Effects of (R)- and (S)-α-Hydroxylation of Acyl Chains in Sphingosine, Dihydrosphingosine, and Phytosphingosine Ceramides on Phase Behavior and Permeability of Skin Lipid Models
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-09135J
Grantová Agentura České Republiky
SVV 260547
Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN
PubMed
34299088
PubMed Central
PMC8303283
DOI
10.3390/ijms22147468
PII: ijms22147468
Knihovny.cz E-zdroje
- Klíčová slova
- biophysics, ceramides, hydroxylation, lipids, permeability, skin barrier, stratum corneum,
- MeSH
- acylace MeSH
- ceramidy chemie MeSH
- hydroxylace MeSH
- kůže chemie metabolismus MeSH
- lidé MeSH
- permeabilita MeSH
- sfingosin analogy a deriváty chemie MeSH
- změna skupenství * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ceramidy MeSH
- phytosphingosine MeSH Prohlížeč
- safingol MeSH Prohlížeč
- sfingosin MeSH
Ceramides (Cers) with α-hydroxylated acyl chains comprise about a third of all extractable skin Cers and are required for permeability barrier homeostasis. We have probed here the effects of Cer hydroxylation on their behavior in lipid models comprising the major SC lipids, Cer/free fatty acids (C 16-C 24)/cholesterol, and a minor component, cholesteryl sulfate. Namely, Cers with (R)-α-hydroxy lignoceroyl chains attached to sphingosine (Cer AS), dihydrosphingosine (Cer AdS), and phytosphingosine (Cer AP) were compared to their unnatural (S)-diastereomers and to Cers with non-hydroxylated lignoceroyl chains attached to sphingosine (Cer NS), dihydrosphingosine (Cer NdS), and phytosphingosine (Cer NP). By comparing several biophysical parameters (lamellar organization by X-ray diffraction, chain order, lateral packing, phase transitions, and lipid mixing by infrared spectroscopy using deuterated lipids) and the permeabilities of these models (water loss and two permeability markers), we conclude that there is no general or common consequence of Cer α-hydroxylation. Instead, we found a rich mix of effects, highly dependent on the sphingoid base chain, configuration at the α-carbon, and permeability marker used. We found that the model membranes with unnatural Cer (S)-AS have fewer orthorhombically packed lipid chains than those based on the (R)-diastereomer. In addition, physiological (R)-configuration decreases the permeability of membranes, with Cer (R)-AdS to theophylline, and increases the lipid chain order in model systems with natural Cer (R)-AP. Thus, each Cer subclass makes a distinct contribution to the structural organization and function of the skin lipid barrier.
Zobrazit více v PubMed
Elias P.M. Epidermal Barrier Function-Intercellular Lamellar Lipid Structures, Origin, Composition and Metabolism. J. Control. Release. 1991;15:199–208. doi: 10.1016/0168-3659(91)90111-P. DOI
Wertz P.W., van den Bergh B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids. 1998;91:85–96. doi: 10.1016/S0009-3084(97)00108-4. PubMed DOI
Bouwstra J.A., Dubbelaar F.E., Gooris G.S., Ponec M. The lipid organisation in the skin barrier. Acta Derm. Venereol. Suppl. 2000;208:23–30. PubMed
Bouwstra J., Pilgram G., Gooris G., Koerten H., Ponec M. New aspects of the skin barrier organization. Skin Pharmacol. Physiol. 2001;14:52–62. doi: 10.1159/000056391. PubMed DOI
Feingold K., Elias P. The important role of lipids in the epidermis and their role in the formation and maintenance of the cutaneous barrier. Biochim. Biophys. Acta. 2014;1841:279. doi: 10.1016/j.bbalip.2013.12.004. PubMed DOI
Motta S., Monti M., Sesana S., Caputo R., Carelli S., Ghidoni R. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta. 1993;1182:147–151. doi: 10.1016/0925-4439(93)90135-N. PubMed DOI
Breiden B., Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation. Biochim. Biophys. Acta. 2014;1841:441–452. doi: 10.1016/j.bbalip.2013.08.010. PubMed DOI
Skolova B., Jandovska K., Pullmannova P., Tesar O., Roh J., Hrabalek A., Vavrova K. The role of the trans double bond in skin barrier sphingolipids: Permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. Langmuir ACS J. Surf. Colloids. 2014;30:5527–5535. doi: 10.1021/la500622f. PubMed DOI
Skolova B., Janusova B., Zbytovska J., Gooris G., Bouwstra J., Slepicka P., Berka P., Roh J., Palat K., Hrabalek A., et al. Ceramides in the skin lipid membranes: Length matters. Langmuir ACS J. Surf. Colloids. 2013;29:15624–15633. doi: 10.1021/la4037474. PubMed DOI
