Spinal Metastasis in a Patient with Supratentorial Glioblastoma with Primitive Neuronal Component: A Case Report with Clinical and Molecular Evaluation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
MUNI/A/1645/2020
Masaryk University
MUNI/A/1408/2021
Masaryk University
INTER-EXCELLENCE, No. LTC20027
Ministry of Education, Youth and Sports, Czech Republic
PubMed
36672991
PubMed Central
PMC9858260
DOI
10.3390/diagnostics13020181
PII: diagnostics13020181
Knihovny.cz E-zdroje
- Klíčová slova
- ARID1A, NF1, NOTCH3, glioblastoma, metastasis, mutation,
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Glioblastoma (GBM) is regarded as an aggressive brain tumor that rarely develops extracranial metastases. Despite well-investigated molecular alterations in GBM, there is a limited understanding of these associated with the metastatic potential. We herein present a case report of a 43-year-old woman with frontal GBM with primitive neuronal component who underwent gross total resection followed by chemoradiation. Five months after surgery, the patient was diagnosed with an intraspinal GBM metastasis. Next-generation sequencing analysis of both the primary and metastatic GBM tissues was performed using the Illumina TruSight Tumor 170 assay. The number of single nucleotide variants observed in the metastatic sample was more than two times higher. Mutations in TP53, PTEN, and RB1 found in the primary and metastatic tissue samples indicated the mesenchymal molecular GBM subtype. Among others, there were two inactivating mutations (Arg1026Ile, Trp1831Ter) detected in the NF1 gene, two novel NOTCH3 variants of unknown significance predicted to be damaging (Pro1505Thr, Cys1099Tyr), one novel ARID1A variant of unknown significance (Arg1046Ser), and one gene fusion of unknown significance, EIF2B5-KIF5B, in the metastatic sample. Based on the literature evidence, the alterations of NF1, NOTCH3, and ARID1A could explain, at least in part, the acquired invasiveness and metastatic potential in this particular GBM case.
Zobrazit více v PubMed
Ostrom Q.T., Cioffi G., Waite K., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2014-2018. Neuro-Oncology. 2021;23:iii1–iii105. doi: 10.1093/neuonc/noab200. PubMed DOI PMC
Lakomy R., Kazda T., Selingerova I., Poprach A., Pospisil P., Belanova R., Fadrus P., Smrcka M., Vybihal V., Jancalek R., et al. Pre-Radiotherapy Progression after Surgery of Newly Diagnosed Glioblastoma: Corroboration of New Prognostic Variable. Diagnostics. 2020;10:676. doi: 10.3390/diagnostics10090676. PubMed DOI PMC
Drumm M.R., Dixit K.S., Grimm S., Kumthekar P., Lukas R.V., Raizer J.J., Stupp R., Chheda M.G., Kam K.-L., McCord M., et al. Extensive brainstem infiltration, not mass effect, is a common feature of end-stage cerebral glioblastomas. Neuro-Oncology. 2019;22:470–479. doi: 10.1093/neuonc/noz216. PubMed DOI PMC
Lakomy R., Kazda T., Selingerova I., Poprach A., Pospisil P., Belanova R., Fadrus P., Vybihal V., Smrcka M., Jancalek R., et al. Real-World Evidence in Glioblastoma: Stupp’s Regimen After a Decade. Front. Oncol. 2020;10:840. doi: 10.3389/fonc.2020.00840. PubMed DOI PMC
Stupp R., Mason W., van den Bent M., Weller M., Fisher B., Taphoorn M., Belanger K., Brandes A., Marosi C., Bogdahn U., et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005;352:987–996. doi: 10.1056/NEJMoa043330. PubMed DOI
Amitendu S., Mak S.K.D., Ling J.M., Ng W.H. A single institution experience of the incidence of extracranial metastasis in glioma. J. Clin. Neurosci. 2012;19:1511–1515. doi: 10.1016/j.jocn.2011.08.040. PubMed DOI
Vertosick F.T., Jr., Selker R.G. Brain stem and spinal metastases of supratentorial glioblastoma multiforme: A clinical series. Neurosurgery. 1990;27:516–521. doi: 10.1227/00006123-199010000-00002. PubMed DOI
Onda K., Tanaka R., Takahashi H., Takeda N., Ikuta F. Cerebral glioblastoma with cerebrospinal fluid dissemination: A clinicopathological study of 14 cases examined by complete autopsy. Neurosurgery. 1989;25:533–540. doi: 10.1227/00006123-198910000-00005. PubMed DOI
Rosen J., Blau T., Grau S.J., Barbe M.T., Fink G.R., Galldiks N. Extracranial Metastases of a Cerebral Glioblastoma: A Case Report and Review of the Literature. Case Rep. Oncol. 2018;11:591–600. doi: 10.1159/000492111. PubMed DOI PMC
WHO Classification of Tumours Editorial Board . WHO Classification of Tumours Series. 5th ed. Volume 6. International Agency for Research on Cancer; Lyon, France: 2021. [(accessed on 26 March 2021)]. Central nervous system tumours. Available online: https://tumourclassification.iarc.who.int/chapters/45.
