Diagnostic guidelines for the histological particle algorithm in the periprosthetic neo-synovial tissue
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30158837
PubMed Central
PMC6109269
DOI
10.1186/s12907-018-0074-3
PII: 74
Knihovny.cz E-zdroje
- Klíčová slova
- Arthroplasty, Ceramic wear particles, Histological particle algorithm, Metallic wear particles, Non-implant related particles, Orthopaedic implant wear particles, Periprosthetic tissue, Polyethylene wear particles, Synovial crystals, Synovial-like interface membrane,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The identification of implant wear particles and non-implant related particles and the characterization of the inflammatory responses in the periprosthetic neo-synovial membrane, bone, and the synovial-like interface membrane (SLIM) play an important role for the evaluation of clinical outcome, correlation with radiological and implant retrieval studies, and understanding of the biological pathways contributing to implant failures in joint arthroplasty. The purpose of this study is to present a comprehensive histological particle algorithm (HPA) as a practical guide to particle identification at routine light microscopy examination. METHODS: The cases used for particle analysis were selected retrospectively from the archives of two institutions and were representative of the implant wear and non-implant related particle spectrum. All particle categories were described according to their size, shape, colour and properties observed at light microscopy, under polarized light, and after histochemical stains when necessary. A unified range of particle size, defined as a measure of length only, is proposed for the wear particles with five classes for polyethylene (PE) particles and four classes for conventional and corrosion metallic particles and ceramic particles. RESULTS: All implant wear and non-implant related particles were described and illustrated in detail by category. A particle scoring system for the periprosthetic tissue/SLIM is proposed as follows: 1) Wear particle identification at light microscopy with a two-step analysis at low (× 25, × 40, and × 100) and high magnification (× 200 and × 400); 2) Identification of the predominant wear particle type with size determination; 3) The presence of non-implant related endogenous and/or foreign particles. A guide for a comprehensive pathology report is also provided with sections for macroscopic and microscopic description, and diagnosis. CONCLUSIONS: The HPA should be considered a standard for the histological analysis of periprosthetic neo-synovial membrane, bone, and SLIM. It provides a basic, standardized tool for the identification of implant wear and non-implant related particles at routine light microscopy examination and aims at reducing intra-observer and inter-observer variability to provide a common platform for multicentric implant retrieval/radiological/histological studies and valuable data for the risk assessment of implant performance for regional and national implant registries and government agencies.
Adult Reconstruction and Joint Replacement Division Hospital for Special Surgery New York NY USA
Baden Baden Klinik Baden Baden Germany
Centre for Nanohealth Swansea University Medical School Singleton Park Swansea UK
Department of Pathology Fakultni Nemocnice Ostrava Ostrava Czech Republic
Helios Endo Klinik Hamburg Germany
Hôpital Orthopédique Lausanne Switzerland
Hospital for Special Surgery Research Institute New York NY USA
Klinik und Poliklinik für Orthopädie Universitätsklinikum Hamburg Eppendorf Hamburg Germany
LMU Klinik Klinik und Poliklinik für Dermatologie und Allergologie Munich Germany
Medizinische Universität Graz Institut für Pathologie Graz Austria
Medizinische Universität Wien AKH Wien Universitätsklinik für Orthopädie Wien Austria
MVZ Zentrum für Histologie Zytologie und Molekulare Diagnostik Trier Germany
Orthopädische Universitätsklinik Erlangen Erlangen Germany
Paracelsus Kliniken Deutschland Gmbh Osnabrück Germany
Pathologisch bakteriologisches Institut Otto Wagner Spital Wien Austria
Universitätsklinik für Unfallchirurgie und Sporttraumatologie Salzburg Austria
Zobrazit více v PubMed
Willert HG, Semlitsch M. Reactions of the articular capsule to wear products of artificial joint prostheses. J Biomed Mater Res. 1977;11:157–164. doi: 10.1002/jbm.820110202. PubMed DOI
Williams JA. Wear and wear particles-some fundamentals. Tribology Int. 2005;38:863–870. doi: 10.1016/j.triboint.2005.03.007. DOI