Skolova B., Janusova B., Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BBA Biomembr. 2016;1858:220–232. doi: 10.1016/j.bbamem.2015.11.019. PubMed DOI
Skolova B., Hudska K., Pullmannova P., Kovacik A., Palat K., Roh J., Fleddermann J., Estrela-Lopis I., Vavrova K. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: Infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460–10470. doi: 10.1021/jp506407r. PubMed DOI
Pullmannová P., Pavlíková L., Kováčik A., Sochorová M., Školová B., Slepička P., Maixner J., Zbytovská J., Vávrová K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. doi: 10.1016/j.bpc.2017.03.004. PubMed DOI
Kovacik A., Roh J., Vavrova K. The chemistry and biology of 6-hydroxyceramide, the youngest member of the human sphingolipid family. ChemBioChem. 2014;15:1555–1562. doi: 10.1002/cbic.201402153. PubMed DOI
Rerek M.E., Van Wyck D., Mendelsohn R., Moore D.J. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids. 2005;134:51–58. doi: 10.1016/j.chemphyslip.2004.12.002. PubMed DOI
Rerek M.E., Chen H.-C., Markovic B., Van Wyck D., Garidel P., Mendelsohn A.R., Moore D. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355–9362. doi: 10.1021/jp0118367. DOI
Skolova B., Kovacik A., Tesar O., Opalka L., Vavrova K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: Permeability and biophysics. BBA Biomembr. 2017;1859:824–834. doi: 10.1016/j.bbamem.2017.01.019. PubMed DOI
Kováčik A., Šilarová M., Pullmannová P., Maixner J., Vávrová K. Effects of 6-Hydroxyceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes. Langmuir ACS J. Surf. Colloids. 2017;33:2890–2899. doi: 10.1021/acs.langmuir.7b00184. PubMed DOI
t’Kindt R., Jorge L., Dumont E., Couturon P., David F., Sandra P., Sandra K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012;84:403–411. doi: 10.1021/ac202646v. PubMed DOI
Uchida Y., Hama H., Alderson N.L., Douangpanya S., Wang Y., Crumrine D.A., Elias P.M., Holleran W.M. Fatty acid 2-hydroxylase, encoded by FA2H, accounts for differentiation-associated increase in 2-OH ceramides during keratinocyte differentiation. J. Biol. Chem. 2007;282:13211–13219. doi: 10.1074/jbc.M611562200. PubMed DOI
Hama H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta. 2010;1801:405–414. doi: 10.1016/j.bbalip.2009.12.004. PubMed DOI PMC
Rabionet M., Gorgas K., Sandhoff R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 2014;1841:422–434. doi: 10.1016/j.bbalip.2013.08.011. PubMed DOI
Mislow K., Bleicher S. The Configuration of Cerebronic Acid. J. Am. Chem. Soc. 1954;76:2825–2826. doi: 10.1021/ja01639a065. DOI
Raudenkolb S., Wartewig S., Neubert R.H.H. Polymorphism of ceramide 6: A vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(α-hydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids. 2005;133:89–102. doi: 10.1016/j.chemphyslip.2004.09.015. PubMed DOI
Garidel P. The thermotropic phase behaviour of phyto-ceramide 1 as investigated by ATR-FTIR and DSC. Phys. Chem. Chem. Phys. 2002;4:2714–2720. doi: 10.1039/b200618a. DOI
Garidel P., Folting B., Schaller I., Kerth A. The microstructure of the stratum corneum lipid barrier: Mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys. Chem. 2010;150:144–156. doi: 10.1016/j.bpc.2010.03.008. PubMed DOI
Ruettinger A., Kiselev M.A., Hauss T., Dante S., Balagurov A., Neubert R. Fatty acid interdigitation in stratum corneum model membranes: A neutron diffraction study. Eur. Biophys. J. 2008;37:759–771. doi: 10.1007/s00249-008-0258-3. PubMed DOI
Schröter A., Kessner D., Kiselev M.A., Hauß T., Dante S., Neubert R.H. Basic nanostructure of stratum corneum lipid matrices based on ceramides [EOS] and [AP]: A neutron diffraction study. Biophys. J. 2009;97:1104–1114. doi: 10.1016/j.bpj.2009.05.041. PubMed DOI PMC
Kessner D., Ruettinger A., Kiselev M., Wartewig S., Neubert R. Properties of ceramides and their impact on the stratum corneum structure. Skin Pharmacol. Physiol. 2008;21:58–74. doi: 10.1159/000112956. PubMed DOI
Schmitt T., Lange S., Sonnenberger S., Dobner B., Deme B., Neubert R.H.H., Gooris G., Bouwstra J.A. Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction. Chem. Phys. Lipids. 2017;209:29–36. doi: 10.1016/j.chemphyslip.2017.11.001. PubMed DOI
Mojumdar E.H., Kariman Z., van Kerckhove L., Gooris G.S., Bouwstra J.A. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim. Biophys. Acta. 2014;1838:2473–2483. doi: 10.1016/j.bbamem.2014.05.023. PubMed DOI
