• This record comes from PubMed

Breaking boundaries: role of the brain barriers in metastatic process

. 2025 Jan 08 ; 22 (1) : 3. [epub] 20250108

Language English Country England, Great Britain Media electronic

Document type Journal Article, Review

Grant support
CZ.02.01.01/00/22_008/0004644 European Union
CZ.02.01.01/00/22_008/0004644 European Union
CZ.02.01.01/00/22_008/0004644 European Union
CZ.02.01.01/00/22_008/0004644 European Union
CZ.02.01.01/00/22_008/0004644 European Union
CZ.02.01.01/00/22_008/0004644 European Union
NU20-03-00148 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00148 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00148 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00148 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00148 Agentura Pro Zdravotnický Výzkum České Republiky
NU20-03-00148 Agentura Pro Zdravotnický Výzkum České Republiky
MUNI/A/1563/2023 Masarykova Univerzita
MUNI/11/JRG/1143/2023 Masarykova Univerzita
MUNI/A/1563/2023 Masarykova Univerzita

Links

PubMed 39780275
PubMed Central PMC11708195
DOI 10.1186/s12987-025-00618-z
PII: 10.1186/s12987-025-00618-z
Knihovny.cz E-resources

Brain metastases (BMs) are the most common intracranial tumors in adults and occur 3-10 times more frequently than primary brain tumors. Despite intensive multimodal therapies, including resection, radiotherapy, and chemotherapy, BMs are associated with poor prognosis and remain challenging to treat. BMs predominantly originate from primary lung (20-56%), breast (5-20%), and melanoma (7-16%) tumors, although they can arise from other cancer types less frequently. The metastatic cascade is a multistep process involving local invasion, intravasation into the bloodstream or lymphatic system, extravasation into normal tissue, and colonization of the distal site. After reaching the brain, circulating tumor cells (CTCs) breach the blood-brain barrier (BBB).The selective permeability of the BBB poses a significant challenge for therapeutic compounds, limiting the treatment efficacy of BMs. Understanding the mechanisms of tumor cell interactions with the BBB is crucial for the development of effective treatments. This review provides an in-depth analysis of the brain barriers, including the BBB, blood-spinal cord barrier, blood-meningeal barrier, blood-arachnoid barrier, and blood-cerebrospinal fluid barrier. It explores the molecular and cellular components of these barriers and their roles in brain metastasis, highlighting the importance of this knowledge for identifying druggable targets to prevent or limit BM formation.

See more in PubMed

Balestrino R, Rudà R, Soffietti R. Brain metastasis from unknown primary tumour: moving from old retrospective studies to clinical trials on targeted agents. Cancers. 2020;12:3350. 10.3390/cancers12113350. PubMed PMC

Ostrom QT, Wright CH, Barnholtz-Sloan JS. Brain metastases: epidemiology. Amsterdam: Elsevier; 2018. PubMed

Preusser M, Capper D, Ilhan-Mutlu A, et al. Brain metastases: pathobiology and emerging targeted therapies. Acta Neuropathol. 2012;123:205–22. 10.1007/s00401-011-0933-9. PubMed

Berghoff AS, Schur S, Füreder LM, Gatterbauer B, Dieckmann K, Widhalm G, et al. Descriptive statistical analysis of a real life cohort of 2419 patients with brain metastases of solid cancers. ESMO Open. 2016;1: e000024. 10.1136/esmoopen-2015-000024. PubMed PMC

Franssen LC, Lorenzi T, Burgess AEF, Chaplain MAJ. A mathematical framework for modelling the metastatic spread of cancer. Bull Math Biol. 2019;81:1965–2010. 10.1007/s11538-019-00597-x. PubMed PMC

Łazarczyk M, Mickael ME, Skiba D, et al. The journey of cancer cells to the brain: challenges and opportunities. IJMS. 2023;24:3854. 10.3390/ijms24043854. PubMed PMC

Ribatti D, Tamma R, Annese T. Epithelial-mesenchymal transition in cancer: a historical overview. Transl Oncol. 2020;13: 100773. 10.1016/j.tranon.2020.100773. PubMed PMC

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8. 10.1172/JCI39104. PubMed PMC

Araki K, Shimura T, Suzuki H, et al. E/N-cadherin switch mediates cancer progression via TGF-β-induced epithelial-to-mesenchymal transition in extrahepatic cholangiocarcinoma. Br J Cancer. 2011;105:1885–93. 10.1038/bjc.2011.452. PubMed PMC

Kim WK, Kwon Y, Jang M, et al. β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers. Sci Rep. 2019;9:18440. 10.1038/s41598-019-54890-9. PubMed PMC

Takaishi M, Tarutani M, Takeda J, Sano S. Mesenchymal to epithelial transition induced by reprogramming factors attenuates the malignancy of cancer cells. PLoS ONE. 2016;11: e0156904. 10.1371/journal.pone.0156904. PubMed PMC

Chao YL, Shepard CR, Wells A. Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer. 2010;9:179. 10.1186/1476-4598-9-179. PubMed PMC

Das S, Becker BN, Hoffmann FM, Mertz JE. Complete reversal of epithelial to mesenchymal transition requires inhibition of both ZEB expression and the Rho pathway. BMC Cell Biol. 2009;10:94. 10.1186/1471-2121-10-94. PubMed PMC

Palen K, Weber J, Dwinell MB, et al. E-cadherin re-expression shows invivo evidence for mesenchymal to epithelial transition in clonal metastatic breast tumor cells. Oncotarget. 2016;7:43363–75. 10.18632/oncotarget.9715. PubMed PMC

Steeg PS, Camphausen KA, Smith QR. Brain metastases as preventive and therapeutic targets. Nat Rev Cancer. 2011;11:352–63. 10.1038/nrc3053. PubMed PMC

Cipolla MJ (2009) Barriers of the CNS. In: The Cerebral Circulation. Morgan & Claypool Life Sciences. NBK53084 PubMed

Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015;7: a020412. 10.1101/cshperspect.a020412. PubMed PMC

Daneman R. The blood–brain barrier in health and disease. Ann Neurol. 2012;72:648–72. 10.1002/ana.23648. PubMed

Abbott NJ, Friedman A. Overview and introduction: the blood–brain barrier in health and disease. Epilepsia. 2012;53:1–6. 10.1111/j.1528-1167.2012.03696.x. PubMed PMC

Pandit R, Chen L, Götz J. The blood-brain barrier: physiology and strategies for drug delivery. Adv Drug Deliv Rev. 2020;165–166:1–14. 10.1016/j.addr.2019.11.009. PubMed

Hashimoto Y, Campbell M. Tight junction modulation at the blood-brain barrier: current and future perspectives. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2020;1862:183298. 10.1016/j.bbamem.2020.183298. PubMed

Chen Y, Liu L. Modern methods for delivery of drugs across the blood–brain barrier. Adv Drug Deliv Rev. 2012;64:640–65. 10.1016/j.addr.2011.11.010. PubMed

Fei Y, Zhu J, Zhao B, et al. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull. 2020;164:269–88. 10.1016/j.brainresbull.2020.08.032. PubMed

Stamatovic SM, Johnson AM, Keep RF, Andjelkovic AV. Junctional proteins of the blood-brain barrier: new insights into function and dysfunction. Tissue Barriers. 2016;4: e1154641. 10.1080/21688370.2016.1154641. PubMed PMC

Lajoie JM, Shusta EV. Targeting receptor-mediated transport for delivery of biologics across the blood-brain barrier. Annu Rev Pharmacol Toxicol. 2015;55:613–31. 10.1146/annurev-pharmtox-010814-124852. PubMed PMC

Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201. 10.1016/j.neuron.2008.01.003. PubMed

Profaci CP, Munji RN, Pulido RS, Daneman R. The blood–brain barrier in health and disease: important unanswered questions. J Exp Med. 2020;217: e20190062. 10.1084/jem.20190062. PubMed PMC

Cornford EM, Hyman S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. Neurotherapeutics. 2005;2:27–43. 10.1602/neurorx.2.1.27. PubMed PMC

Sweeney MD, Zhao Z, Montagne A, et al. Blood-brain barrier: from physiology to disease and back. Physiol Rev. 2019;99:21–78. 10.1152/physrev.00050.2017. PubMed PMC

Zlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci. 2011;12:723–38. 10.1038/nrn3114. PubMed PMC

Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS. 2022;19:29. 10.1186/s12987-022-00312-4. PubMed PMC

Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21:193–215. 10.1016/j.devcel.2011.07.001. PubMed

Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, et al. Pericytes from Brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 2007;27:687–94. 10.1007/s10571-007-9195-4. PubMed PMC

Chen Y, Li Q, Tang J, Feng H, Zhang JH. The evolving roles of pericyte in early brain injury after subarachnoid hemorrhage. Brain Res. 2015;1623:110. PubMed PMC

Chopra N, Menounos S, Choi JP, et al. Blood-spinal cord barrier: its role in spinal disorders and emerging therapeutic strategies. NeuroSci. 2022;3:1–27. 10.3390/neurosci3010001. PubMed PMC

Echeverry S, Shi XQ, Rivest S, Zhang J. Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci. 2011;31:10819–28. 10.1523/JNEUROSCI.1642-11.2011. PubMed PMC

Staines DR, Brenu EW, Marshall-Gradisnik S. Postulated vasoactive neuropeptide immunopathology affecting the blood–brain/blood–spinal barrier in certain neuropsychiatric fatigue-related conditions: a role for phosphodiesterase inhibitors in treatment? Neuropsychiatr Dis Treat. 2009;5:81–9. PubMed PMC

Pan W, Zhang L, Liao J, et al. Selective increase in TNFα permeation across the blood–spinal cord barrier after SCI. J Neuroimmunol. 2003;134:111–7. 10.1016/S0165-5728(02)00426-5. PubMed

Rodriguez-Mogeda C, Rodríguez-Lorenzo S, Attia J, et al. Breaching brain barriers: B cell migration in multiple sclerosis. Biomolecules. 2022;12:800. 10.3390/biom12060800. PubMed PMC

Kim B, Tabori U, Hawkins C. An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathol. 2020;139:703–15. 10.1007/s00401-020-02124-y. PubMed

Gomez-Zepeda D, Taghi M, Scherrmann J-M, et al. ABC transporters at the blood-brain interfaces, their study models, and drug delivery implications in gliomas. Pharmaceutics. 2019;12:E20. 10.3390/pharmaceutics12010020. PubMed PMC

Ichikawa H, Itoh K. Blood-arachnoid barrier disruption in experimental rat meningitis detected using gadolinium-enhancement ratio imaging. Brain Res. 2011;1390:142–9. 10.1016/j.brainres.2011.03.035. PubMed

Takeuchi H, Suzuki M, Goto R, et al. Regional differences in the absolute abundance of transporters, receptors and tight junction molecules at the blood-arachnoid barrier and blood-spinal cord barrier among cervical, thoracic and lumbar spines in dogs. Pharm Res. 2022;39:1393–413. 10.1007/s11095-022-03275-1. PubMed

Uchida Y, Takeuchi H, Goto R, et al. A human blood-arachnoid barrier atlas of transporters, receptors, enzymes, and tight junction and marker proteins: comparison with dog and pig in absolute abundance. J Neurochem. 2022;161:187–208. 10.1111/jnc.15599. PubMed

Uchida Y, Goto R, Takeuchi H, et al. Abundant expression of OCT2, MATE1, OAT1, OAT3, PEPT2, BCRP, MDR1, and xCT transporters in blood-arachnoid barrier of pig and polarized localizations at CSF- and blood-facing plasma membranes. Drug Metab Dispos. 2020;48:135–45. 10.1124/dmd.119.089516. PubMed

Takeuchi H, Suzuki M, Goto R, et al. Regional differences in the absolute abundance of transporters, receptors and tight junction molecules at the blood-arachnoid barrier and blood-spinal cord barrier among cervical, thoracic and lumbar spines in dogs. Pharm Res. 2022;39(7):1393–413. 10.1007/s11095-022-03275-1. PubMed

Solár P, Zamani A, Kubíčková L, et al. Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS. 2020;17:35. 10.1186/s12987-020-00196-2. PubMed PMC

Redzic Z, Segal M. The structure of the choroid plexus and the physiology of the choroid plexus epithelium. Adv Drug Deliv Rev. 2004;56:1695–716. 10.1016/j.addr.2004.07.005. PubMed

Ewing J. Neoplastic diseases: a treatise on tumors. Am J Med Sci. 1922. 10.1097/00000441-192208000-00015.

Liu Q, Zhang H, Jiang X, et al. Factors involved in cancer metastasis: a better understanding to “seed and soil” hypothesis. Mol Cancer. 2017;16:176. 10.1186/s12943-017-0742-4. PubMed PMC

Hüsemann Y, Geigl JB, Schubert F, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13:58–68. 10.1016/j.ccr.2007.12.003. PubMed

Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Seminars in Cell & Developmental Biol. 2015;40:41–51. 10.1016/j.semcdb.2015.02.010. PubMed PMC

Hornick NI, Huan J, Doron B, et al. Serum exosome MicroRNA as a minimally-invasive early biomarker of AML. Sci Rep. 2015;5:11295. 10.1038/srep11295. PubMed PMC

Pisitkun T, Shen R-F, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101:13368–73. 10.1073/pnas.0403453101. PubMed PMC

Zlotogorski-Hurvitz A, Dayan D, Chaushu G, et al. Human saliva-derived exosomes: comparing methods of isolation. J Histochem Cytochem. 2015;63:181–9. 10.1369/0022155414564219. PubMed PMC

Akers JC, Ramakrishnan V, Kim R, et al. miR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PLoS ONE. 2013;8: e78115. 10.1371/journal.pone.0078115. PubMed PMC

Mallegol J, Van Niel G, Lebreton C, et al. T84-intestinal epithelial exosomes bear MHC Class II/Peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology. 2007;132:1866–76. 10.1053/j.gastro.2007.02.043. PubMed

Escola J-M, Kleijmeer MJ, Stoorvogel W, et al. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem. 1998;273:20121–7. 10.1074/jbc.273.32.20121. PubMed

Hong BS, Cho J-H, Kim H, et al. Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC Genomics. 2009;10:556. 10.1186/1471-2164-10-556. PubMed PMC

Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010;123:1603–11. 10.1242/jcs.064386. PubMed PMC

Alipoor SD, Mortaz E, Varahram M, et al. The potential biomarkers and immunological effects of tumor-derived exosomes in lung cancer. Front Immunol. 2018;9:819. 10.3389/fimmu.2018.00819. PubMed PMC

Janowska-Wieczorek A, Wysoczynski M, Kijowski J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Intl J Cancer. 2005;113:752–60. 10.1002/ijc.20657. PubMed

Syn N, Wang L, Sethi G, et al. Exosome-mediated metastasis: from epithelial-mesenchymal transition to escape from immunosurveillance. Trends Pharmacol Sci. 2016;37:606–17. 10.1016/j.tips.2016.04.006. PubMed

Harris DA, Patel SH, Gucek M, et al. Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS ONE. 2015;10: e0117495. 10.1371/journal.pone.0117495. PubMed PMC

Costa-Silva B, Aiello NM, Ocean AJ, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol. 2015;17:816–26. 10.1038/ncb3169. PubMed PMC

Li H, Song H, Luo J, et al. Knockdown of glucose-regulated protein 78 decreases the invasion, metalloproteinase expression and ECM degradation in hepatocellular carcinoma cells. J Exp Clin Cancer Res. 2012;31:39. 10.1186/1756-9966-31-39. PubMed PMC

Liang B, Peng P, Chen S, et al. Characterization and proteomic analysis of ovarian cancer-derived exosomes. J Proteomics. 2013;80:171–82. 10.1016/j.jprot.2012.12.029. PubMed

Nakamura Y, Suganami A, Fukuda M, et al. Identification of novel candidate compounds targeting TrkB to induce apoptosis in neuroblastoma. Cancer Me. 2014;3:25–35. 10.1002/cam4.175. PubMed PMC

Lagares-Tena L, García-Monclús S, López-Alemany R, et al. Caveolin-1 promotes Ewing sarcoma metastasis regulating MMP-9 expression through MAPK/ERK pathway. Oncotarget. 2016;7:56889–903. 10.18632/oncotarget.10872. PubMed PMC

Hood JL, San RS, Wickline SA. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 2011;71:3792–801. 10.1158/0008-5472.CAN-10-4455. PubMed

Zhou W, Fong MY, Min Y, et al. Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. 2014;25:501–15. 10.1016/j.ccr.2014.03.007. PubMed PMC

Tominaga N, Kosaka N, Ono M, Katsuda T, Yoshioka Y, Tamura K, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood–brain barrier. Nat Commun. 2015;6:6716. 10.1038/ncomms7716. PubMed PMC