Mc Kellop HA, Hart A, Park SH, Hothi H, Campbell P, Skinner JA. A lexicon for wear of metal-on-metal hip prostheses. J Orthop Res. 2014;32:1221–1233. doi: 10.1002/jor.22651. PubMed DOI
Hall DJ, Pourzal R, Lundberg HJ, Mathew MT, Jacobs JJ, Urban RM. Mechanical, chemical and biological damage modes within head-neck tapers of CoCrMo and Ti6Al4V contemporary hip replacements. J Biomed Mater Res Part B. 2018;106B:1672–1685. doi: 10.1002/jbm.b.33972. PubMed DOI PMC
Monopoli MP, Åberg C, Salvati A, Dawson K. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. 2012;7:779–786. doi: 10.1038/nnano.2012.207. PubMed DOI
Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Rouven H, Schlenk F, Fischer D, Klytaimnistra K, Reihardt C, Landfester K, Schild H, Maskos M, Knauer SK, Stauber RH. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013;8:772–781. doi: 10.1038/nnano.2013.181. PubMed DOI
Fleischer CC, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res. 2014;47:2651–2659. doi: 10.1021/ar500190q. PubMed DOI PMC
Mirra JM, Amstutz HC, Matos M, Gold R. The pathology of the joint tissues and its clinical relevance in prosthesis failure. Clin Orthop Rel Res. 1976;117:221–240. PubMed
Ito S, Matsumoto T, Enomoto H, Shindo H. Histological analysis and biological effects of granulation tissue around loosened hip prostheses in the development of osteolysis. J Orthop Sci. 2004;9:478–487. doi: 10.1007/s00776-004-0808-1. PubMed DOI
Scharf B, Clement C, Wu X, Morozova K, Zanolini D, Follenzi A, Larocca JN, Levon K, Sutterwala F, Rand J, Cobelli N, Purdue E, Hajjar KA, Santambrogio L. Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris. Nat Commun. 2012;3:755. doi: 10.1038/ncomms1754. PubMed DOI PMC
Pizzoferrato A, Stea S, Sudanese A, Toni A, Nigrisoli M, Gualtieri G, Squarzoni S. Morphometric and microanalytical analyses of alumina wear particles in hip prostheses. Biomaterials. 1992;14(8):583–587. doi: 10.1016/0142-9612(93)90175-2. PubMed DOI
Savarino L, Baldini N, Ciapetti G, Pellacani A, Giunti A. Is wear debris responsible for failure in alumina-on-alumina implants? Acta Orthop. 2009;80(2):162–167. doi: 10.3109/17453670902876730. PubMed DOI PMC
Natu S, Sidaginamale RP, Gandhi J, Langton DJ, Nargol AV. Adverse reactions to metal debris: histopathological features of periprosthetic soft tissue reactions seen in association with failed metal on metal hip arthroplasties. J Clin Pathol. 2012;65(5):409–418. doi: 10.1136/jclinpath-2011-200398. PubMed DOI
Campbell P, Ebramzadeh E, Nelson S, Takamura K, De Smet K, Amstutz HC. Histological features of pseudotumor-like tissues from metal-on-metal hips. Clin Orthop Relat Res. 2010;468(9):2321–2327. doi: 10.1007/s11999-010-1372-y. PubMed DOI PMC
Mittal S, Revell M, Barone F, Hardie DL, Matharu GS, Davenport AJ, S M, Revell M, Barone F, Hardie DL, Matharu GS, Davenport AJ, Martin RA, Grant M, Mosselmans F, Pynsent P, Sumathi VP, Addison O, Revell PA, Buckley CD. Lymphoid aggregates that resemble tertiary lymphoid organs define a specific pathological subset in metal-on-metal hip replacements. PLoS One. 2013;8(5):e63470. doi: 10.1371/journal.pone.0063470. PubMed DOI PMC
Kurtz SM, Ong KL, Lau E, Bozic KJ. Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am. 2016;96(8):624–630. doi: 10.2106/JBJS.M.00285. PubMed DOI
Matharu GS, Mellon SJ, Murray DW. Follow-up of metal-on-metal hip arthroplasty patients is currently not evidence based or cost effective. J ArthroplastJ Arthroplasty. 2015;30(8):1317–1323. doi: 10.1016/j.arth.2015.03.009. PubMed DOI
Krenn V, Thomas P, Thomsen M, Kretzer JP, Usbeck S, Scheuber L, Perino G, Rüther W, vWelser R, Hopf F, Huber M. Histopathological particle algorithm. Particle identification in the synovium and the SLIM. Z Rheumatol. 2014;73(7):639–649. doi: 10.1007/s00393-013-1315-6. PubMed DOI
Krenn V, Morawietz L, Perino G, Kienapfeld H, Ascherl R, Hassenpflug GJ, Thomsen M, Thomas P, Huber M, Kendoff D, Baumhoer D, Krukemeyer MG, Natu S, Boettner F, Zustin J, Kölbel B, Rüther W, Kretzer JP, Tiemann A, Trampuz A, Frommelt L, Tichilow R, Söder S, Müller S, Parvizi J, Illgner U, Gehrke T. Revised histopathological consensus classification of joint implant related pathology. Pathol Res Pract. 2014;210(12):779–786. doi: 10.1016/j.prp.2014.09.017. PubMed DOI
Krenn V, Perino G. Histological diagnosis of implant-associated pathologies. Germany: Springer-Verlag Berlin Heidelberg; 2017.