Suwala A., Stichel D., Schrimpf D., Maas S., Sill M., Dohmen H., Banan R., Reinhardt A., Sievers P., Hinz F., et al. Glioblastomas with primitive neuronal component harbor a distinct methylation and copy-number profile with inactivation of TP53, PTEN, and RB1. Acta Neuropathol. 2021;142:179–189. doi: 10.1007/s00401-021-02302-6. PubMed DOI PMC
Perry A., Miller R., Gujrati M., Scheithauer B., Zambrano S.C., Jost S., Raghavan R., Qian J., Cochran E., Huse J., et al. Malignant gliomas with primitive neuroectodermal tumor-like components: A clinicopathologic and genetic study of 53 cases. Brain Pathol. 2009;19:81–90. doi: 10.1111/j.1750-3639.2008.00167.x. PubMed DOI PMC
Georgescu M.M., Olar A. Genetic and histologic spatiotemporal evolution of recurrent, multifocal, multicentric and metastatic glioblastoma. Acta neuropathologica communications. Acta Neuropathol. Commun. 2020;8:10. doi: 10.1186/s40478-020-0889-x. PubMed DOI PMC
Franceschi S., Lessi F., Aretini P., Mazzanti C.M., Menicagli M., La Ferla M., De Gregorio V., Caramella D., Naccarato A.G., Bevilacqua G., et al. Molecular portrait of a rare case of metastatic glioblastoma: Somatic and germline mutations using whole-exome sequencing. Neuro-Oncology. 2016;18:298–300. doi: 10.1093/neuonc/nov314. PubMed DOI PMC
Noch E.K., Sait S.F., Farooq S., Trippett T.M., Miller A.M. A case series of extraneural metastatic glioblastoma at Memorial Sloan Kettering Cancer Center. Neuro Oncol. Pract. 2021;8:325–336. doi: 10.1093/nop/npaa083. PubMed DOI PMC
Umphlett M., Shea S., Tome-Garcia J., Zhang Y., Hormigo A., Fowkes M., Tsankova N.M., Yong R.L. Widely metastatic glioblastoma with BRCA1 and ARID1A mutations: A case report. BMC Cancer. 2020;20:47. doi: 10.1186/s12885-020-6540-1. PubMed DOI PMC
Mohme M., Maire C.L., Schliffke S., Joosse S.A., Alawi M., Matschke J., Schüller U., Dierlamm J., Martens T., Pantel K., et al. Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: Potential mechanisms of immune escape. Acta Neuropathol. Commun. 2020;8:1–13. doi: 10.1186/s40478-020-00906-9. PubMed DOI PMC
Boccaccio C., Comoglio P.M. The MET oncogene in glioblastoma stem cells: Implications as a diagnostic marker and a therapeutic target. Cancer Res. 2013;73:3193–3199. doi: 10.1158/0008-5472.CAN-12-4039. PubMed DOI
Wang L.-B., Karpova A., Gritsenko M.A., Kyle J.E., Cao S., Li Y., Rykunov D., Colaprico A., Rothstein J.H., Hong R., et al. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell. 2021;39:509–528.e20. doi: 10.1016/j.ccell.2021.01.006. PubMed DOI PMC
Lombard A., Goffart N., Rogister B. Glioblastoma circulating cells: Reality, trap or illusion? Stem Cells Int. 2015;2015:182985. doi: 10.1155/2015/182985. PubMed DOI PMC
Sullivan J.P., Nahed B.V., Madden M.W., Oliveira S.M., Springer S., Bhere D., Chi A.S., Wakimoto H., Rothenberg S.M., Sequist L.V., et al. Brain Tumor Cells in Circulation Are Enriched for Mesenchymal Gene Expression. Cancer Discov. 2014;4:1299–1309. doi: 10.1158/2159-8290.CD-14-0471. PubMed DOI PMC