Fong MY, Zhou W, Liu L, Alontaga AY, Chandra M, Ashby J, et al. Breast-cancer-secreted miR-122 reprograms glucose metabolism in premetastatic niche to promote metastasis. Nat Cell Biol. 2015;17:183–94. 10.1038/ncb3094. PubMed PMC

Xing F, Liu Y, Wu S-Y, et al. Loss of XIST in breast cancer activates MSN-c-Met and reprograms microglia via exosomal miRNA to promote brain metastasis. Cancer Res. 2018;78:4316–30. 10.1158/0008-5472.CAN-18-1102. PubMed PMC

Maji S, Chaudhary P, Akopova I, et al. Exosomal annexin II promotes angiogenesis and breast cancer metastasis. Mol Cancer Res. 2017;15:93–105. 10.1158/1541-7786.MCR-16-0163. PubMed PMC

Ishii G, Ochiai A, Neri S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev. 2016;99:186–96. 10.1016/j.addr.2015.07.007. PubMed

Ringuette Goulet C, Bernard G, Tremblay S, et al. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFβ signaling. Mol Cancer Res. 2018;16:1196–204. 10.1158/1541-7786.MCR-17-0784. PubMed

Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell. 2017;31:326–41. 10.1016/j.ccell.2017.02.009. PubMed PMC

Yuzhalin AE, Yu D. Brain metastasis organotropism. Cold Spring Harb Perspect Med. 2020;10: a037242. 10.1101/cshperspect.a037242. PubMed PMC

Stevens LE, Cheung WKC, Adua SJ, et al. Extracellular matrix receptor expression in subtypes of lung adenocarcinoma potentiates outgrowth of micrometastases. Cancer Res. 2017;77:1905–17. 10.1158/0008-5472.CAN-16-1978. PubMed PMC

Hoshino A, Costa-Silva B, Shen T-L, et al. Tumour exosome integrins determine organotropic metastasis. Nature. 2015;527:329–35. 10.1038/nature15756. PubMed PMC

Wilhelm I, Molnár J, Fazakas C, et al. Role of the blood-brain barrier in the formation of brain metastases. IJMS. 2013;14:1383–411. 10.3390/ijms14011383. PubMed PMC

Lowery FJ, Yu D. Brain metastasis: Unique challenges and open opportunities. Biochimica et Biophysica Acta (BBA) - Rev Cancer. 2017;1867:49–57. 10.1016/j.bbcan.2016.12.001. PubMed PMC

Peters A, Schweiger U, Pellerin L, et al. The selfish brain: competition for energy resources. Neurosci Biobehav Rev. 2004;28:143–80. 10.1016/j.neubiorev.2004.03.002. PubMed

Winkler F. The brain metastatic niche. J Mol Med. 2015;93:1213–20. 10.1007/s00109-015-1357-0. PubMed

Brastianos PK, Carter SL, Santagata S, et al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov. 2015;5:1164–77. 10.1158/2159-8290.CD-15-0369. PubMed PMC

Rangachari D, Yamaguchi N, VanderLaan PA, et al. Brain metastases in patients with EGFR -mutated or ALK -rearranged non-small-cell lung cancers. Lung Cancer. 2015;88:108–11. 10.1016/j.lungcan.2015.01.020. PubMed PMC

Takano K, Kinoshita M, Takagaki M, et al. Different spatial distributions of brain metastases from lung cancer by histological subtype and mutation status of epidermal growth factor receptor. Neuro Oncol. 2016;18:716–24. 10.1093/neuonc/nov266. PubMed PMC

Latifkar A, Ling L, Hingorani A, et al. Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity. Dev Cell. 2019;49:393-408.e7. 10.1016/j.devcel.2019.03.011. PubMed PMC

Ko H, Jeon H, Lee D, et al. Sanguiin H6 suppresses TGF-β induction of the epithelial–mesenchymal transition and inhibits migration and invasion in A549 lung cancer. Bioorg Med Chem Lett. 2015;25:5508–13. 10.1016/j.bmcl.2015.10.067. PubMed

Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem. 2010;285:17442–52. 10.1074/jbc.M110.107821. PubMed PMC

Huang S, Li Y, Zhang J, et al. Epidermal growth factor receptor-containing exosomes induce tumor-specific regulatory T cells. Cancer Invest. 2013;31:330–5. 10.3109/07357907.2013.789905. PubMed

Guo D, Lui GYL, Lai SL, et al. RAB27A promotes melanoma cell invasion and metastasis via regulation of pro-invasive exosomes. Intl J Cancer. 2019;144:3070–85. 10.1002/ijc.32064. PubMed

Zhao L, Ma X, Yu J. Exosomes and organ-specific metastasis. Mol Therapy - Methods Clin Dev. 2021;22:133–47. 10.1016/j.omtm.2021.05.016. PubMed PMC

Doron H, Pukrop T, Erez N. A blazing landscape: neuroinflammation shapes brain metastasis. Cancer Res. 2019;79:423–36. 10.1158/0008-5472.CAN-18-1805. PubMed PMC

Schwartz H, Blacher E, Amer M, et al. Incipient melanoma brain metastases instigate astrogliosis and neuroinflammation. Cancer Res. 2016;76:4359–71. 10.1158/0008-5472.CAN-16-0485. PubMed

El-Kenawi A, Hänggi K, Ruffell B. The immune microenvironment and cancer metastasis. Cold Spring Harb Perspect Med. 2020;10: a037424. 10.1101/cshperspect.a037424. PubMed PMC

Gentles AJ, Newman AM, Liu CL, et al. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med. 2015;21:938–45. 10.1038/nm.3909. PubMed PMC

Meylan E, Dooley AL, Feldser DM, et al. Requirement for NF-κB signaling in a mouse model of lung adenocarcinoma. Nature. 2009;462:104–7. 10.1038/nature08462. PubMed PMC

Veglia F, Perego M, Gabrilovich D. Myeloid-derived suppressor cells coming of age. Nat Immunol. 2018;19:108–19. 10.1038/s41590-017-0022-x. PubMed PMC

DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19:369–82. 10.1038/s41577-019-0127-6. PubMed PMC

Bonde A-K, Tischler V, Kumar S, et al. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors. BMC Cancer. 2012;12:35. 10.1186/1471-2407-12-35. PubMed PMC

Lee C-C, Lin J-C, Hwang W-L, et al. Macrophage-secreted interleukin-35 regulates cancer cell plasticity to facilitate metastatic colonization. Nat Commun. 2018;9:3763. 10.1038/s41467-018-06268-0. PubMed PMC

Smyth MJ, Thia KY, Cretney E, et al. Perforin is a major contributor to NK cell control of tumor metastasis. J Immunol. 1999;162:6658–62. PubMed

López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK Cells. Cancer Cell. 2017;32:135–54. 10.1016/j.ccell.2017.06.009. PubMed

Cairns RA, Papandreou I, Sutphin PD, Denko NC. Metabolic targeting of hypoxia and HIF1 in solid tumors can enhance cytotoxic chemotherapy. Proc Natl Acad Sci USA. 2007;104:9445–50. 10.1073/pnas.0611662104. PubMed PMC

Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage expression of hypoxia-inducible factor-1α suppresses T-cell function and promotes tumor progression. Cancer Res. 2010;70:7465–75. 10.1158/0008-5472.CAN-10-1439. PubMed PMC

Hosonaga M, Saya H, Arima Y. Molecular and cellular mechanisms underlying brain metastasis of breast cancer. Cancer Metastasis Rev. 2020;39:711–20. 10.1007/s10555-020-09881-y. PubMed PMC

Colegio OR, Chu N-Q, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature. 2014;513:559–63. 10.1038/nature13490. PubMed PMC

Dediu M, Ion O, Ion R, et al. Impact of adjuvant chemotherapy in stage IB non-small-cell lung cancer: an analysis of 112 consecutively treated patients. J BUON. 2012;17:317–22. PubMed

Herbst RS, Morgensztern D, Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018;553:446–54. 10.1038/nature25183. PubMed

Thai AA, Solomon BJ, Sequist LV, et al. Lung cancer. The Lancet. 2021;398:535–54. 10.1016/S0140-6736(21)00312-3. PubMed

Schouten LJ, Rutten J, Huveneers HAM, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer. 2002;94:2698–705. 10.1002/cncr.10541. PubMed

