Biomaterials. 2003;24:469–479. PubMed

Papageorgioua I., Brownb C., Schins R., Singhc S., Newsond R., Davis S., Fisher J., Ingham E., Case C.P. The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials. 2007;28:2946–2958. PubMed

Mitchell W., Matthews J.B., Stone M.H., Fisher J., Ingham E. Comparison of the response of human peripheral blood mononuclear cells to challenge with particles of three bone cements in vitro. Biomaterials. 2003;24:737–748. PubMed

Petit A., Mwale F., Zukor D.J., Catelas I., Antoniou J., Huk O.L. Effect of cobalt and chromium ions on bcl-2, bax, caspase-3, and caspase-8 expression in human U937 macrophages. Biomaterials. 2004;25:2013–2018. PubMed

Zheng T.S., Flavell R.A. Divinations and surprises: Genetic analysis of caspase functions in mice. Exp. Cell Res. 2000;256:67–73. PubMed

Papageorgiou I., Yin Z., Ladon D., Baird D., Lewis A.C., Sood A., Newson R., Learmonth I.D., Case C.P. Genotoxic effects of particles of surgical cobalt chrome alloy on human cells of different age in vitro. Mutat. Res. 2007;619:45–58. PubMed

Lewis A.C., Ladon D., Heard P.J., Peto L., Learmonth I. The role of the surface chemistry of CoCr alloy particles in the phagocytosis and DNA damage of fibroblast cells. J. Biomed. Mater. Res. 2007;82:363–372. PubMed

Ciapetti G., Gonzalez-Carrasco J.L., Savarino L., Montealegre M.A., Pagani S., Baldini N. Quantitative assessment of the response of osteoblast- and macrophage-like cells to particles of Ni-free Fe-base alloys. Biomaterials. 2005;26:849–859. PubMed

Shrivastava H.Y., Ravikumar T., Shanmugasundaram N., Babub M., Nair B.U. Cytotoxicity studies of chromium (III) complexes on human dermal fibroblasts. Free Radic. Biol. Med. 2005;38:58–69. PubMed

Doorn P.F., Campbell P.A., Worrall J., Benya P.D., Mckellop H.A., Amstutz H.C. Metal wear particle characterization from metal on metal total hip replacements: Transmission electron microscopy study of periprosthetic tissues and isolated particles. J. Biomed. Mater. Res. 1998;42:103–111. PubMed

Case C.P., Langkamer V.G., James C., Palmer M.R., Kemp A.J., Heap P.F., Soloman L. Widespread dissemination of metal debris from implants. J. Bone Joint Surg. 1994;76:701–712. PubMed

Urban R.M., Jacobs J.J., Tomlinson M.J., Gavrilovic J., Black J., Peoc’h M. Dissemination of wear particles to the liver, spleen, and abdominal lymph nodes of patients with hip or knee replacement. J. Bone Joint Surg. 2000;82:457–476. PubMed

Zhang Y.F., Zheng Y.F., Qin L. A comprehensive biological evaluation of ceramic nanoparticles as wear debris. Nanomedicine. 2011;7:975–982. PubMed

Hatton A., Nevelos J.E., Matthews J.B., Fisher J., Ingham E. Effects of clinically relevant alumina ceramic wear particles on TNF-α production by human peripheral blood mononuclear phagocytes. Biomaterials. 2003;24:1193–1204. PubMed

Baets T.D., Waelput W., Bellemans J. Analysis of third body particles generated during total knee arthroplasty: Is metal debris an issue? Knee. 2008;15:95–97. PubMed

Sabokbar A., Pandey R., Athanasou N.A. The effect of particle size and electrical charge on macrophage-osteoclast differentiation and bone resoption. J. Mater. Sci. Mater. Med. 2003;14:731–738. PubMed

Howling G.I., Ingham E., Sakoda H., Stewart D., Fisher J. Carbon-carbon composite bearing materials in hip arthroplasty: Analysis of wear and biological response to wear debris. J. Mater. Sci. Mater. Med. 2004;15:91–98. PubMed

Kurtz S.M., Ong K.L., Schmier J., Mowat F., Saleh K., Dybvik E., Kärrholm J., Garellick G., Havelin L.I., Furnes O., et al. Future clinical and economic impact of revision total hip and knee arthroplasty. J. Bone Joint Surg. Am. 2007;89:144–151. PubMed

Illgen R.L., Forsythe T.M., Pike J.W., Laurent M.P., Blanchard C.R. Highly crosslinked vs. conventional polyethylene particles—An in vitro comparison of biologic activities. J. Arthroplast. 2008;23:721–731. PubMed

Illgen R.L., Bauer L.M., Hotujec B.T., Kolpin S.E., Bakhtiar A., Forsythe T.M. Highly crosslinked vs. conventional polyethylene particles: Relative in vivo inflammatory response. J. Arthroplast. 2009;24:117–124. PubMed

Brown C., Fisher J., Ingham E. Biological effects of clinically relevant wear particles from metal-on-metal hip prostheses. Proc. Inst. Mech. Eng. 2006;220:355–369. PubMed

American Academy of Orthopaedic Surgeons; Presented at the Orthopaedic Research Society Annual Meeting; Orlando, FL, USA. 16–20 February, 1995.

Purdue P.E., Koulouvaris P., Nestor B.J., Sculco T.P. The central role of wear debris in periprosthetic osteolysis. HSSJ. 2006;2:102–113. PubMed PMC

Gallo J., Kamâinek P., Tichâa V., Rihâakovâa P., Ditmar R. Particle disease. A comprehensive theory of periprosthetic osteolysis: A review. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Repub. 2002;146:21–28. PubMed

Utzschneider S., Becker F., Grupp T.M., Sievers B., Paulus A., Gottschalkd O., Jansson V. Inflammatory response against different carbon fiber-reinforced PEEK wear particles compared with UHMWPE in vivo. Acta Biomater. 2010;6:4296–4304. PubMed

Smith R.A., Hallab N.J. In vitro macrophage response to polyethylene and polycarbonate-urethane particles. J. Biomed. Mater. Res. 2010;93:347–355. PubMed

Hoseini M., Jedenmalm A., Boldizar A. Tribological investigation of coatings for artificial joints. Wear. 2008;264:958–966.

Thomas V., Halloran B.A., Ambalavanan N., Catledge S.A., Vohra Y.K. In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomater. 2012;8:1939–1947. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...