Hansen T, Otto M, Buchhorn GH, Schamweber D, Gaumann A, Delank KS, Eckardt A, Willert HG, Kriegsmann J, Kirkpatrick CJ. New aspects in the histological examination of polyethylene wear particles in failed total joint replacements. Acta Histochem. 2002;104:263–269. doi: 10.1078/0065-1281-00649. PubMed DOI
Fujishiro T, Moojen DJ, Kobayashi N, Dhert WJ, Bauer TW. Perivascular and diffuse lymphocytic inflammation are not specific for failed metal-on-metal hip implants. Clin Orthop Relat Res. 2011;469:1127–1133. doi: 10.1007/s11999-010-1649-1. PubMed DOI PMC
Perino G, Ricciardi BF, Jerabek SA, Martignoni G, Wilner G, Maass D, Goldring SR, Purdue PE. Implant based differences in adverse local tissue reaction in failed total hip arthroplasties: a morphological and immunohistochemical study. BMC Clin Pathol. 2014;14(39) 10.1186/1472-6890-14-39. PubMed PMC
Ricciardi BF, Nocon AA, Jerabek SA, Wilner G, Kaplowitz E, Goldring SR, Purdue PE, Perino G. Histopathological characterization of corrosion product associated adverse local tissue reaction in hip implants: a study of 285 cases. BMC Clin Pathol. 2016;16:3. doi: 10.1186/s12907-016-0025-9. PubMed DOI PMC
Vaculova J, Gallo J, Hurnik P, Motyka O, Goodman S, Dvorackova J. Low intra-patient variability of histomorphological findings in periprosthetic tissues from revised joint arthroplasties. J Biomed Mater Res B Appl Biomater. 2017; 10.1002/jbm.b.33990. PubMed
Pascual E, Vega J. Synovial fluid analysis. Best Pract Res Cl Rh. 2005;19:371–386. doi: 10.1016/j.berh.2005.01.004. PubMed DOI
Caicedo MS, Samelko L, McAllister K, Jacobs JJ, Hallab NJ. Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms. J Orthop Res. 2013;31:1633–1642. doi: 10.1002/jor.22411. PubMed DOI PMC
Tipper JL, Galvin A, Williams S, McEwen HMJ, Stone MH, Ingham E, Fisher J. Isolation and characterization of UHMWPE wear particles down to ten nanometers in size from in vitro hip and knee joint simulators. J Biomed Mater Res. 2006;3:473–480. doi: 10.1002/jbm.a.30824. PubMed DOI
Fisher J, Bell J, Barbour PSM, Tipper JL, Matthews JB, Besong AA, Stone MH, Ingham E. A novel method for the prediction of functional biological activity of polyethylene wear debris. Proc Instn Mech Engrs. 2001;215:127–132. doi: 10.1243/0954411011533599. PubMed DOI
Endo M, Tipper JL, Barton DC, Stone MH, Ingham E, Fisher J. Comparison of wear, wear debris, and functional biological activity of moderately crosslinked and non-crosslinked polyethylenes in hip prostheses. Proc Instn Mech Engrs. 2002;216:111–117. doi: 10.1243/0954411021536333. PubMed DOI
Nine MJ, Choudhury D, Hee AC, Mootanah R, Osman NAA. Wear debris and characterization and corresponding biological response: artificial hip and knee joints. Materials. 2014;7:980–1016. doi: 10.3390/ma7020980. PubMed DOI PMC
Stratton-Powell AA, Tipper JL. Characterization of UHMWPE wear particles. In: UHMWPE Biomaterials Handbook. Ultra High Molecular Weight Polyethylene in Total Joint Replacement and Medical Devices. vol. 33. Amsterdam: Elsevier; 2015. p. 635–53.