Bouwstra J.A., Gooris G.S., van der Spek J.A., Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Investig. Dermatol. 1991;97:1005–1012. doi: 10.1111/1523-1747.ep12492217. PubMed DOI
Bouwstra J., Gooris G., Salomons-de Vries M., Van der Spek J., Bras W. Structure of human stratum corneum as a function of temperature and hydration: A wide-angle X-ray diffraction study. Int. J. Pharm. 1992;84:205–216. doi: 10.1016/0378-5173(92)90158-X. DOI
de Jager M.W., Gooris G.S., Dolbnya I.P., Bras W., Ponec M., Bouwstra J.A. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids. 2003;124:123–134. doi: 10.1016/S0009-3084(03)00050-1. PubMed DOI
Dahlén B., Pascher I. Molecular arrangements in sphingolipids. Thermotropic phase behaviour of tetracosanoylphytosphingosine. Chem. Phys. Lipids. 1979;24:119–133. doi: 10.1016/0009-3084(79)90082-3. DOI
Dahlen B., Pascher I. Molecular arrangements in sphingolipids. Crystal structure of N-tetracosanoylphytosphingosine. Acta Crystallogr. Sect. B. 1972;28:2396–2404. doi: 10.1107/S0567740872006193. DOI
Mendelsohn R., Moore D.J. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96:141–157. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI
Snyder R.G., Schachtschneider J.H. Vibrational analysis of the n-paraffins—I: Assignments of infrared bands in the spectra of C3H8 through n-C19H40. Spectrochim. Acta. 1963;19:85–116. doi: 10.1016/0371-1951(63)80095-8. DOI
Kováčik A., Pullmannová P., Maixner J., Vávrová K. Effects of Ceramide and Dihydroceramide Stereochemistry at C-3 on the Phase Behavior and Permeability of Skin Lipid Membranes. Langmuir ACS J. Surf. Colloids. 2018;34:521–529. doi: 10.1021/acs.langmuir.7b03448. PubMed DOI
Pascher I. Molecular arrangements in sphingolipids Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. BBA Biomembr. 1976;455:433–451. doi: 10.1016/0005-2736(76)90316-3. PubMed DOI
van Smeden J., Boiten W.A., Hankemeier T., Rissmann R., Bouwstra J.A., Vreeken R.J. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta. 2014;1841:70–79. doi: 10.1016/j.bbalip.2013.10.002. PubMed DOI
Opálka L., Kováčik A., Maixner J., Vávrová K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir ACS J. Surf. Colloids. 2016;32:12894–12904. doi: 10.1021/acs.langmuir.6b03082. PubMed DOI
Schroeter A., Stahlberg S., Skolova B., Sonnenberger S., Eichner A., Huster D., Vavrova K., Hauss T., Dobner B., Neubert R.H., et al. Phase separation in ceramide[NP] containing lipid model membranes: Neutron diffraction and solid-state NMR. Soft Matter. 2017;13:2107–2119. doi: 10.1039/C6SM02356H. PubMed DOI
Engelbrecht T.N., Schroeter A., Hauß T., Demé B., Scheidt H.A., Huster D., Neubert R.H. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter. 2012;8:6599–6607. doi: 10.1039/c2sm25420d. DOI
Uche L.E., Gooris G.S., Beddoes C.M., Bouwstra J.A. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. BBA Biomembr. 2019;1861:1317–1328. doi: 10.1016/j.bbamem.2019.04.005. PubMed DOI
Kováčik A., Vogel A., Adler J., Pullmannová P., Vávrová K., Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. BBA Biomembr. 2018;1860:1162–1170. doi: 10.1016/j.bbamem.2018.02.003. PubMed DOI
Pullmannova P., Ermakova E., Kovacik A., Opalka L., Maixner J., Zbytovska J., Kucerka N., Vavrova K. Long And Very Long Lamellar Phases In Model Stratum Corneum Lipid Membranes. J. Lipid Res. 2019;60:963–971. doi: 10.1194/jlr.M090977. PubMed DOI PMC
Caussin J., Gooris G.S., Janssens M., Bouwstra J.A. Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. BBA Biomembr. 2008;1778:1472–1482. doi: 10.1016/j.bbamem.2008.03.003. PubMed DOI
Wertz P.W., Downing D.T. Ceramides of pig epidermis: Structure determination. J. Lipid Res. 1983;24:759–765. doi: 10.1016/S0022-2275(20)37950-5. PubMed DOI
Wertz P.W., Downing D.T. Acylglucosylceramides of pig epidermis: Structure determination. J. Lipid Res. 1983;24:753–758. doi: 10.1016/S0022-2275(20)37949-9. PubMed DOI
Ponec M., Weerheim A., Lankhorst P., Wertz P. New Acylceramide in Native and Reconstructed Epidermis. J. Investig. Dermatol. 2003;120:581–588. doi: 10.1046/j.1523-1747.2003.12103.x. PubMed DOI
Groen D., Gooris G.S., Bouwstra J.A. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir ACS J. Surf. Colloids. 2010;26:4168–4175. doi: 10.1021/la9047038. PubMed DOI