Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37454179
PubMed Central
PMC10349862
DOI
10.1038/s41598-023-38542-7
PII: 10.1038/s41598-023-38542-7
Knihovny.cz E-zdroje
- MeSH
- absces mozku * patologie MeSH
- difuzní magnetická rezonance metody MeSH
- glioblastom * diagnostické zobrazování patologie MeSH
- lidé MeSH
- mozek diagnostické zobrazování patologie MeSH
- průřezové studie MeSH
- strojové učení MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Diffusion-weighted imaging (DWI) and its numerical expression via apparent diffusion coefficient (ADC) values are commonly utilized in non-invasive assessment of various brain pathologies. Although numerous studies have confirmed that ADC values could be pathognomic for various ring-enhancing lesions (RELs), their true potential is yet to be exploited in full. The article was designed to introduce an image analysis method allowing REL recognition independently of either absolute ADC values or specifically defined regions of interest within the evaluated image. For this purpose, the line of interest (LOI) was marked on each ADC map to cross all of the RELs' compartments. Using a machine learning approach, we analyzed the LOI between two representatives of the RELs, namely, brain abscess and glioblastoma (GBM). The diagnostic ability of the selected parameters as predictors for the machine learning algorithms was assessed using two models, the k-NN model and the SVM model with a Gaussian kernel. With the k-NN machine learning method, 80% of the abscesses and 100% of the GBM were classified correctly at high accuracy. Similar results were obtained via the SVM method. The proposed assessment of the LOI offers a new approach for evaluating ADC maps obtained from different RELs and contributing to the standardization of the ADC map assessment.
1st Department of Pathology St Anne's University Hospital Brno Czech Republic
Department of Medical Imaging St Anne's University Hospital Brno Czech Republic
Department of Neurosurgery St Anne's University Hospital Pekarska 53 656 91 Brno Czech Republic
Zobrazit více v PubMed
Omuro AM, Leite CC, Mokhtari K, Delattre J-Y. Pitfalls in the diagnosis of brain tumours. Lancet Neurol. 2006;5:937–948. doi: 10.1016/S1474-4422(06)70597-X. PubMed DOI
Reiche W, et al. Differential diagnosis of intracranial ring enhancing cystic mass lesions–role of diffusion-weighted imaging (DWI) and diffusion-tensor imaging (DTI) Clin. Neurol. Neurosurg. 2010;112:218–225. doi: 10.1016/j.clineuro.2009.11.016. PubMed DOI
Carloni A, et al. Can MRI differentiate between ring-enhancing gliomas and intra-axial abscesses? Vet. Radiol. Ultrasound. 2022 doi: 10.1111/vru.13098. PubMed DOI
Schwartz KM, Erickson BJ, Lucchinetti C. Pattern of T2 hypointensity associated with ring-enhancing brain lesions can help to differentiate pathology. Neuroradiology. 2006;48:143–149. doi: 10.1007/s00234-005-0024-5. PubMed DOI
Khatri GD, Krishnan V, Antil N, Saigal G. Magnetic resonance imaging spectrum of intracranial tubercular lesions: One disease, many faces. Pol. J. Radiol. 2018;83:e524–e535. doi: 10.5114/pjr.2018.81408. PubMed DOI PMC
Kunimatsu A, et al. Machine learning-based texture analysis of contrast-enhanced MR imaging to differentiate between glioblastoma and primary central nervous system lymphoma. Magn. Reson. Med. Sci. 2019;18:44–52. doi: 10.2463/mrms.mp.2017-0178. PubMed DOI PMC
Tateishi M, et al. An initial experience of machine learning based on multi-sequence texture parameters in magnetic resonance imaging to differentiate glioblastoma from brain metastases. J. Neurol. Sci. 2020;410:116514. doi: 10.1016/j.jns.2019.116514. PubMed DOI
Xiao D, et al. Distinguishing brain abscess from necrotic glioblastoma using MRI-based intranodular radiomic features and peritumoral edema/tumor volume ratio. J. Integr. Neurosci. 2021;20:623–634. doi: 10.31083/j.jin2003066. PubMed DOI
Dasgupta A, et al. Quantitative mapping of individual voxels in the peritumoral region of IDH-wildtype glioblastoma to distinguish between tumor infiltration and edema. J. Neurooncol. 2021;153:251–261. doi: 10.1007/s11060-021-03762-2. PubMed DOI