Zhu Y, Cui Y, Zheng X, et al. Small-cell lung cancer brain metastasis: From molecular mechanisms to diagnosis and treatment. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease. 2022. 10.1016/j.bbadis.2022.166557. PubMed

Burel-Vandenbos F, Ambrosetti D, Coutts M, Pedeutour F. EGFR mutation status in brain metastases of non-small cell lung carcinoma. J Neurooncol. 2013;111:1–10. 10.1007/s11060-012-0990-5. PubMed

Cox JD, Scott CB, Byhardt RW, et al. Addition of chemotherapy to radiation therapy alters failure patterns by cell type within non-small cell carcinoma of lung (NSCCL): analysis of radiation therapy oncology group (RTOG) trials. Int J Radiat Oncol Biol Phys. 1999;43:505–9. 10.1016/S0360-3016(98)00429-5. PubMed

Mogi A, Kuwano H. TP53 mutations in non-small cell lung cancer. J Biomed Biotechnol. 2011;2011:1–9. 10.1155/2011/583929. PubMed PMC

Baumann M, Zips D, Appold S. Radiotherapy of lung cancer: Technology meets biology meets multidisciplinarity. Radiother Oncol. 2009;91:279–81. 10.1016/j.radonc.2009.05.001. PubMed

Reichel MB, Ohgaki H, Petersen I, Kleihues P. p53 mutations in primary human lung tumors and their metastases. Mol Carcinog. 1994;9:105–9. 10.1002/mc.2940090208. PubMed

Sozzi G, Miozzo M, Pastorino U, et al. Genetic evidence for an independent origin of multiple preneoplastic and neoplastic lung lesions. Cancer Res. 1995;55:135–40. PubMed

Dearden S, Stevens J, Wu Y-L, Blowers D. Mutation incidence and coincidence in non-small-cell lung cancer: meta-analyses by ethnicity and histology (mutMap). Ann Oncol. 2013;24:2371–6. 10.1093/annonc/mdt205. PubMed PMC

Cortot AB, Italiano A, Burel-Vandenbos F, et al. KRAS mutation status in primary non-small cell lung cancer and matched metastases. Cancer. 2010;116:2682–7. 10.1002/cncr.25014. PubMed

Herbst RS. Review of epidermal growth factor receptor biology. Int J Radiat Oncol Biol. 2004;59:S21–6. 10.1016/j.ijrobp.2003.11.041. PubMed

Sun M, Behrens C, Feng L, et al. HER family receptor abnormalities in lung cancer brain metastases and corresponding primary tumors. Clin Cancer Res. 2009;15:4829–37. 10.1158/1078-0432.CCR-08-2921. PubMed PMC

Seshacharyulu P, Ponnusamy MP, Haridas D, et al. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:15–31. 10.1517/14728222.2011.648617. PubMed PMC

Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, et al. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med. 2020;18:1. 10.1186/s12967-019-02189-8. PubMed PMC

Carpenter G, Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. 10.1146/annurev.bi.48.070179.001205. PubMed

Porta R, Sanchez-Torres JM, Paz-Ares L, et al. Brain metastases from lung cancer responding to erlotinib: the importance of EGFR mutation. Eur Respir J. 2011;37:624–31. 10.1183/09031936.00195609. PubMed

Deng Z, Cui L, Li P, et al. Genomic comparison between cerebrospinal fluid and primary tumor revealed the genetic events associated with brain metastasis in lung adenocarcinoma. Cell Death Dis. 2021;12:935. 10.1038/s41419-021-04223-4. PubMed PMC

Eichler AF, Kahle KT, Wang DL, et al. EGFR mutation status and survival after diagnosis of brain metastasis in non-small cell lung cancer. Neuro Oncol. 2010;12:1193–9. 10.1093/neuonc/noq076. PubMed PMC

Whitsett TG, Inge LJ, Dhruv HD, et al. Molecular determinants of lung cancer metastasis to the central nervous system. Transl Lung Cancer Res. 2013;2:273–83. 10.3978/j.issn.2218-6751.2013.03.12. PubMed PMC

Ge M, Zhuang Y, Zhou X, et al. High probability and frequency of EGFR mutations in non-small cell lung cancer with brain metastases. J Neurooncol. 2017;135:413–8. 10.1007/s11060-017-2590-x. PubMed

Kong C, Zhou D, Wu N, Bai C. Multiple intraventricular metastases from lung adenocarcinoma with EGFR G719X mutation: a case report. BMC Pulm Med. 2020;20:135. 10.1186/s12890-020-1168-0. PubMed PMC

Jancík S, Drábek J, Radzioch D, Hajdúch M. Clinical relevance of KRAS in human cancers. J Biomed Biotechnol. 2010;2010: 150960. 10.1155/2010/150960. PubMed PMC

Rosen N. Finally, effective inhibitors of mutant KRAS. N Engl J Med. 2021;384:2447–9. 10.1056/NEJMe2107884. PubMed

Salgia R, Pharaon R, Mambetsariev I, et al. The improbable targeted therapy: KRAS as an emerging target in non-small cell lung cancer (NSCLC). Cell Rep Med. 2021;2: 100186. 10.1016/j.xcrm.2020.100186. PubMed PMC

Tomasini P, Serdjebi C, Khobta N, et al. EGFR and KRAS mutations predict the incidence and outcome of brain metastases in non-small cell lung cancer. IJMS. 2016;17:2132. 10.3390/ijms17122132. PubMed PMC

Wang SE, Narasanna A, Perez-Torres M, et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell. 2006;10:25–38. 10.1016/j.ccr.2006.05.023. PubMed

Li BT, Lee A, O’Toole S, et al. HER2 insertion YVMA mutant lung cancer: Long natural history and response to afatinib. Lung Cancer. 2015;90:617–9. 10.1016/j.lungcan.2015.10.025. PubMed PMC

Stephens P, Hunter C, Bignell G, et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature. 2004;431(7008):525–6. 10.1038/431525b. PubMed

Lin JJ, Gainor JF. Time to tackle the blood-brain barrier in HER2 -mutant lung cancer. Cancer. 2019;125:4363–6. 10.1002/cncr.32460. PubMed

Yang S, Wang Y, Zhao C, et al. Exon 20 YVMA insertion is associated with high incidence of brain metastasis and inferior outcome of chemotherapy in advanced non-small cell lung cancer patients with HER2 kinase domain mutations. Transl Lung Cancer Res. 2021;10:753–65. 10.21037/tlcr-20-559. PubMed PMC

Fares J, Cordero A, Kanojia D, Lesniak MS. The network of cytokines in brain metastases. Cancers. 2021;13:142. 10.3390/cancers13010142. PubMed PMC

Khan GJ, Sun L, Abbas M, et al. In-vitro pre-treatment of cancer cells with TGF-β1: a novel approach of tail vein lung cancer metastasis mouse model for anti-metastatic studies. CMP. 2019;12:249–60. 10.2174/1874467212666190306165703. PubMed

Yuan X, Wei Q, Komaki R, et al. TGFβ1 polymorphisms predict distant metastasis-free survival in patients with inoperable non-small-cell lung cancer after definitive radiotherapy. PLoS ONE. 2013;8: e65659. 10.1371/journal.pone.0065659. PubMed PMC

Benveniste H, Zhang S, Reinsel RA, et al. Brain metabolomic profiles of lung cancer patients prior to treatment characterized by proton magnetic resonance spectroscopy. Int J Clin Exp Med. 2012;5:154–64. PubMed PMC

Domanska UM, Kruizinga RC, Nagengast WB, et al. A review on CXCR4/CXCL12 axis in oncology: No place to hide. Eur J Cancer. 2013;49:219–30. 10.1016/j.ejca.2012.05.005. PubMed

Chen G, Wang Z, Liu X, Liu F. High-level CXCR4 expression correlates with brain-specific metastasis of non-small cell lung cancer. World J Surg. 2011;35:56–61. 10.1007/s00268-010-0784-x. PubMed

Paratore S, Banna GL, D’Arrigo M, et al. CXCR4 and CXCL12 immunoreactivities differentiate primary non-small-cell lung cancer with or without brain metastases. CBM. 2012;10:79–89. 10.3233/CBM-2011-0232. PubMed

Mauri FA, Pinato DJ, Trivedi P, et al. Isogeneic comparison of primary and metastatic lung cancer identifies CX3CR1 as a molecular determinant of site-specific metastatic diffusion. Oncol Rep. 2012;28:647–53. 10.3892/or.2012.1818. PubMed

