Effects of (R)- and (S)-α-Hydroxylation of Acyl Chains in Sphingosine, Dihydrosphingosine, and Phytosphingosine Ceramides on Phase Behavior and Permeability of Skin Lipid Models

. 2021 Jul 12 ; 22 (14) : . [epub] 20210712

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34299088

Grantová podpora
19-09135J Grantová Agentura České Republiky
SVV 260547 Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000841 EFSA-CDN

Ceramides (Cers) with α-hydroxylated acyl chains comprise about a third of all extractable skin Cers and are required for permeability barrier homeostasis. We have probed here the effects of Cer hydroxylation on their behavior in lipid models comprising the major SC lipids, Cer/free fatty acids (C 16-C 24)/cholesterol, and a minor component, cholesteryl sulfate. Namely, Cers with (R)-α-hydroxy lignoceroyl chains attached to sphingosine (Cer AS), dihydrosphingosine (Cer AdS), and phytosphingosine (Cer AP) were compared to their unnatural (S)-diastereomers and to Cers with non-hydroxylated lignoceroyl chains attached to sphingosine (Cer NS), dihydrosphingosine (Cer NdS), and phytosphingosine (Cer NP). By comparing several biophysical parameters (lamellar organization by X-ray diffraction, chain order, lateral packing, phase transitions, and lipid mixing by infrared spectroscopy using deuterated lipids) and the permeabilities of these models (water loss and two permeability markers), we conclude that there is no general or common consequence of Cer α-hydroxylation. Instead, we found a rich mix of effects, highly dependent on the sphingoid base chain, configuration at the α-carbon, and permeability marker used. We found that the model membranes with unnatural Cer (S)-AS have fewer orthorhombically packed lipid chains than those based on the (R)-diastereomer. In addition, physiological (R)-configuration decreases the permeability of membranes, with Cer (R)-AdS to theophylline, and increases the lipid chain order in model systems with natural Cer (R)-AP. Thus, each Cer subclass makes a distinct contribution to the structural organization and function of the skin lipid barrier.

Zobrazit více v PubMed

Elias P.M. Epidermal Barrier Function-Intercellular Lamellar Lipid Structures, Origin, Composition and Metabolism. J. Control. Release. 1991;15:199–208. doi: 10.1016/0168-3659(91)90111-P. DOI

Wertz P.W., van den Bergh B. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids. 1998;91:85–96. doi: 10.1016/S0009-3084(97)00108-4. PubMed DOI

Bouwstra J.A., Dubbelaar F.E., Gooris G.S., Ponec M. The lipid organisation in the skin barrier. Acta Derm. Venereol. Suppl. 2000;208:23–30. PubMed

Bouwstra J., Pilgram G., Gooris G., Koerten H., Ponec M. New aspects of the skin barrier organization. Skin Pharmacol. Physiol. 2001;14:52–62. doi: 10.1159/000056391. PubMed DOI

Feingold K., Elias P. The important role of lipids in the epidermis and their role in the formation and maintenance of the cutaneous barrier. Biochim. Biophys. Acta. 2014;1841:279. doi: 10.1016/j.bbalip.2013.12.004. PubMed DOI

Motta S., Monti M., Sesana S., Caputo R., Carelli S., Ghidoni R. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta. 1993;1182:147–151. doi: 10.1016/0925-4439(93)90135-N. PubMed DOI

Breiden B., Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation. Biochim. Biophys. Acta. 2014;1841:441–452. doi: 10.1016/j.bbalip.2013.08.010. PubMed DOI

Skolova B., Jandovska K., Pullmannova P., Tesar O., Roh J., Hrabalek A., Vavrova K. The role of the trans double bond in skin barrier sphingolipids: Permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. Langmuir ACS J. Surf. Colloids. 2014;30:5527–5535. doi: 10.1021/la500622f. PubMed DOI

Skolova B., Janusova B., Zbytovska J., Gooris G., Bouwstra J., Slepicka P., Berka P., Roh J., Palat K., Hrabalek A., et al. Ceramides in the skin lipid membranes: Length matters. Langmuir ACS J. Surf. Colloids. 2013;29:15624–15633. doi: 10.1021/la4037474. PubMed DOI

Skolova B., Janusova B., Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BBA Biomembr. 2016;1858:220–232. doi: 10.1016/j.bbamem.2015.11.019. PubMed DOI

Skolova B., Hudska K., Pullmannova P., Kovacik A., Palat K., Roh J., Fleddermann J., Estrela-Lopis I., Vavrova K. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: Infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460–10470. doi: 10.1021/jp506407r. PubMed DOI

Pullmannová P., Pavlíková L., Kováčik A., Sochorová M., Školová B., Slepička P., Maixner J., Zbytovská J., Vávrová K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. doi: 10.1016/j.bpc.2017.03.004. PubMed DOI