Catelas I, Bobyn JD, Medley JB, Krygier JJ, Zukor DJ, Petit A, Huk OL. Effects of digestion protocols on the isolation of metal-metal wear particles. I. Analysis of particle size and shape. J Biomed Mater Res. 2001;55(3):320–329. doi: 10.1002/1097-4636(20010605)55:3<320::AID-JBM1020>3.0.CO;2-3. PubMed DOI
Sobieraj MC, Rimnac CM. Ultra-high molecular weight polyethylene: mechanics, morphology, and clinical behavior. J Mech Behav Biomed Mater. 2009;2:433–443. doi: 10.1016/j.jmbbm.2008.12.006. PubMed DOI PMC
Bracco P, Bellare A, Bistolfi A, Affatato S. Ultra-high molecular weight polyethylene: influence of the chemical, physical, and mechanical properties on the wear behavior. A review. Materials. 2017;10:1–22. doi: 10.3390/ma10070791. PubMed DOI PMC
Kurtz SM, Gawel HA, Patel JD. History and systematic review of wear and Osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res. 2011;469:2262–2277. doi: 10.1007/s11999-011-1872-4. PubMed DOI PMC
Schipper ON, Haddad SL, Pytel P, Zhou Y. Histological analysis of early osteolysis in total ankle arthroplasty. Foot Ankle Int. 2017;38:351–359. doi: 10.1177/1071100716682333. PubMed DOI
Campbell P, Ma S, Yeom B, McKellop H, Schmalzried TP, Amstutz HC. Isolation of predominantly submicron-sized UHMWPE wear particles from periprosthetic tissues. J Biomed Mater Res. 1995;29:127–131. doi: 10.1002/jbm.820290118. PubMed DOI
Wolfarth DL, Han G, Bushar DW. Separation and characterization of polyethylene wear debris from synovial fluid and tissue samples of revised knee replacements. J Biomed Mater Res. 1997;34:57–61. doi: 10.1002/(SICI)1097-4636(199701)34:1<57::AID-JBM8>3.0.CO;2-M. PubMed DOI
Schipper ON, Haddad SL, Fullam S, Pourzal R, Wimmer MA. Wear characteristics of conventional ultrahigh-molecular-weight polyethylene versus highly cross-linked polyethylene in total ankle arthroplasty. Foot Ankle Int. 2018;1:1071100718786501. PubMed
Muller J, Prozeller D, Ghazaryan A, Kokkinopoulou M, Volker M, Morsbach S, Landfester K. Beyond the protein corona – lipids matter for biological response to nanocarriers. Acta Biomater. 2018;71:420–431. doi: 10.1016/j.actbio.2018.02.036. PubMed DOI
Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370:1508–1519. doi: 10.1016/S0140-6736(07)60457-7. PubMed DOI
Xia Z, Ricciardi BF, Liu Z, von Ruhland C, Ward M, Lord A, Hughes L, Goldring SR, Purdue E, Murray D, Perino G. Nano-analyses of wear particles from metal-on-metal and non-metal-on-metal dual modular neck hip arthroplasty. Nanomedicine. 2017;13:1205–1217. doi: 10.1016/j.nano.2016.11.003. PubMed DOI
Catelas I, Medley JB, Campbell PA, Huk OL, Boby DJ. Comparison of in vitro with in vivo characteristics of wear particles from metal-on-metal hip implants. J Biomed Mater Res Part B: Appl Biomater. 2004;70B:167–78. PubMed
Jacobs J, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Joint Surg Am. 1998;80:268–282. doi: 10.2106/00004623-199802000-00015. PubMed DOI
Huber M, Reinisch G, Trettenhahn G, Zweymüller K, Lintner F. Presence of corrosion products and hypersensitivity-associated reactions in periprosthetic tissue after aseptic loosening of total hip replacements with metal bearing surfaces. Acta Biomater. 2009;5:172–180. doi: 10.1016/j.actbio.2008.07.032. PubMed DOI
Langton DJ, Sidaginamale R, Lord JK, Nargol AV, Joyce TJ. Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res. 2012;1:56–63. doi: 10.1302/2046-3758.14.2000047. PubMed DOI PMC