Henker C, et al. Association between tumor compartment volumes, the incidence of pretreatment seizures, and statin-mediated protective effects in glioblastoma. Neurosurgery. 2019;85:E722–E729. doi: 10.1093/neuros/nyz079. PubMed DOI
Toh CH, et al. Differentiation of brain abscesses from necrotic glioblastomas and cystic metastatic brain tumors with diffusion tensor imaging. AJNR Am. J. Neuroradiol. 2011;32:1646–1651. doi: 10.3174/ajnr.A2581. PubMed DOI PMC
Sener RN. Diffusion MRI: Apparent diffusion coefficient (ADC) values in the normal brain and a classification of brain disorders based on ADC values. Comput. Med. Imaging Graph. 2001;25:299–326. doi: 10.1016/S0895-6111(00)00083-5. PubMed DOI
Badaut J, Ashwal S, Obenaus A. Aquaporins in cerebrovascular disease: a target for treatment of brain edema? Cerebrovasc. Dis. 2011;31:521–531. doi: 10.1159/000324328. PubMed DOI PMC
Ko CC, et al. Differentiation between glioblastoma multiforme and primary cerebral lymphoma: additional benefits of quantitative diffusion-weighted MR imaging. PLoS ONE. 2016;11:e0162565. doi: 10.1371/journal.pone.0162565. PubMed DOI PMC
Neska-Matuszewska M, Bladowska J, Sąsiadek M, Zimny A. Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone-Searching for a practical approach. PLoS ONE. 2018;13:e0191341. doi: 10.1371/journal.pone.0191341. PubMed DOI PMC
Cindil E, et al. Validation of combined use of DWI and percentage signal recovery-optimized protocol of DSC-MRI in differentiation of high-grade glioma, metastasis, and lymphoma. Neuroradiology. 2021;63:331–342. doi: 10.1007/s00234-020-02522-9. PubMed DOI
Guzman R, et al. Contribution of the apparent diffusion coefficient in perilesional edema for the assessment of brain tumors. J. Neuroradiol. 2008;35:224–229. doi: 10.1016/j.neurad.2008.02.003. PubMed DOI
Ladenhauf VK, et al. Peritumoral ADC values correlate with the MGMT methylation status in patients with glioblastoma. Cancers (Basel) 2023;15:1384. doi: 10.3390/cancers15051384. PubMed DOI PMC
Mastuda K, et al. Association of ADC of hyperintense lesions on FLAIR images with TERT promotor mutation status in glioblastoma IDH wild type. 2023 doi: 10.21203/rs.3.rs-2528925/v1. PubMed DOI PMC
Raab P, et al. Differences in the MRI signature and ADC values of diffuse midline gliomas with H3 K27M mutation compared to midline glioblastomas. Cancers (Basel) 2022;14:1397. doi: 10.3390/cancers14061397. PubMed DOI PMC
Lee EJ, et al. Diagnostic value of peritumoral minimum apparent diffusion coefficient for differentiation of glioblastoma multiforme from solitary metastatic lesions. AJR Am. J. Roentgenol. 2011;196:71–76. doi: 10.2214/AJR.10.4752. PubMed DOI
Eidel O, et al. Automatic analysis of cellularity in glioblastoma and correlation with ADC using trajectory analysis and automatic nuclei counting. PLoS ONE. 2016;11:e0160250. doi: 10.1371/journal.pone.0160250. PubMed DOI PMC
Lin X, et al. Diagnostic accuracy of T1-weighted dynamic contrast-enhanced–MRI and DWI-ADC for differentiation of glioblastoma and primary CNS lymphoma. AJNR Am. J. Neuroradiol. 2017;38:485–491. doi: 10.3174/ajnr.A5023. PubMed DOI PMC
Ahn SJ, Shin HJ, Chang J-H, Lee S-K. Differentiation between primary cerebral lymphoma and glioblastoma using the apparent diffusion coefficient: Comparison of three different ROI methods. PLoS ONE. 2014;9:e112948. doi: 10.1371/journal.pone.0112948. PubMed DOI PMC
Zhang G, et al. Discrimination between solitary brain metastasis and glioblastoma multiforme by using ADC-based texture analysis: A comparison of two different ROI placements. Acad. Radiol. 2019;26:1466–1472. doi: 10.1016/j.acra.2019.01.010. PubMed DOI
Toh C-H, et al. Primary cerebral lymphoma and glioblastoma multiforme: Differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am. J. Neuroradiol. 2008;29:471–475. doi: 10.3174/ajnr.A0872. PubMed DOI PMC
Ellingson BM, et al. Consensus recommendations for a standardized brain tumor imaging protocol in clinical trials. Neuro Oncol. 2015;17:1188–1198. PubMed PMC