Li YD, Lamano JB, Lamano JB, et al. Tumor-induced peripheral immunosuppression promotes brain metastasis in patients with non-small cell lung cancer. Cancer Immunol Immunother. 2019;68:1501–13. 10.1007/s00262-019-02384-y. PubMed PMC

Lamano JB, Lamano JB, Li YD, et al. Glioblastoma-derived IL6 induces immunosuppressive peripheral myeloid cell PD-L1 and promotes tumor growth. Clin Cancer Res. 2019;25:3643–57. 10.1158/1078-0432.CCR-18-2402. PubMed PMC

Li H, Zhao Q, Chang L, et al. LncRNA MALAT1 modulates ox-LDL induced EndMT through the Wnt/β-catenin signaling pathway. Lipids Health Dis. 2019;18:62. 10.1186/s12944-019-1006-7. PubMed PMC

Schmidt LH, Spieker T, Koschmieder S, et al. The long non-coding MALAT-1 RNA indicates a poor prognosis in non-small cell lung cancer and induces migration and tumor growth. J Thorac Oncol. 2011;6:1984–92. 10.1097/JTO.0b013e3182307eac. PubMed

Karimpour M, Ravanbakhsh R, Maydanchi M, et al. Cancer driver gene and non-coding RNA alterations as biomarkers of brain metastasis in lung cancer: a review of the literature. Biomed Pharmacother. 2021;143: 112190. 10.1016/j.biopha.2021.112190. PubMed

Preusser M, Berghoff AS, Berger W, et al. High rate of FGFR1 amplifications in brain metastases of squamous and non-squamous lung cancer. Lung Cancer. 2014;83:83–9. 10.1016/j.lungcan.2013.10.004. PubMed

Kim J, Piao H-L, Kim B-J, et al. Long non-coding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet. 2018;50:1705–15. 10.1038/s41588-018-0252-3. PubMed PMC

Grinberg-Rashi H, Ofek E, Perelman M, et al. The expression of three genes in primary non-small cell lung cancer is associated with metastatic spread to the brain. Clin Cancer Res. 2009;15:1755–61. 10.1158/1078-0432.CCR-08-2124. PubMed

Mrozik KM, Blaschuk OW, Cheong CM, et al. N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer. 2018;18:939. 10.1186/s12885-018-4845-0. PubMed PMC

Yoo JY, Yang S-H, Lee JE, et al. E-cadherin as a predictive marker of brain metastasis in non-small-cell lung cancer, and its regulation by pioglitazone in a preclinical model. J Neurooncol. 2012;109:219–27. 10.1007/s11060-012-0890-8. PubMed

Dai L, Zhao J, Yin J, et al. Cell adhesion molecule 2 (CADM2) promotes brain metastasis by inducing epithelial-mesenchymal transition (EMT) in human non-small cell lung cancer. Ann Transl Med. 2020;8:465–465. 10.21037/atm.2020.03.85. PubMed PMC

Jassam SA, Maherally Z, Smith JR, et al. TNF-α enhancement of CD62E mediates adhesion of non-small cell lung cancer cells to brain endothelium via CD15 in lung-brain metastasis. Neuro Oncol. 2016;18:679–90. 10.1093/neuonc/nov248. PubMed PMC

Rai S, Nejadhamzeeigilani Z, Gutowski NJ, Whatmore JL. Loss of the endothelial glycocalyx is associated with increased E-selectin mediated adhesion of lung tumour cells to the brain microvascular endothelium. J Exp Clin Cancer Res. 2015;34:105. 10.1186/s13046-015-0223-9. PubMed PMC

Kargi HA, Kuyucuoğlu MF, Alakavuklar M, et al. CD44 expression in metastatic and non-metastatic non-small cell lung cancers. Cancer Lett. 1997;119:27–30. 10.1016/S0304-3835(97)00254-1. PubMed

Morath I, Hartmann TN, Orian-Rousseau V. CD44: More than a mere stem cell marker. Int J Biochem Cell Biol. 2016;81:166–73. 10.1016/j.biocel.2016.09.009. PubMed

Wang Y-Y, Vadhan A, Chen P-H, et al. CD44 promotes lung cancer cell metastasis through ERK–ZEB1 signaling. Cancers. 2021;13:4057. 10.3390/cancers13164057. PubMed PMC

Wu D, Deng S, Li L, Liu T, Zhang T, Li J, et al. TGF-β1-mediated exosomal lnc-MMP2-2 increases blood–brain barrier permeability via the miRNA-1207-5p/EPB41L5 axis to promote non-small cell lung cancer brain metastasis. Cell Death Dis. 2021;12:1–10. 10.1038/s41419-021-04004-z. PubMed PMC

Takakuwa Y. Protein 4.1, a multifunctional protein of the erythrocyte membrane skeleton: structure and functions in erythrocytes and nonerythroid cells. Int J Hematol. 2000;72(3):298–309. PubMed

Hudson K, Mondia MW, Zhang Y, Saha S, Gibert MK, Dube C, et al. The role of microRNAs in brain metastasis. J Neurooncol. 2024;166:231–41. 10.1007/s11060-023-04541-x. PubMed PMC

Hansen CG, Moroishi T, Guan K-L. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25:499–513. 10.1016/j.tcb.2015.05.002. PubMed PMC

Li C, Zheng H, Xiong J, Huang Y, Li H, Jin H, et al. miR-596-3p suppresses brain metastasis of non-small cell lung cancer by modulating YAP1 and IL-8. Cell Death Dis. 2022;13:699. 10.1038/s41419-022-05062-7. PubMed PMC

Lou Y, Jiang Y, Liang Z, Liu B, Li T, Zhang D. Role of RhoC in cancer cell migration. Cancer Cell Int. 2021;21:527. 10.1186/s12935-021-02234-x. PubMed PMC

Łukasiewicz S, Czeczelewski M, Forma A, et al. Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers (Basel). 2021;13:4287. 10.3390/cancers13174287. PubMed PMC

Inic Z, Zegarac M, Inic M, et al. Difference between luminal a and luminal b subtypes according to Ki-67, tumor size, and progesterone receptor negativity providing prognostic information. Clin Med Insights Oncol. 2014;8:107–11. 10.4137/CMO.S18006. PubMed PMC

Pedrosa RMSM, Mustafa DA, Soffietti R, Kros JM. Breast cancer brain metastasis: molecular mechanisms and directions for treatment. Neuro Oncol. 2018;20:1439–49. 10.1093/neuonc/noy044. PubMed PMC

Iqbal N, Iqbal N. Human epidermal growth factor receptor 2 (her2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014;2014:1–9. 10.1155/2014/852748. PubMed PMC

Lo H-W. EGFR and HER2 signaling in breast cancer brain metastasis. Front Biosci. 2016;8:245–63. 10.2741/e765. PubMed PMC

Xie T, Huang F-J, Aldape KD, et al. Activation of stat3 in human melanoma promotes brain metastasis. Cancer Res. 2006;66:3188–96. 10.1158/0008-5472.CAN-05-2674. PubMed

McFarland BC, Benveniste EN. Reactive astrocytes foster brain metastases via STAT3 signaling. Ann Transl Med. 2019. 10.21037/atm.2019.04.17. PubMed PMC

Huynh J, Chand A, Gough D, Ernst M. Therapeutically exploiting STAT3 activity in cancer — using tissue repair as a road map. Nat Rev Cancer. 2019;19:82–96. 10.1038/s41568-018-0090-8. PubMed

Tolomeo M, Cascio A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. IJMS. 2021;22:603. 10.3390/ijms22020603. PubMed PMC

Jablonska PA, Galán N, Barranco J, et al. Presence of activated (Phosphorylated) STAT3 in radiation necrosis following stereotactic radiosurgery for brain metastases. IJMS. 2023;24:14219. 10.3390/ijms241814219. PubMed PMC

Carney CP, Pandey N, Kapur A, et al. Harnessing nanomedicine for enhanced immunotherapy for breast cancer brain metastases. Drug Deliv and Transl Res. 2021;11:2344–70. 10.1007/s13346-021-01039-9. PubMed PMC

Chen Q, Boire A, Jin X, et al. Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature. 2016;533:493–8. 10.1038/nature18268. PubMed PMC

Khoo LT, Chen L. Role of the cGAS–STING pathway in cancer development and oncotherapeutic approaches. EMBO Rep. 2018. 10.15252/embr.201846935. PubMed PMC

Wang Y, Ye F, Liang Y, Yang Q. Breast cancer brain metastasis: insight into molecular mechanisms and therapeutic strategies. Br J Cancer. 2021;125:1056–67. 10.1038/s41416-021-01424-8. PubMed PMC