Meyer H, Mueller T, Goldau G, Chamaon K, Ruetschi M, Lohmann CH. Corrosion at the cone/taper Interface leads to failure of large-diameter metal-on-metal Total hip arthroplasties. Clin Orthop Relat Res. 2012;470:3101–3108. doi: 10.1007/s11999-012-2502-5. PubMed DOI PMC
Cooper HJ, Urban RM, Wixson RL, Meneghini RM, Jacobs JJ. Adverse local tissue reaction arising from corrosion at the femoral neck-body junction in a dual-taper stem with a cobalt-chromium modular neck. J Bone Joint Surg Am. 2013;95:865–872. doi: 10.2106/JBJS.L.01042. PubMed DOI PMC
DeMartino I, Assini JB, Elpers ME, Wright TM, Westrich GH. Corrosion and fretting of a modular hip system: a retrieval analysis of 60 rejuvenate stems. J Arthroplast. 2015;30:1470–1475. doi: 10.1016/j.arth.2015.03.010. PubMed DOI
Buente D, Huber G, Bishop N, Morlock M. Quantification of material loss from the neck piece taper junctions of a bimodular primary hip prosthesis. A retrieval study from 27 failed rejuvenate bimodular hip arthroplasties. Bone Joint J Br. 2015;97:1350–1357. doi: 10.1302/0301-620X.97B10.35342. PubMed DOI
Whitehouse MR, Endo M, Zachara S, Nielsen TO, Greidanus NV, Masri BA, Garbuz DS, Duncan CP. Adverse local tissue reactions in metal-on-polyethylene total hip arthroplasty due to trunnion corrosion. Bone Joint J Br. 2015;97:1024–1030. doi: 10.1302/0301-620X.97B8.34682. PubMed DOI
Pourzal R, Hall DJ, Ehrich J, McCarthy SM, Mathew MT, Jacobs JJ, Urban RM. Alloy microstructure dictates corrosion modes in THA modular junctions. Clin Orthop Relat Res. 2017;475(12):3026–3043. doi: 10.1007/s11999-017-5486-3. PubMed DOI PMC
Catelas I, Wimmer MA. New insights into wear and biological effects of metal-on-metal bearings. J Bone Joint Surg Am. 2011;93(Suppl 2):76–83. doi: 10.2106/JBJS.J.01877. PubMed DOI PMC
Arnholt C, Donald DW, Tohfafarosh M, Gilbert JL, Rimnac CL, Kurtz SM, the Implant Research Writing Committee. Klein G, Mont MA, Parvizi J, Cates HE, Lee GC, Malkani A, Kraay M. Mechanically assisted taper corrosion in modular TKA. J Arthroplast. 2014;29(9 Suppl):205–208. doi: 10.1016/j.arth.2013.12.034. PubMed DOI PMC
Arnholt C, Donald DW, Malkani A, Klein G, Rimnac CL, Kurtz SM, the Implant Research Writing Committee. Kocagöz SB, Gilbert JL M. Corrosion damage and wear mechanisms in long-term retrieved CoCr femoral components for Total knee arthroplasty. J Arthroplast. 2016;31(12):2900–2906. doi: 10.1016/j.arth.2016.05.006. PubMed DOI PMC
Gilbert JL, Sivan S, Liu Y, Kocagöz SB, Arnholt CM, Kurtz SM. Direct in vivo inflammatory cell corrosion of CoCrMo alloy orthopedic implant surfaces. J Biomed Mater Res Part A. 2015;103A:211–223. doi: 10.1002/jbm.a.35165. PubMed DOI PMC
Bal SB, Garino J, Ries M, Rahaman MN. Ceramic materials in total joint arthroplasty. Semin Arthro. 2006;17:94–101. doi: 10.1053/j.sart.2006.09.002. PubMed DOI
Macdonald N, Bankes M. Ceramic on ceramic hip prostheses: a review of past and modern materials. Arch Orthop Trauma Surg. 2014;134:1325–1335. doi: 10.1007/s00402-014-2020-x. PubMed DOI
Hatton A, Nevelos JE, Nevelos AA, Banks RE, Fisher J, Ingham E. Alumina-alumina artificial hip joints. Part I: a histological analysis and characterisation of wear debris by laser capture microdissection of tissues retrieved at revision. Biomaterials. 2002;23:3429–3440. doi: 10.1016/S0142-9612(02)00047-9. PubMed DOI
