Tribological performance of the biological components of synovial fluid in artificial joint implants

. 2015 Aug ; 16 (4) : 045002. [epub] 20150728

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27877822

The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient.

Zobrazit více v PubMed

Vrbka M, Návrat T, Křupka I, Hartl M, Šperka P. and Gallo J. Study of film formation in bovine serum lubricated contacts under rolling/sliding conditions. Proc. Inst. Mech. Eng. J. 2013;227:459–75. doi: 10.1177/1350650112471000. DOI

Dėdinaitė A. Biomimetic lubrication. Soft Matter. 2012;8:273–84. doi: 10.1039/C1SM06335A. DOI

Roy T, Choudhury D, Bin Mamat A. and Pingguan-Murphy B. Fabrication and characterization of micro-dimple array on Al2O3 surfaces by using a micro-tooling. Ceram. Int. 2014;40:2381–8. doi: 10.1016/j.ceramint.2013.08.009. DOI

Trunfio-Sfarghiu A M, Berthier Y, Meurisse M H. and Rieu J P. Multiscale analysis of the tribological role of the molecular assemblies of synovial fluid. Case of a healthy joint and implants. Tribol. Int. 2007;40:1500–15. doi: 10.1016/j.triboint.2007.02.008. DOI

Balazs E A, Watson D, Duff I F. and Roseman S. Hyaluronic acid in synovial fluid: I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum. 1967;10:357–76. doi: 10.1002/art.1780100407. PubMed DOI

Ghosh S, Choudhury D, Das N S. and Pingguan-Murphy B. Tribological role of synovial fluid compositions on artificial joints—a systematic review of the last 10 years. Lubr. Sci. 2014;26:387–410. doi: 10.1002/ls.1266. DOI

Kitano T, Ateshian G A, Mow V C, Kadoya Y. and Yamano Y. Constituents and pH changes in protein rich hyaluronan solution affect the biotribological properties of artificial articular joints. J. Biomech. 2001;34:1031–7. doi: 10.1016/S0021-9290(01)00058-6. PubMed DOI

Wimmer M, Sprecher C, Hauert R, Täger G. and Fischer A. Tribochemical reaction on metal-on-metal hip joint bearings: a comparison between in-vitro and in-vivo results. Wear. 2003;255:1007–14. doi: 10.1016/S0043-1648(03)00127-3. DOI

Klein J. Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. J. 2006;220:691–710. doi: 10.1243/13506501JET143. DOI

Tanimoto K, Kamiya T, Tanne Y, Kunimatsu R, Mitsuyoshi T, Tanaka E. and Tanne K. Superficial zone protein affects boundary lubrication on the surface of mandibular condylar cartilage. Cell Tissue Res. 2011;344:333–40. doi: 10.1007/s00441-011-1156-z. PubMed DOI

Trunfio-Sfarghiu A-M, Berthier Y, Meurisse M-H. and Rieu J-P. Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces. Langmuir. 2008;24:8765–71. doi: 10.1021/la8005234. PubMed DOI

Chan S M T, Neu C P, Komvopoulos K. and Reddi A H. The role of lubricant entrapment at biological interfaces: Reduction of friction and adhesion in articular cartilage. J. Biomech. 2011;44:2015–20. doi: 10.1016/j.jbiomech.2011.04.015. PubMed DOI

Wang A, Essner A. and Schmidig G. The effects of lubricant composition on in vitro wear testing of polymeric acetabular components. J. Biomed. Mater. Res. B. 2004;68:45–52. doi: 10.1002/jbm.b.10077. PubMed DOI

Choudhury D, Walker R, Roy T, Paul S. and Mootanah R. Performance of honed surface profiles to artificial hip joints: an experimental investigation. Int. J. Precis. Eng. Manuf. 2013;14:1847–53. doi: 10.1007/s12541-013-0247-z. DOI

Myant C, Underwood R, Fan J. and Cann P M. Lubrication of metal-on-metal hip joints: the effect of protein content and load on film formation and wear. J. Mech. Behav. Biomed. Mater. 2012;6:30–40. doi: 10.1016/j.jmbbm.2011.09.008. PubMed DOI

Vrbka M, Křupka I, Hartl M. and Návrat T. In situ measurements of thin films in bovine serum lubricated contacts using optical interferometry. Proc. Inst. Mech. Eng. H. 2014;228:149–58. doi: 10.1177/0954411913517498. PubMed DOI

Gispert M, Serro A, Colaco R. and Saramago B. Friction and wear mechanisms in hip prosthesis: comparison of joint materials behaviour in several lubricants. Wear. 2006;260:149–58. doi: 10.1016/j.wear.2004.12.040. DOI

McKellop H, Clarke I, Markolf K. and Amstutz H. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device. J. Biomed. Mater. Res. 1981;15:619–53. doi: 10.1002/jbm.820150503. PubMed DOI

Ateshian G A, Mow V C. and Huiskes R. Basic Orthopaedic Biomechanics and Mechano-Biology. 3rd edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2005. Friction, lubrication, and wear of articular cartilage and diarthrodial joints; pp. pp 447–94.