Kovacik A., Roh J., Vavrova K. The chemistry and biology of 6-hydroxyceramide, the youngest member of the human sphingolipid family. ChemBioChem. 2014;15:1555–1562. doi: 10.1002/cbic.201402153. PubMed DOI

Rerek M.E., Van Wyck D., Mendelsohn R., Moore D.J. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids. 2005;134:51–58. doi: 10.1016/j.chemphyslip.2004.12.002. PubMed DOI

Rerek M.E., Chen H.-C., Markovic B., Van Wyck D., Garidel P., Mendelsohn A.R., Moore D. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding:  Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355–9362. doi: 10.1021/jp0118367. DOI

Skolova B., Kovacik A., Tesar O., Opalka L., Vavrova K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: Permeability and biophysics. BBA Biomembr. 2017;1859:824–834. doi: 10.1016/j.bbamem.2017.01.019. PubMed DOI

Kováčik A., Šilarová M., Pullmannová P., Maixner J., Vávrová K. Effects of 6-Hydroxyceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes. Langmuir ACS J. Surf. Colloids. 2017;33:2890–2899. doi: 10.1021/acs.langmuir.7b00184. PubMed DOI

t’Kindt R., Jorge L., Dumont E., Couturon P., David F., Sandra P., Sandra K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012;84:403–411. doi: 10.1021/ac202646v. PubMed DOI

Uchida Y., Hama H., Alderson N.L., Douangpanya S., Wang Y., Crumrine D.A., Elias P.M., Holleran W.M. Fatty acid 2-hydroxylase, encoded by FA2H, accounts for differentiation-associated increase in 2-OH ceramides during keratinocyte differentiation. J. Biol. Chem. 2007;282:13211–13219. doi: 10.1074/jbc.M611562200. PubMed DOI

Hama H. Fatty acid 2-Hydroxylation in mammalian sphingolipid biology. Biochim. Biophys. Acta. 2010;1801:405–414. doi: 10.1016/j.bbalip.2009.12.004. PubMed DOI PMC

Rabionet M., Gorgas K., Sandhoff R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 2014;1841:422–434. doi: 10.1016/j.bbalip.2013.08.011. PubMed DOI

Mislow K., Bleicher S. The Configuration of Cerebronic Acid. J. Am. Chem. Soc. 1954;76:2825–2826. doi: 10.1021/ja01639a065. DOI

Raudenkolb S., Wartewig S., Neubert R.H.H. Polymorphism of ceramide 6: A vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(α-hydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids. 2005;133:89–102. doi: 10.1016/j.chemphyslip.2004.09.015. PubMed DOI

Garidel P. The thermotropic phase behaviour of phyto-ceramide 1 as investigated by ATR-FTIR and DSC. Phys. Chem. Chem. Phys. 2002;4:2714–2720. doi: 10.1039/b200618a. DOI

Garidel P., Folting B., Schaller I., Kerth A. The microstructure of the stratum corneum lipid barrier: Mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys. Chem. 2010;150:144–156. doi: 10.1016/j.bpc.2010.03.008. PubMed DOI

Ruettinger A., Kiselev M.A., Hauss T., Dante S., Balagurov A., Neubert R. Fatty acid interdigitation in stratum corneum model membranes: A neutron diffraction study. Eur. Biophys. J. 2008;37:759–771. doi: 10.1007/s00249-008-0258-3. PubMed DOI

Schröter A., Kessner D., Kiselev M.A., Hauß T., Dante S., Neubert R.H. Basic nanostructure of stratum corneum lipid matrices based on ceramides [EOS] and [AP]: A neutron diffraction study. Biophys. J. 2009;97:1104–1114. doi: 10.1016/j.bpj.2009.05.041. PubMed DOI PMC

Kessner D., Ruettinger A., Kiselev M., Wartewig S., Neubert R. Properties of ceramides and their impact on the stratum corneum structure. Skin Pharmacol. Physiol. 2008;21:58–74. doi: 10.1159/000112956. PubMed DOI

Schmitt T., Lange S., Sonnenberger S., Dobner B., Deme B., Neubert R.H.H., Gooris G., Bouwstra J.A. Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction. Chem. Phys. Lipids. 2017;209:29–36. doi: 10.1016/j.chemphyslip.2017.11.001. PubMed DOI

Mojumdar E.H., Kariman Z., van Kerckhove L., Gooris G.S., Bouwstra J.A. The role of ceramide chain length distribution on the barrier properties of the skin lipid membranes. Biochim. Biophys. Acta. 2014;1838:2473–2483. doi: 10.1016/j.bbamem.2014.05.023. PubMed DOI

Bouwstra J.A., Gooris G.S., van der Spek J.A., Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Investig. Dermatol. 1991;97:1005–1012. doi: 10.1111/1523-1747.ep12492217. PubMed DOI