Brennan C.W., Verhaak R.G.W., McKenna A., Campos B., Noushmehr H., Salama S.R., Zheng S., Chakravarty D., Sanborn J.Z., Berman S.H., et al. The Somatic Genomic Landscape of Glioblastoma. Cell. 2013;155:462–477. doi: 10.1016/j.cell.2013.09.034. PubMed DOI PMC
Vizcaíno M.A., Shah S., Eberhart C.G., Rodriguez F.J. Clinicopathologic implications of NF1 gene alterations in diffuse gliomas. Hum. Pathol. 2015;46:1323–1330. doi: 10.1016/j.humpath.2015.05.014. PubMed DOI PMC
Ricker C.A., Pan Y., Gutmann D., Keller C. Challenges in Drug Discovery for Neurofibromatosis Type 1-Associated Low-Grade Glioma. Front. Oncol. 2016;6:259. doi: 10.3389/fonc.2016.00259. PubMed DOI PMC
Coelho B.P., Fernandes C.F.D.L., Boccacino J.M., Souza M.C.D.S., Melo-Escobar M.I., Alves R.N., Prado M.B., Iglesia R.P., Cangiano G., Mazzaro G.L.R., et al. Multifaceted WNT Signaling at the Crossroads Between Epithelial-Mesenchymal Transition and Autophagy in Glioblastoma. Front. Oncol. 2020;10:1–17. doi: 10.3389/fonc.2020.597743. PubMed DOI PMC
Mahabir R., Tanino M., Elmansuri A., Wang L., Kimura T., Itoh T., Ohba Y., Nishihara H., Shirato H., Tsuda M., et al. Sustained elevation of Snail promotes glial-mesenchymal transition after irradiation in malignant glioma. Neuro-Oncology. 2014;16:671–685. doi: 10.1093/neuonc/not239. PubMed DOI PMC
Berthier S., Larrouquère L., Champelovier P., Col E., Lefebvre C., Cottet-Rouselle C., Arnaud J., Garrel C., Laporte F., Boutonnat J., et al. A New Patient-Derived Metastatic Glioblastoma Cell Line: Characterisation and Response to Sodium Selenite Anticancer Agent. Cancers. 2019;11:12. doi: 10.3390/cancers11010012. PubMed DOI PMC
Xiu M., Wang Y., Li B., Wang X., Xiao F., Chen S., Zhang L., Zhou B., Hua F. The Role of Notch3 Signaling in Cancer Stemness and Chemoresistance: Molecular Mechanisms and Targeting Strategies. Front. Mol. Biosci. 2021;8:1–17. doi: 10.3389/fmolb.2021.694141. PubMed DOI PMC
van Nes J., Chan A., van Groningen T., van Sluis P., Koster J., Versteeg R. A NOTCH3 transcriptional module induces cell motility in neuroblastoma. Clin. Cancer Res. 2013;19:3485–3494. doi: 10.1158/1078-0432.CCR-12-3021. PubMed DOI
Alqudah M.A.Y., Agarwal S., Al-Keilani M.S., Sibenaller Z.A., Ryken T.C., Assem M. NOTCH3 Is a Prognostic Factor That Promotes Glioma Cell Proliferation, Migration and Invasion via Activation of CCND1 and EGFR. PLoS ONE. 2013;8:e77299. doi: 10.1371/journal.pone.0077299. PubMed DOI PMC
Xu S., Tang C. The Role of ARID1A in Tumors: Tumor Initiation or Tumor Suppression? Front. Oncol. 2021;11:1–18. doi: 10.3389/fonc.2021.745187. PubMed DOI PMC
Shen J., Ju Z., Zhao W., Wang L., Peng Y., Ge Z., Nagel Z.D., Zou J., Wang C., Kapoor P., et al. ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade. Nat. Med. 2018;24:556–562. doi: 10.1038/s41591-018-0012-z. PubMed DOI PMC
Breaking boundaries: role of the brain barriers in metastatic process