Esposito C, Maclean F, Campbell P, Walter WL, Walter WK, Bonar FS. Periprosthetic tissues from third generation alumina-on-alumina total hip arthroplasties. J Arthroplast. 2013;28:860–866. doi: 10.1016/j.arth.2012.10.021. PubMed DOI
Bohner M, Tadier S, van Garderen N, de Gasparo A, Döbelin N, Baroud G. Synthesis of spherical calcium phosphate particles for dental and orthopedic applications. Biomatter. 2013;3(2):e25103. doi: 10.4161/biom.25103. PubMed DOI PMC
Lorenzo V, Torres A, Salido E. Primary hyperoxaluria. Nefrologia. 2014;34(3):398–412. PubMed
Pereira BPG, Chang EY, Resnick DL, Pathria MN. Intramuscular migration of calcium hydroxyapatite crystal deposits involving the rotator cuff tendons of the shoulder: report of 11 patients. Skelet Radiol. 2016;45:97–103. doi: 10.1007/s00256-015-2255-9. PubMed DOI
Piccin A, Rizkalla H, Smith O, McMahon C, Furlan C, Murphy C, Negri G, Mc Dermott M. Composition and significance of splenic Gamna-Gandy bodies in sickle cell anemia. Human Pathol. 2012;43:1028–1036. doi: 10.1016/j.humpath.2011.08.011. PubMed DOI
Pizzolato P. Formalin pigment (acid hematin) and related pigments. Am J Med Technol. 1976;42(11):436–440. PubMed
Jadeja H, Yeoh D, Lal M, Mowbray M. Patterns of failure with time of an artificial scaffold class ligament used for reconstruction of the human anterior cruciate ligament. Knee. 2007;14:439–442. doi: 10.1016/j.knee.2007.08.006. PubMed DOI
Mortier J, Engelhardt M. Foreign body reaction in carbon fiber prosthesis implantation in the knee joint - case report and review of the literature. Z Orthop Ihre Grenzgeb. 2000;138(5):390–394. doi: 10.1055/s-2000-10166. PubMed DOI
Pugliese D, Bush D, Harrington T. Silicone synovitis. Longer term outcome data and review of the literature. J Clin Rheumatol. 2009;15:8–11. doi: 10.1097/RHU.0b013e318190f979. PubMed DOI
Giuffrida AY, Gyuricza C, Perino G, Weiland AJ. Foreign body reaction to Artelon spacer: case report. J Hand Surg Am. 2009;34(8):1388–1392. doi: 10.1016/j.jhsa.2009.05.006. PubMed DOI
Chen AL, Desai P, Adler EM, Di Cesare PE. Granulomatous inflammation after Hylan G-F 20 viscosupplementation of the knee: a report of six cases. J Bone Joint Surg Am. 2002;84-A:1142–1147. doi: 10.2106/00004623-200207000-00008. PubMed DOI
Bauer TW. An overview of the histology of skeletal substitute materials. Arch Pathol Lab Med. 2007;131:217–224. PubMed
James RA, Singh-Grewal D, Lee SJ, McGill J, Adib N. Lysosomal storage disorders: a review of the musculoskeletal features. J Paediatr Child Health. 2016;52:262–271. doi: 10.1111/jpc.13122. PubMed DOI
Campochiaro C, Tomelleri A, Cavalli G, Berti A, Dagna L. Erdheim-Chester disease. Eur J Intern Med. 2015;26:223–229. doi: 10.1016/j.ejim.2015.03.004. PubMed DOI
Di Laura A, Quinn PD, Panagiotopoulou VC, Hothi HS, Henckel J, Powell JJ, Berisha F, Amary F, Mosselmans JFW, Skinner JA, Hart AJ. The chemical form of metal species released from corroded taper junctions of hip implants: synchrotron analysis of patient tissue. Sci Rep. 2017;7:10952. doi: 10.1038/s41598-017-11225-w. PubMed DOI PMC
Schoon J, Geißler S, Traeger J, Luch A, Tentschert J, Perino G, Schulze F, Duda GN, Perka C, Rakow A. Multi-elemental nanoparticle exposure after tantalum component failure in hip arthroplasty: in-depth analysis of a single case. Nanomedicine. 2017;13:2415–2423. doi: 10.1016/j.nano.2017.08.004. PubMed DOI