Bouwstra J., Gooris G., Salomons-de Vries M., Van der Spek J., Bras W. Structure of human stratum corneum as a function of temperature and hydration: A wide-angle X-ray diffraction study. Int. J. Pharm. 1992;84:205–216. doi: 10.1016/0378-5173(92)90158-X. DOI

de Jager M.W., Gooris G.S., Dolbnya I.P., Bras W., Ponec M., Bouwstra J.A. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids. 2003;124:123–134. doi: 10.1016/S0009-3084(03)00050-1. PubMed DOI

Dahlén B., Pascher I. Molecular arrangements in sphingolipids. Thermotropic phase behaviour of tetracosanoylphytosphingosine. Chem. Phys. Lipids. 1979;24:119–133. doi: 10.1016/0009-3084(79)90082-3. DOI

Dahlen B., Pascher I. Molecular arrangements in sphingolipids. Crystal structure of N-tetracosanoylphytosphingosine. Acta Crystallogr. Sect. B. 1972;28:2396–2404. doi: 10.1107/S0567740872006193. DOI

Mendelsohn R., Moore D.J. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96:141–157. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI

Snyder R.G., Schachtschneider J.H. Vibrational analysis of the n-paraffins—I: Assignments of infrared bands in the spectra of C3H8 through n-C19H40. Spectrochim. Acta. 1963;19:85–116. doi: 10.1016/0371-1951(63)80095-8. DOI

Kováčik A., Pullmannová P., Maixner J., Vávrová K. Effects of Ceramide and Dihydroceramide Stereochemistry at C-3 on the Phase Behavior and Permeability of Skin Lipid Membranes. Langmuir ACS J. Surf. Colloids. 2018;34:521–529. doi: 10.1021/acs.langmuir.7b03448. PubMed DOI

Pascher I. Molecular arrangements in sphingolipids Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. BBA Biomembr. 1976;455:433–451. doi: 10.1016/0005-2736(76)90316-3. PubMed DOI

van Smeden J., Boiten W.A., Hankemeier T., Rissmann R., Bouwstra J.A., Vreeken R.J. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta. 2014;1841:70–79. doi: 10.1016/j.bbalip.2013.10.002. PubMed DOI

Opálka L., Kováčik A., Maixner J., Vávrová K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir ACS J. Surf. Colloids. 2016;32:12894–12904. doi: 10.1021/acs.langmuir.6b03082. PubMed DOI

Schroeter A., Stahlberg S., Skolova B., Sonnenberger S., Eichner A., Huster D., Vavrova K., Hauss T., Dobner B., Neubert R.H., et al. Phase separation in ceramide[NP] containing lipid model membranes: Neutron diffraction and solid-state NMR. Soft Matter. 2017;13:2107–2119. doi: 10.1039/C6SM02356H. PubMed DOI

Engelbrecht T.N., Schroeter A., Hauß T., Demé B., Scheidt H.A., Huster D., Neubert R.H. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter. 2012;8:6599–6607. doi: 10.1039/c2sm25420d. DOI

Uche L.E., Gooris G.S., Beddoes C.M., Bouwstra J.A. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. BBA Biomembr. 2019;1861:1317–1328. doi: 10.1016/j.bbamem.2019.04.005. PubMed DOI

Kováčik A., Vogel A., Adler J., Pullmannová P., Vávrová K., Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. BBA Biomembr. 2018;1860:1162–1170. doi: 10.1016/j.bbamem.2018.02.003. PubMed DOI

Pullmannova P., Ermakova E., Kovacik A., Opalka L., Maixner J., Zbytovska J., Kucerka N., Vavrova K. Long And Very Long Lamellar Phases In Model Stratum Corneum Lipid Membranes. J. Lipid Res. 2019;60:963–971. doi: 10.1194/jlr.M090977. PubMed DOI PMC

Caussin J., Gooris G.S., Janssens M., Bouwstra J.A. Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. BBA Biomembr. 2008;1778:1472–1482. doi: 10.1016/j.bbamem.2008.03.003. PubMed DOI

Wertz P.W., Downing D.T. Ceramides of pig epidermis: Structure determination. J. Lipid Res. 1983;24:759–765. doi: 10.1016/S0022-2275(20)37950-5. PubMed DOI

Wertz P.W., Downing D.T. Acylglucosylceramides of pig epidermis: Structure determination. J. Lipid Res. 1983;24:753–758. doi: 10.1016/S0022-2275(20)37949-9. PubMed DOI

Ponec M., Weerheim A., Lankhorst P., Wertz P. New Acylceramide in Native and Reconstructed Epidermis. J. Investig. Dermatol. 2003;120:581–588. doi: 10.1046/j.1523-1747.2003.12103.x. PubMed DOI

Groen D., Gooris G.S., Bouwstra J.A. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir ACS J. Surf. Colloids. 2010;26:4168–4175. doi: 10.1021/la9047038. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...