Ghosh S C D, Roy T, Azuddin M M, Masjuki H H. and Pingguan-Murphy B. Tribological investigation of diamond like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid. Sci. Technol. Adv. Mater. 2015;16:035002. doi: 10.1088/1468-6996/16/3/035002. PubMed DOI PMC

Choudhury D, Urban F, Vrbka M, Hartl M. and Krupka I. A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface. J. Mech. Behav. Biomed. Mater. 2015;45:121–31. doi: 10.1016/j.jmbbm.2014.11.028. PubMed DOI

Myant C. and Cann P. In contact observation of model synovial fluid lubricating mechanisms. Tribol. Int. 2013;63:97–104. doi: 10.1016/j.triboint.2012.04.029. DOI

Ghosh S, Choudhury D. and Pingguan-Murphy B. Lubricating ability of albumin and globulin on artificial joint implants: a tribological perspective. Int. J. Surf. Sci. Eng. 2015 at press.

Jay G D, Harris D A. and Cha C-J. Boundary lubrication by lubricin is mediated by O-linked β (1–3) Gal-GalNAc oligosaccharides. Glycoconjugate J. 2001;18:807–15. doi: 10.1023/A:1021159619373. PubMed DOI

Yarimitsu S, Nakashima K, Sawae Y. and Murakami T. Influences of lubricant composition on forming boundary film composed of synovia constituents. Tribol. Int. 2009;42:1615–23. doi: 10.1016/j.triboint.2008.11.005. DOI

Mirea D A, Trunfio-Sfarghiu A M, Matei C I, Munteanu B, Piednoir A, Rieu J P, Blanchin M G. and Berthier Y. Role of the biomolecular interactions in the structure and tribological properties of synovial fluid. Tribol. Int. 2013;59:302–11. doi: 10.1016/j.triboint.2012.06.015. DOI

Ching H A, Choudhury D, Nine M J. and Osman N A A. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci. Technol. Adv. Mater. 2014;15:045002. doi: 10.1088/1468-6996/15/1/014402. PubMed DOI PMC

Balazs E A. Disorders of the Knee. 2nd edn. Philadelphia, PA: Lippincott; 1982. The physical properties of synovial fluid and the special role of hyaluronic acid; pp. pp 61–74.

Cummings N A. and Nordby G L. Measurement of synovial fluid pH in normal and arthritic knees. Arthritis Rheum. 1966;9:47–56. doi: 10.1002/art.1780090106. PubMed DOI

Goldie I. and Nachemson A. Synovial pH in rheumatoid knee-joints: I. The effect of synovectomy. Acta Orthop. 1969;40:634–41. doi: 10.3109/17453676908989529. PubMed DOI

Crockett R. Boundary lubrication in natural articular joints. Tribol. Lett. 2009;35:77–84. doi: 10.1007/s11249-009-9430-x. DOI

Heuberger M P, Widmer M, Zobeley E, Glockshuber R. and Spencer N D. Protein-mediated boundary lubrication in arthroplasty. Biomaterials. 2005;26:1165–73. doi: 10.1016/j.biomaterials.2004.05.020. PubMed DOI

Roba M, Bruhin C, Ebneter U, Ehrbar R, Crockett R. and Spencer N. Latex on glass: an appropriate model for cartilage-lubrication studies? Tribol. Lett. 2010;38:267–73. doi: 10.1007/s11249-010-9603-7. DOI

Gellman A J. and Spencer N D. Surface chemistry in tribology. Proc. Inst. Mech. Eng. J. 2002;216:443–61. doi: 10.1243/135065002762355352. DOI

Williams J. Engineering Tribology. vol 10. Cambridge: Cambridge University Press; 2005.

Nine M J, Choudhury D, Hee A C, Mootanah R. and Osman N A A. Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials. 2014;7:980–1016. doi: 10.3390/ma7020980. PubMed DOI PMC

Wang A, Essner A, Stark C. and Dumbleton J. Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions. Biomaterials. 1996;17:865–71. doi: 10.1016/0142-9612(96)83281-9. PubMed DOI

Yuan Y, Shimada Y, Ichinose S. and Tagami J. Qualitative analysis of adhesive interface nanoleakage using FE-SEM/EDS. Dent. Mater. 2007;23:561–9. doi: 10.1016/j.dental.2006.03.015. PubMed DOI

Zavareh M A, Sarhan A A D M, Razak B B. and Basirun W J. The tribological and electrochemical behavior of HVOF-sprayed Cr3C2–NiCr ceramic coating on carbon steel. Ceram. Int. 2015;41:5387–96. doi: 10.1016/j.ceramint.2014.12.102. DOI

McKellop H, Lu B. and Benya P. Friction, lubrication and wear of cobalt-chromium, alumina and zirconia hip prostheses compared on a joint simulator. Trans. Orthop. Res. Soc. 1992;17:402.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...