Huang Y-S, Chang C-C, Lee S-S, et al. Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression. Oncotarget. 2016;7:43256–66. 10.18632/oncotarget.9673. PubMed PMC

Bryan S, Witzel I, Borgmann K, Oliveira-Ferrer L. Molecular mechanisms associated with brain metastases in HER2-positive and triple negative breast cancers. Cancers (Basel). 2021;13:4137. 10.3390/cancers13164137. PubMed PMC

Organ SL, Tsao M-S. An overview of the c-MET signaling pathway. Ther Adv Med Oncol. 2011;3:S7–19. 10.1177/1758834011422556. PubMed PMC

Tu S, Lin X, Qiu J, et al. Crosstalk between tumor-associated microglia/macrophages and CD8-positive T cells plays a key role in glioblastoma. Front Immunol. 2021;12: 650105. 10.3389/fimmu.2021.650105. PubMed PMC

Jiang N, Dai Q, Su X, et al. Role of PI3K/AKT pathway in cancer: the framework of malignant behavior. Mol Biol Rep. 2020;47:4587–629. 10.1007/s11033-020-05435-1. PubMed PMC

Kang S-A, Blache CA, Bajana S, et al. The effect of soluble E-selectin on tumor progression and metastasis. BMC Cancer. 2016;16:331. 10.1186/s12885-016-2366-2. PubMed PMC

Geng Y, Yeh K, Takatani T, King MR. Three to tango: MUC1 as a ligand for both E-selectin and ICAM-1 in the breast cancer metastatic cascade. Front Oncol. 2012;2:76. 10.3389/fonc.2012.00076. PubMed PMC

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001;2:127–37. 10.1038/35052073. PubMed

Nahta R, Esteva FJ. HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res. 2006;8:215. 10.1186/bcr1612. PubMed PMC

Korkaya H, Kim G-I, Davis A, Malik F, Henry NL, Ithimakin S, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell. 2012;47:570–84. 10.1016/j.molcel.2012.06.014. PubMed PMC

Osanai M, Murata M, Nishikiori N, Chiba H, Kojima T, Sawada N. Occludin-mediated premature senescence is a fail-safe mechanism against tumorigenesis in breast carcinoma cells. Cancer Sci. 2007;98:1027–34. 10.1111/j.1349-7006.2007.00494.x. PubMed PMC

Hoevel T, Macek R, Swisshelm K, Kubbies M. Reexpression of the TJ protein CLDN1 induces apoptosis in breast tumor spheroids. Int J Cancer. 2004;108:374–83. 10.1002/ijc.11571. PubMed

Hsu JC-C, Reid DW, Hoffman AM, et al. Oncoprotein AEG-1 is an endoplasmic reticulum RNA-binding protein whose interactome is enriched in organelle resident protein-encoding mRNAs. RNA. 2018;24:688–703. 10.1261/rna.063313.117. PubMed PMC

Taiarol L, Formicola B, Magro RD, et al. An update of nanoparticle-based approaches for glioblastoma multiforme immunotherapy. Nanomedicine. 2020;15:1861–71. 10.2217/nnm-2020-0132. PubMed

Wu K, Fukuda K, Xing F, et al. Roles of the cyclooxygenase 2 matrix metalloproteinase 1 pathway in brain metastasis of breast cancer. J Biol Chem. 2015;290:9842–54. 10.1074/jbc.M114.602185. PubMed PMC

Pfeiffer F, Schäfer J, Lyck R, et al. Claudin-1 induced sealing of blood-brain barrier tight junctions ameliorates chronic experimental autoimmune encephalomyelitis. Acta Neuropathol. 2011;122:601–14. 10.1007/s00401-011-0883-2. PubMed PMC

Janavicius M, Lachej N, Anglickiene G, et al. Outcomes of treatment for melanoma brain metastases. J Skin Cancer. 2020;2020:1–10. 10.1155/2020/7520924. PubMed PMC

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA A Cancer J Clinicians. 2017;67:7–30. 10.3322/caac.21387. PubMed

Thomas DGT, Graham DI. Malignant brain tumours. London, London: Springer; 1995.

Madajewicz S, Karakousis C, West CR, et al. Malignant melanoma brain metastases. review of roswell park memorial institute experience. Cancer. 1984;53:2550–2. 10.1002/1097-0142(19840601)53:11%3c2550::AID-CNCR2820531129%3e3.0.CO;2-B. PubMed

Metzemaekers M, Vanheule V, Janssens R, et al. Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Front Immunol. 2018;8:1970. 10.3389/fimmu.2017.01970. PubMed PMC

Jiang H, Gebhardt C, Umansky L, et al. Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Intl J Cancer. 2015;136:2352–60. 10.1002/ijc.29297. PubMed

Wightman SC, Uppal A, Pitroda SP, et al. Oncogenic CXCL10 signaling drives metastasis development and poor clinical outcome. Br J Cancer. 2015;113:327–35. 10.1038/bjc.2015.193. PubMed PMC

Doron H, Amer M, Ershaid N, et al. Inflammatory activation of astrocytes facilitates melanoma brain tropism via the CXCL10-CXCR3 signaling axis. Cell Rep. 2019;28:1785-1798.e6. 10.1016/j.celrep.2019.07.033. PubMed

Lok E, Chung AS, Swanson KD, Wong ET. Melanoma brain metastasis globally reconfigures chemokine and cytokine profiles in patient cerebrospinal fluid. Melanoma Res. 2014;24:120–30. 10.1097/CMR.0000000000000045. PubMed PMC

Hofmann UB, Westphal JR, Waas ET, et al. Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer. 1999;81:774–82. 10.1038/sj.bjc.6690763. PubMed PMC

Othus M, Moon J, Margolin K. Melanoma’s deadly march to the brain: By what route, and can it be stopped? Cancer. 2011;117:1560–3. 10.1002/cncr.25716. PubMed

Huang F-J, Steeg PS, Price JE, et al. Molecular basis for the critical role of suppressor of cytokine signaling-1 in melanoma brain metastasis. Cancer Res. 2008;68:9634–42. 10.1158/0008-5472.CAN-08-1429. PubMed PMC

Patel JK, Didolkar MS, Pickren JW, Moore RH. Metastatic pattern of malignant melanoma. Am J Surg. 1978;135:807–10. 10.1016/0002-9610(78)90171-X. PubMed

Klein A, Schwartz H, Sagi-Assif O, et al. Astrocytes facilitate melanoma brain metastasis via secretion of IL -23. J Pathol. 2015;236:116–27. 10.1002/path.4509. PubMed

Hendrych M, Solar P, Hermanova M, et al. Spinal metastasis in a patient with supratentorial glioblastoma with primitive neuronal component: a case report with clinical and molecular evaluation. Diagnostics (Basel). 2023;13:181. 10.3390/diagnostics13020181. PubMed PMC

Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114:97–109. 10.1007/s00401-007-0243-4. PubMed PMC

Solar P, Valekova H, Marcon P, et al. Classification of brain lesions using a machine learning approach with cross-sectional ADC value dynamics. Sci Rep. 2023;13:11459. 10.1038/s41598-023-38542-7. PubMed PMC

Papadopoulos MC, Saadoun S, Binder DK, et al. Molecular mechanisms of brain tumor edema. Neurosci. 2004;129:1009–18. 10.1016/j.neuroscience.2004.05.044. PubMed

Fazakas C, Wilhelm I, Nagyőszi P, et al. Transmigration of melanoma cells through the blood-brain barrier: role of endothelial tight junctions and melanoma-released serine proteases. PLoS ONE. 2011;6: e20758. 10.1371/journal.pone.0020758. PubMed PMC

Guo Q, Zhu Q, Miao T, et al. LRP1-upregulated nanoparticles for efficiently conquering the blood-brain barrier and targeted suppressing multifocal and infiltrative brain metastases. J Control Release. 2019;303:117–29. 10.1016/j.jconrel.2019.04.031. PubMed

Gondi V, Tomé WA, Mehta MP. Why avoid the hippocampus? a comprehensive review. Radiothern Oncol. 2010;97:370–6. 10.1016/j.radonc.2010.09.013. PubMed PMC

Brown PD, Gondi V, Pugh S, et al. Hippocampal avoidance during whole-brain radiotherapy plus memantine for patients with brain metastases: phase III trial NRG oncology CC001. JCO. 2020;38:1019–29. 10.1200/JCO.19.02767. PubMed PMC