Stachowiak GW, Pdsiadlo P. Characterization of wear particles and surfaces. Wear. 2001;249:194–200. doi: 10.1016/S0043-1648(01)00562-2. DOI
Willert HG, Buchhorn GH, Fayyazi A, Flury R, Windler M, Köster G, Lohmann CH. Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. J Bone Joint Surg Am. 2005;87(1):28–36. doi: 10.2106/JBJS.A.02039pp. PubMed DOI
Xia Z, Kwon YM, Mehmood S, Downing C, Jurkschat K, Murray DW. Characterization of metal-wear nanoparticles in pseudotumor following metal-on-metal hip resurfacing. Nanomedicine. 2011;7:674–681. doi: 10.1016/j.nano.2011.08.002. PubMed DOI
Hopf F, Thomas P, Sesselmann S, Thomsen MN, Hopf M, Hopf J, Krukemeyer MG, Resch H, Krenn V. CD3+ lymphocytosis in the peri-implant membrane of 222 loosened joint endoprostheses depends on the tribological pairing. Acta Orthop. 2017;88(6):642–648. doi: 10.1080/17453674.2017.1362774. PubMed DOI PMC
Doorn PF, Mirra JM, Campbell PA, Amstuz HC. Tissue reaction to metal on metal total hip prostheses. Clin Orthop Rel Res. 1996;329(Suppl):187–205. doi: 10.1097/00003086-199608001-00017. PubMed DOI
Scheuer PJ, Lefkowich JH. Disturbances of copper and iron metabolism. In: Liver Biopsy Interpretation. Philadelphia: WB Saunders; 2000. p. 270e83.
Stratton-Powell AA, Pasko KM, Brockett CL, Tipper JL. The biologic response to Polyetheretherketone (PEEK) wear particles in total joint replacement: a systematic review. Clin Orthop Relat Res. 2016;474:2394–2404. doi: 10.1007/s11999-016-4976-z. PubMed DOI PMC
Torosyan Y, Bowsher JG, Kurtz SM, Mihalko WM, Marinac-Dabic D. Opportunities and challenges in retrieval analysis: the role of standardized periprosthetic tissue and fluid analysis for assessing an aggravated host response. In: Mihalko WM, Lemons JE, Greenwald AS, Kurtz SM, editors. Beyond the implant: retrieval analysis methods for implant surveillance, ASTM STP1606. West Conshohocken: ASTM International; 2018. pp. 215–228.
Dumbleton JH, Manley MT, Edidin AA. A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplast. 2002;17:649–661. doi: 10.1054/arth.2002.33664. PubMed DOI
Harris WH. “The lysis threshold”: an erroneous and perhaps misleading concept? J Arthroplast. 2003;18:506–510. doi: 10.1016/S0883-5403(03)00153-0. PubMed DOI
Keegan GM, Learmonth ID, Case CP. A systematic comparison of the actual, potential, and theoretical health effects of cobalt and chromium exposures from industry and surgical implants. Crit Rev Toxicol. 2008;38(8):645–674. doi: 10.1080/10408440701845534. PubMed DOI
Matharu GS, Berryman F, Judge A, Reito A, McConnell J, Lainiala O, Young S, Eskelinen A, Pandit HG, Murray DW. Blood metal ion thresholds to identify patients with metal-on-metal hip implants at risk of adverse reactions to metal debris: an external multicenter validation study of Birmingham hip resurfacing and Corail-pinnacle implants. J Bone Joint Surg Am. 2017;99(18):1532–1539. doi: 10.2106/JBJS.16.01568. PubMed DOI PMC
Rakow A, Schoon J, Dienelt A, Thilo J, Textor M, Duda G, Perka C, Schulze F, Ode A. Influence of particulate and dissociated metal-on-metal hip endoprosthesis wear on mesenchymal stromal cells in vivo and in vitro. Biomaterials. 2016;98:31–40. doi: 10.1016/j.biomaterials.2016.04.023. PubMed DOI