Tribological performance of the biological components of synovial fluid in artificial joint implants
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27877822
PubMed Central
PMC5090181
DOI
10.1088/1468-6996/16/4/045002
PII: TSTA11661317
Knihovny.cz E-zdroje
- Klíčová slova
- biological fluids, biotribology, friction, lubrication, wear,
- Publikační typ
- časopisecké články MeSH
The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient.
Department of Mechanical and Aerospace Engineering Monash University Clayton VIC3800 Australia
Department of Mechanical Engineering University of Malaya 50603 Kuala Lumpur Malaysia
Zobrazit více v PubMed
Vrbka M, Návrat T, Křupka I, Hartl M, Šperka P. and Gallo J. Study of film formation in bovine serum lubricated contacts under rolling/sliding conditions. Proc. Inst. Mech. Eng. J. 2013;227:459–75. doi: 10.1177/1350650112471000. DOI
Dėdinaitė A. Biomimetic lubrication. Soft Matter. 2012;8:273–84. doi: 10.1039/C1SM06335A. DOI
Roy T, Choudhury D, Bin Mamat A. and Pingguan-Murphy B. Fabrication and characterization of micro-dimple array on Al2O3 surfaces by using a micro-tooling. Ceram. Int. 2014;40:2381–8. doi: 10.1016/j.ceramint.2013.08.009. DOI
Trunfio-Sfarghiu A M, Berthier Y, Meurisse M H. and Rieu J P. Multiscale analysis of the tribological role of the molecular assemblies of synovial fluid. Case of a healthy joint and implants. Tribol. Int. 2007;40:1500–15. doi: 10.1016/j.triboint.2007.02.008. DOI
Balazs E A, Watson D, Duff I F. and Roseman S. Hyaluronic acid in synovial fluid: I. Molecular parameters of hyaluronic acid in normal and arthritic human fluids. Arthritis Rheum. 1967;10:357–76. doi: 10.1002/art.1780100407. PubMed DOI
Ghosh S, Choudhury D, Das N S. and Pingguan-Murphy B. Tribological role of synovial fluid compositions on artificial joints—a systematic review of the last 10 years. Lubr. Sci. 2014;26:387–410. doi: 10.1002/ls.1266. DOI
Kitano T, Ateshian G A, Mow V C, Kadoya Y. and Yamano Y. Constituents and pH changes in protein rich hyaluronan solution affect the biotribological properties of artificial articular joints. J. Biomech. 2001;34:1031–7. doi: 10.1016/S0021-9290(01)00058-6. PubMed DOI
Wimmer M, Sprecher C, Hauert R, Täger G. and Fischer A. Tribochemical reaction on metal-on-metal hip joint bearings: a comparison between in-vitro and in-vivo results. Wear. 2003;255:1007–14. doi: 10.1016/S0043-1648(03)00127-3. DOI
Klein J. Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. J. 2006;220:691–710. doi: 10.1243/13506501JET143. DOI
Tanimoto K, Kamiya T, Tanne Y, Kunimatsu R, Mitsuyoshi T, Tanaka E. and Tanne K. Superficial zone protein affects boundary lubrication on the surface of mandibular condylar cartilage. Cell Tissue Res. 2011;344:333–40. doi: 10.1007/s00441-011-1156-z. PubMed DOI
Trunfio-Sfarghiu A-M, Berthier Y, Meurisse M-H. and Rieu J-P. Role of nanomechanical properties in the tribological performance of phospholipid biomimetic surfaces. Langmuir. 2008;24:8765–71. doi: 10.1021/la8005234. PubMed DOI
Chan S M T, Neu C P, Komvopoulos K. and Reddi A H. The role of lubricant entrapment at biological interfaces: Reduction of friction and adhesion in articular cartilage. J. Biomech. 2011;44:2015–20. doi: 10.1016/j.jbiomech.2011.04.015. PubMed DOI
Wang A, Essner A. and Schmidig G. The effects of lubricant composition on in vitro wear testing of polymeric acetabular components. J. Biomed. Mater. Res. B. 2004;68:45–52. doi: 10.1002/jbm.b.10077. PubMed DOI
Choudhury D, Walker R, Roy T, Paul S. and Mootanah R. Performance of honed surface profiles to artificial hip joints: an experimental investigation. Int. J. Precis. Eng. Manuf. 2013;14:1847–53. doi: 10.1007/s12541-013-0247-z. DOI
Myant C, Underwood R, Fan J. and Cann P M. Lubrication of metal-on-metal hip joints: the effect of protein content and load on film formation and wear. J. Mech. Behav. Biomed. Mater. 2012;6:30–40. doi: 10.1016/j.jmbbm.2011.09.008. PubMed DOI
Vrbka M, Křupka I, Hartl M. and Návrat T. In situ measurements of thin films in bovine serum lubricated contacts using optical interferometry. Proc. Inst. Mech. Eng. H. 2014;228:149–58. doi: 10.1177/0954411913517498. PubMed DOI
Gispert M, Serro A, Colaco R. and Saramago B. Friction and wear mechanisms in hip prosthesis: comparison of joint materials behaviour in several lubricants. Wear. 2006;260:149–58. doi: 10.1016/j.wear.2004.12.040. DOI
McKellop H, Clarke I, Markolf K. and Amstutz H. Friction and wear properties of polymer, metal, and ceramic prosthetic joint materials evaluated on a multichannel screening device. J. Biomed. Mater. Res. 1981;15:619–53. doi: 10.1002/jbm.820150503. PubMed DOI
Ateshian G A, Mow V C. and Huiskes R. Basic Orthopaedic Biomechanics and Mechano-Biology. 3rd edn. Philadelphia, PA: Lippincott Williams & Wilkins; 2005. Friction, lubrication, and wear of articular cartilage and diarthrodial joints; pp. pp 447–94.