Hoffmann M, Hayes MR, Pietruszka J, Elling L. Synthesis of the Thomsen-Friedenreich-antigen (TF-antigen) and binding of Galectin-3 to TF-antigen presenting neo-glycoproteins. Glycoconj J. 2020;37:457–70. 10.1007/s10719-020-09926-y. PubMed PMC

Strell C, Entschladen F. Extravasation of leukocytes in comparison to tumor cells. Cell Commun Signal. 2008;6:10. 10.1186/1478-811X-6-10. PubMed PMC

Strell C, Lang K, Niggemann B, et al. Surface molecules regulating rolling and adhesion to the endothelium of neutrophil granulocytes and MDA-MB-468 breast carcinoma cells and their interaction. Cell Mol Life Sci. 2007;64:3306–16. 10.1007/s00018-007-7402-6. PubMed PMC

Westphal D, Glitza Oliva IC, Niessner H. Molecular insights into melanoma brain metastases. Cancer. 2017;123:2163–75. 10.1002/cncr.30594. PubMed

Perides G, Zhuge Y, Lin T, et al. The fibrinolytic system facilitates tumor cell migration across the blood-brain barrier in experimental melanoma brain metastasis. BMC Cancer. 2006;6:56. 10.1186/1471-2407-6-56. PubMed PMC

Artym VV. Molecular proximity of seprase and the urokinase-type plasminogen activator receptor on malignant melanoma cell membranes: dependence on beta1 integrins and the cytoskeleton. Carcinogenesis. 2002;23:1593–602. 10.1093/carcin/23.10.1593. PubMed

Piñeiro-Sánchez ML, Goldstein LA, Dodt J, et al. Identification of the 170-kDa melanoma membrane-bound gelatinase (Seprase) as a serine integral membrane protease. J Biol Chem. 1997;272:7595–601. 10.1074/jbc.272.12.7595. PubMed

Shintani Y, Higashiyama S, Ohta M, et al. Overexpression of ADAM9 in non-small cell lung cancer correlates with brain metastasis. Cancer Res. 2004;64:4190–6. 10.1158/0008-5472.CAN-03-3235. PubMed

Wrobel JK, Toborek M. Blood-brain barrier remodeling during brain metastasis formation. Mol Med. 2016;22:32–40. 10.2119/molmed.2015.00207. PubMed PMC

Meissauer A, Kramer MD, Schirrmacher V, Brunner G. Generation of cell surface-bound plasmin by cell-associated urokinase-type or secreted tissue-type plasminogen activator: a key event in melanoma cell invasiveness in vitro. Exp Cell Res. 1992;199:179–90. 10.1016/0014-4827(92)90423-6. PubMed

Suryo Rahmanto Y, Dunn LL, Richardson DR. The melanoma tumor antigen, melanotransferrin (p97): a 25-year hallmark – from iron metabolism to tumorigenesis. Oncogene. 2007;26:6113–24. 10.1038/sj.onc.1210442. PubMed

Rolland Y, Demeule M, Fenart L, Béliveau R. Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell Melanoma Res. 2009;22:86–98. 10.1111/j.1755-148X.2008.00525.x. PubMed

Monsky WL, Lin CY, Aoyama A, et al. A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res. 1994;54:5702–10. PubMed

O’Brien P, O’Connor BF. Seprase: An overview of an important matrix serine protease. Biochim Biophys Acta Proteins Proteom. 2008;1784:1130–45. 10.1016/j.bbapap.2008.01.006. PubMed

Denkins Y, Reiland J, Roy M, et al. Brain metastases in melanoma: roles of neurotrophins. Neuro Oncol. 2004;6:154–65. 10.1215/S115285170300067X. PubMed PMC

Wang L, Cossette SM, Rarick KR, et al. Astrocytes directly influence tumor cell invasion and metastasis in vivo. PLoS ONE. 2013;8: e80933. 10.1371/journal.pone.0080933. PubMed PMC

Lorger M, Felding-Habermann B. Capturing changes in the brain microenvironment during initial steps of breast cancer brain metastasis. Am J Pathol. 2010;176:2958–71. 10.2353/ajpath.2010.090838. PubMed PMC

Bos PD, Zhang XH-F, Nadal C, et al. Genes that mediate breast cancer metastasis to the brain. Nature. 2009;459:1005–9. 10.1038/nature08021. PubMed PMC

Harati R, Mohammad MG, Tlili A, et al. Loss of miR-101-3p promotes transmigration of metastatic breast cancer cells through the brain endothelium by inducing COX-2/MMP1 signaling. Pharmaceuticals. 2020;13:144. 10.3390/ph13070144. PubMed PMC

Nicolson GL, Menter DG. Trophic factors and central nervous system metastasis. Cancer Metast Rev. 1995;14:303–21. 10.1007/BF00690600. PubMed

Menter DG, Herrmann JL, Marchetti D, Nicolson GL. Involvement of neurotrophins and growth factors in brain metastasis formation. Invas Metastasis. 1994;14:372–84. PubMed

Sirkisoon SR, Carpenter RL, Rimkus T, et al. EGFR and HER2 signaling in breast cancer brain metastasis. Front Biosci (Elite Ed). 2016;8:245–63. 10.2741/E765. PubMed PMC

Lee KY, Kim Y-J, Yoo H, et al. Human brain endothelial cell-derived COX-2 facilitates extravasation of breast cancer cells across the blood-brain barrier. Anticancer Res. 2011;31:4307–13. PubMed

Avraham HK, Jiang S, Fu Y, et al. Angiopoietin-2 mediates blood-brain barrier impairment and colonization of triple-negative breast cancer cells in brain: Ang-2 mediates breast cancer colonization in brain. J Pathol. 2014;232:369–81. 10.1002/path.4304. PubMed

Cheng X, Hung M-C. Breast cancer brain metastases. Cancer Metastasis Rev. 2007;26:635–43. 10.1007/s10555-007-9083-x. PubMed

Karin N. The multiple faces of CXCL12 (SDF-1α) in the regulation of immunity during health and disease. J Leukoc Biol. 2010;88:463–73. 10.1189/jlb.0909602. PubMed

Curtaz CJ, Schmitt C, Herbert S-L, et al. Serum-derived factors of breast cancer patients with brain metastases alter the permeability of a human blood-brain barrier model. Fluids Barriers CNS. 2020;17:31. 10.1186/s12987-020-00192-6. PubMed PMC

Momeny M, Saunus JM, Marturana F, et al. Heregulin-HER3-HER2 signaling promotes matrix metalloproteinase-dependent blood-brain-barrier transendothelial migration of human breast cancer cell lines. Oncotarget. 2015;6:3932–46. 10.18632/oncotarget.2846. PubMed PMC

Kienast Y, Von Baumgarten L, Fuhrmann M, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med. 2010;16:116–22. 10.1038/nm.2072. PubMed

Jilaveanu LB, Parisi F, Barr ML, et al. PLEKHA5 as a biomarker and potential mediator of melanoma brain metastasis. Clin Cancer Res. 2015;21:2138–47. 10.1158/1078-0432.CCR-14-0861. PubMed PMC

Stoletov K, Strnadel J, Zardouzian E, et al. Role of connexins in metastatic breast cancer and melanoma brain colonization. J Cell Sci. 2013. 10.1242/jcs.112748. PubMed PMC

Sisó S, Jeffrey M, González L. Sensory circumventricular organs in health and disease. Acta Neuropathol. 2010;120:689–705. 10.1007/s00401-010-0743-5. PubMed

Castaldo JE, Bernat JL, Meier FA, Schned AR. Intracranial metastases due to prostatic carcinoma. Cancer. 1983;52:1739–47. 10.1002/1097-0142(19831101)52:9%3c1739::aid-cncr2820520931%3e3.0.co;2-c. PubMed

Filippidis AS, Zarogiannis SG, Ioannou M, et al. Permeability of the arachnoid and pia mater. The role of ion channels in the leptomeningeal physiology. Childs Nerv Syst. 2012;28:533–40. 10.1007/s00381-012-1688-x. PubMed

Pollock H, Hutchings M, Weller RO, Zhang E-T. Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat. 1997;191:337–46. 10.1046/j.1469-7580.1997.19130337.x. PubMed PMC

Pedersen P-H, Rucklidge GJ, Mork SJ, et al. Leptomeningeal tissue: a barrier against brain tumor cell invasion. JNCI. 1994;86:1593–9. 10.1093/jnci/86.21.1593. PubMed