Dury RJ, et al. Meta-analysis of apparent diffusion coefficient in pediatric medulloblastoma, ependymoma, and pilocytic astrocytoma. J. Magn. Reson. Imaging. 2022;56:147–157. doi: 10.1002/jmri.28007. PubMed DOI
Guo H, et al. Diagnostic performance of gliomas grading and IDH status decoding A comparison between 3D amide proton transfer APT and four diffusion-weighted MRI models. J. Magn. Reson. Imaging. 2022;56:1834–1844. doi: 10.1002/jmri.28211. PubMed DOI PMC
Maier SE, Sun Y, Mulkern RV. Diffusion imaging of brain tumors. NMR Biomed. 2010;23:849–864. doi: 10.1002/nbm.1544. PubMed DOI PMC
Cortes C, Vapnik V. Support-vector networks. Mach. Learn. 1995;20:273–297. doi: 10.1007/BF00994018. DOI
Chang C-C, Lin C-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011;2:271–2727. doi: 10.1145/1961189.1961199. DOI
Scholkopf B, Smola AJ, Williamson RC, Bartlett PL. New support vector algorithms. Neural Comput. 2000;12:1207–1245. doi: 10.1162/089976600300015565. PubMed DOI
Tharwat A. Classification assessment methods. Appl. Comput. Inform. 2020;17:168–192. doi: 10.1016/j.aci.2018.08.003. DOI
Sokolova M, Japkowicz N, Szpakowicz S. Beyond Accuracy, F-Score and ROC: A Family of Discriminant Measures for Performance Evaluation. In: Sattar A, Kang B, editors. AI: 2006 Advances in Artificial Intelligence. Berlin: Springer; 2006. pp. 1015–1021.
Villanueva-Meyer JE, Mabray MC, Cha S. Current clinical brain tumor imaging. Neurosurgery. 2017;81:397–415. doi: 10.1093/neuros/nyx103. PubMed DOI PMC
Horvath-Rizea D, et al. The value of whole lesion ADC histogram profiling to differentiate between morphologically indistinguishable ring enhancing lesions-comparison of glioblastomas and brain abscesses. Oncotarget. 2018;9:18148–18159. doi: 10.18632/oncotarget.24454. PubMed DOI PMC
Lai P-H, et al. Susceptibility-weighted imaging provides complementary value to diffusion-weighted imaging in the differentiation between pyogenic brain abscesses, necrotic glioblastomas, and necrotic metastatic brain tumors. Eur. J. Radiol. 2019;117:56–61. doi: 10.1016/j.ejrad.2019.05.021. PubMed DOI
Chiang I-C, et al. Distinction between pyogenic brain abscess and necrotic brain tumour using 3-tesla MR spectroscopy, diffusion and perfusion imaging. Br. J. Radiol. 2009;82:813–820. doi: 10.1259/bjr/90100265. PubMed DOI
Erdogan C, Hakyemez B, Yildirim N, Parlak M. Brain abscess and cystic brain tumor: Discrimination with dynamic susceptibility contrast perfusion-weighted MRI. J. Comput. Assist. Tomogr. 2005;29:663–667. doi: 10.1097/01.rct.0000168868.50256.55. PubMed DOI
Fawzy FM, Almassry HN, Ismail AM. Preoperative glioma grading by MR diffusion and MR spectroscopic imaging. Egypt. J. Radiol. Nuclear Med. 2016;47:1539–1548. doi: 10.1016/j.ejrnm.2016.07.006. DOI
Heynold E, et al. Physiological MRI biomarkers in the differentiation between glioblastomas and solitary brain metastases. Mol. Imaging Biol. 2021;23:787–795. doi: 10.1007/s11307-021-01604-1. PubMed DOI PMC
Persano L, Rampazzo E, Della Puppa A, Pistollato F, Basso G. The three-layer concentric model of glioblastoma: Cancer stem cells, microenvironmental regulation, and therapeutic implications. ScientificWorldJ. 2011;11:1829–1841. doi: 10.1100/2011/736480. PubMed DOI PMC
Thwaites GE, et al. Chapter 37-Tuberculosis of the central nervous system in adults. In: Schaaf HS, et al., editors. Tuberculosis. Berlin: WB Saunders; 2009. pp. 401–412.
Solar P, et al. Blood-brain barrier alterations and edema formation in different brain mass lesions. Front. Cell Neurosci. 2022;16:922181. doi: 10.3389/fncel.2022.922181. PubMed DOI PMC
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: Molecular events and potential treatments. Fluids Barriers CNS. 2022;19:29. doi: 10.1186/s12987-022-00312-4. PubMed DOI PMC
Reddy JS, et al. The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: A report of 147 lesions. Surg. Neurol. 2006;66:246–250. doi: 10.1016/j.surneu.2006.03.032. PubMed DOI
Breaking boundaries: role of the brain barriers in metastatic process