Ghosh S C D, Roy T, Azuddin M M, Masjuki H H. and Pingguan-Murphy B. Tribological investigation of diamond like carbon coated micro-dimpled surface under bovine serum and osteoarthritis oriented synovial fluid. Sci. Technol. Adv. Mater. 2015;16:035002. doi: 10.1088/1468-6996/16/3/035002. PubMed DOI PMC
Choudhury D, Urban F, Vrbka M, Hartl M. and Krupka I. A novel tribological study on DLC-coated micro-dimpled orthopedics implant interface. J. Mech. Behav. Biomed. Mater. 2015;45:121–31. doi: 10.1016/j.jmbbm.2014.11.028. PubMed DOI
Myant C. and Cann P. In contact observation of model synovial fluid lubricating mechanisms. Tribol. Int. 2013;63:97–104. doi: 10.1016/j.triboint.2012.04.029. DOI
Ghosh S, Choudhury D. and Pingguan-Murphy B. Lubricating ability of albumin and globulin on artificial joint implants: a tribological perspective. Int. J. Surf. Sci. Eng. 2015 at press.
Jay G D, Harris D A. and Cha C-J. Boundary lubrication by lubricin is mediated by O-linked β (1–3) Gal-GalNAc oligosaccharides. Glycoconjugate J. 2001;18:807–15. doi: 10.1023/A:1021159619373. PubMed DOI
Yarimitsu S, Nakashima K, Sawae Y. and Murakami T. Influences of lubricant composition on forming boundary film composed of synovia constituents. Tribol. Int. 2009;42:1615–23. doi: 10.1016/j.triboint.2008.11.005. DOI
Mirea D A, Trunfio-Sfarghiu A M, Matei C I, Munteanu B, Piednoir A, Rieu J P, Blanchin M G. and Berthier Y. Role of the biomolecular interactions in the structure and tribological properties of synovial fluid. Tribol. Int. 2013;59:302–11. doi: 10.1016/j.triboint.2012.06.015. DOI
Ching H A, Choudhury D, Nine M J. and Osman N A A. Effects of surface coating on reducing friction and wear of orthopaedic implants. Sci. Technol. Adv. Mater. 2014;15:045002. doi: 10.1088/1468-6996/15/1/014402. PubMed DOI PMC
Balazs E A. Disorders of the Knee. 2nd edn. Philadelphia, PA: Lippincott; 1982. The physical properties of synovial fluid and the special role of hyaluronic acid; pp. pp 61–74.
Cummings N A. and Nordby G L. Measurement of synovial fluid pH in normal and arthritic knees. Arthritis Rheum. 1966;9:47–56. doi: 10.1002/art.1780090106. PubMed DOI
Goldie I. and Nachemson A. Synovial pH in rheumatoid knee-joints: I. The effect of synovectomy. Acta Orthop. 1969;40:634–41. doi: 10.3109/17453676908989529. PubMed DOI
Crockett R. Boundary lubrication in natural articular joints. Tribol. Lett. 2009;35:77–84. doi: 10.1007/s11249-009-9430-x. DOI
Heuberger M P, Widmer M, Zobeley E, Glockshuber R. and Spencer N D. Protein-mediated boundary lubrication in arthroplasty. Biomaterials. 2005;26:1165–73. doi: 10.1016/j.biomaterials.2004.05.020. PubMed DOI
Roba M, Bruhin C, Ebneter U, Ehrbar R, Crockett R. and Spencer N. Latex on glass: an appropriate model for cartilage-lubrication studies? Tribol. Lett. 2010;38:267–73. doi: 10.1007/s11249-010-9603-7. DOI
Gellman A J. and Spencer N D. Surface chemistry in tribology. Proc. Inst. Mech. Eng. J. 2002;216:443–61. doi: 10.1243/135065002762355352. DOI
Williams J. Engineering Tribology. vol 10. Cambridge: Cambridge University Press; 2005.
Nine M J, Choudhury D, Hee A C, Mootanah R. and Osman N A A. Wear debris characterization and corresponding biological response: artificial hip and knee joints. Materials. 2014;7:980–1016. doi: 10.3390/ma7020980. PubMed DOI PMC
Wang A, Essner A, Stark C. and Dumbleton J. Comparison of the size and morphology of UHMWPE wear debris produced by a hip joint simulator under serum and water lubricated conditions. Biomaterials. 1996;17:865–71. doi: 10.1016/0142-9612(96)83281-9. PubMed DOI
Yuan Y, Shimada Y, Ichinose S. and Tagami J. Qualitative analysis of adhesive interface nanoleakage using FE-SEM/EDS. Dent. Mater. 2007;23:561–9. doi: 10.1016/j.dental.2006.03.015. PubMed DOI
Zavareh M A, Sarhan A A D M, Razak B B. and Basirun W J. The tribological and electrochemical behavior of HVOF-sprayed Cr3C2–NiCr ceramic coating on carbon steel. Ceram. Int. 2015;41:5387–96. doi: 10.1016/j.ceramint.2014.12.102. DOI
McKellop H, Lu B. and Benya P. Friction, lubrication and wear of cobalt-chromium, alumina and zirconia hip prostheses compared on a joint simulator. Trans. Orthop. Res. Soc. 1992;17:402.