Saito N, Hatori T, Murata N, et al. Comparison of metastatic brain tumour models using three different methods: the morphological role of the pia mater. Int J Experimental Path. 2008;89:38–44. 10.1111/j.1365-2613.2007.00563.x. PubMed PMC

Simonsen TG, Gaustad J-V, Rofstad EK. Intracranial tumor cell migration and the development of multiple brain metastases in malignant melanoma. Transl Oncol. 2016;9:211–8. 10.1016/j.tranon.2016.04.003. PubMed PMC

Yao H, Price TT, Cantelli G, et al. Leukaemia hijacks a neural mechanism to invade the central nervous system. Nature. 2018;560:55–60. 10.1038/s41586-018-0342-5. PubMed PMC

Mastorakos P, McGavern D. The anatomy and immunology of vasculature in the central nervous system. Sci Immunol. 2019;4:0492. 10.1126/sciimmunol.aav0492. PubMed PMC

Jain RW, Yong VW. B cells in central nervous system disease: diversity, locations and pathophysiology. Nat Rev Immunol. 2022;22:513–24. 10.1038/s41577-021-00652-6. PubMed PMC

Cozzi FM, Ampie L, Laws MT, Brown DA. The role of the dura mater in cerebral metastases. Neurosurg Focus. 2023;55:E17. 10.3171/2023.5.FOCUS23229. PubMed

Horsburgh A, Massoud TF. The circumventricular organs of the brain: conspicuity on clinical 3T MRI and a review of functional anatomy. Surg Radiol Anat. 2013;35:343–9. 10.1007/s00276-012-1048-2. PubMed

Verheggen ICM, De Jong JJ, Van Boxtel MPJ, et al. Permeability of the windows of the brain: feasibility of dynamic contrast-enhanced MRI of the circumventricular organs. Fluids Barriers CNS. 2020;17:66. 10.1186/s12987-020-00228-x. PubMed PMC

Ebling FJP. Tanycytes: Gateway to the hungry brain: An Editorial for "The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway” on page 182. J Neurochem. 2021;156:143–4. 10.1111/jnc.15218. PubMed

Recabal A, Fernández P, López S, et al. The FGF2-induced tanycyte proliferation involves a connexin 43 hemichannel/purinergic-dependent pathway. J Neurochem. 2021;156:182–99. 10.1111/jnc.15188. PubMed PMC

Lassman AB, Bruce JN, Fetell MR. Metastases to the pineal gland. Neurology. 2006;67:1303–4. 10.1212/01.wnl.0000238516.29603.33. PubMed

Fang AS, Meyers SP. Magnetic resonance imaging of pineal region tumours. Insights Imaging. 2013;4:369–82. 10.1007/s13244-013-0248-6. PubMed PMC

Wendel C, Kaech DL, Woodtli M. Primary malignant melanoma in the pineal region: case report and literature review. J Neurol Surg A Cent Eur Neurosurg. 2018;79(4):344–52. 10.1055/s-0038-1639504. PubMed

Favero G, Bonomini F, Rezzani R. Pineal gland tumors: a review. Cancers. 2021;13:1547. 10.3390/cancers13071547. PubMed PMC

Williams MD, Asa SL, Fuller GN. Medullary thyroid carcinoma metastatic to the pituitary gland: an unusual site of metastasis. Ann Diagn Pathol. 2008;12:199–203. 10.1016/j.anndiagpath.2006.08.007. PubMed

Lamorie-Foote K, Rangwala SD, Kammen A, et al. Melanoma metastasis to a nonfunctioning pituitary macroadenoma: illustrative case. J Neurosurg Case Lessons. 2021. 10.3171/CASE2167. PubMed PMC

He W, Chen F, Dalm B, et al. Metastatic involvement of the pituitary gland: a systematic review with pooled individual patient data analysis. Pituitary. 2015;18:159–68. 10.1007/s11102-014-0552-2. PubMed

Hong S, Atkinson JL, Erickson D, et al. Treatment outcome of metastasis to the pituitary gland: a case series of 21 patients with pathological diagnosis. Neurosurg Focus. 2023;55:E13. 10.3171/2023.5.FOCUS23185. PubMed

Fassett DR, Couldwell WT. Metastases to the pituitary gland. FOC. 2004;16:1–4. 10.3171/foc.2004.16.4.9. PubMed

Janssen S, Mehta P, Bartscht T, et al. Prevalence of metastases within the hypothalamic-pituitary area in patients with brain metastases. Radiat Oncol. 2019;14:152. 10.1186/s13014-019-1337-6. PubMed PMC

Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14:48–54. 10.1007/s11912-011-0203-y. PubMed

Siomin V, Lin JL, Marko NF, et al. Stereotactic radiosurgical treatment of brain metastases to the choroid plexus. Int J Radiat Oncol Biol. 2011;80:1134–42. 10.1016/j.ijrobp.2010.03.016. PubMed

Smith AB, Smirniotopoulos JG, Horkanyne-Szakaly I. From the radiologic pathology archives: intraventricular neoplasms: radiologic-pathologic correlation. Radiographics. 2013;33:21–43. 10.1148/rg.331125192. PubMed

Frishman-Levy L, Izraeli S. Advances in understanding the pathogenesis of CNS acute lymphoblastic leukaemia and potential for therapy. Br J Haematol. 2017;176:157–67. 10.1111/bjh.14411. PubMed

Waki F, Ando M, Takashima A, et al. Prognostic factors and clinical outcomes in patients with leptomeningeal metastasis from solid tumors. J Neurooncol. 2009;93:205–12. 10.1007/s11060-008-9758-3. PubMed

Herrera RA, Deshpande K, Martirosian V, et al. Cortisol promotes breast-to-brain metastasis through the blood-cerebrospinal fluid barrier. Cancer Rep (Hoboken). 2022;5: e1351. 10.1002/cnr2.1351. PubMed PMC

Vandenhaute E, Stump-Guthier C, Losada ML, et al. The choroid plexus may be an underestimated site of tumor invasion to the brain: an in vitro study using neuroblastoma cell lines. Cancer Cell Int. 2015;15:102. 10.1186/s12935-015-0257-2. PubMed PMC

Li B, Zhao W-D, Tan Z-M, et al. Involvement of Rho/ROCK signaling in small cell lung cancer migration through human brain microvascular endothelial cells. FEBS Lett. 2006;580:4252–60. 10.1016/j.febslet.2006.06.056. PubMed

Boire A, Zou Y, Shieh J, et al. Complement component 3 adapts the cerebrospinal fluid for leptomeningeal metastasis. Cell. 2017;168:1101-1113.e13. 10.1016/j.cell.2017.02.025. PubMed PMC

Kart BH, Reddy SC, Rao GR, Poveda H. Choroid plexus metastasis: CT appearance. J Comput Assist Tomogr. 1986;10:537–40. PubMed

Tanimoto M, Tatsumi S, Tominaga S, et al. Choroid plexus metastasis of lung carcinoma–case report. Neurol Med Chir (Tokyo). 1991;31:152–5. 10.2176/nmc.31.152. PubMed

Naumann JA, Gordon PM. Invitro model of leukemia cell migration across the blood–cerebrospinal fluid barrier. Leuk Lymphoma. 2017;58:1747–9. 10.1080/10428194.2016.1254778. PubMed

Ghersi-Egea J-F, Strazielle N, Catala M, et al. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol. 2018;135:337–61. 10.1007/s00401-018-1807-1. PubMed

Hochman J, Assaf N, Deckert-Schlüter M, et al. Entry routes of malignant lymphoma into the brain and eyes in a mouse model. Cancer Res. 2001;61:5242–7. PubMed

Williams MTS, Yousafzai YM, Elder A, et al. The ability to cross the blood–cerebrospinal fluid barrier is a generic property of acute lymphoblastic leukemia blasts. Blood. 2016;127:1998–2006. 10.1182/blood-2015-08-665034. PubMed

Scharff BFSS, Modvig S, Marquart HV, Christensen C. Integrin-mediated adhesion and chemoresistance of acute lymphoblastic leukemia cells residing in the bone marrow or the central nervous system. Front Oncol. 2020;10:775. 10.3389/fonc.2020.00775. PubMed PMC

Erb U, Hikel J, Meyer S, et al. The impact of small extracellular vesicles on lymphoblast trafficking across the blood-cerebrospinal fluid barrier In Vitro. IJMS. 2020;21:5491. 10.3390/ijms21155491. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...