Structure-Function Relationship of the Most Abundant Ceramide Subspecies Studied on Monolayer Models Using GIXD and Langmuir Isotherms
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40424481
PubMed Central
PMC12164350
DOI
10.1021/acs.langmuir.5c01340
Knihovny.cz E-resources
- MeSH
- Ceramides * chemistry MeSH
- X-Ray Diffraction MeSH
- Humans MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Ceramides * MeSH
The main lipid compounds of the outermost layer of human skin are ceramides (CERs), free fatty acids, and cholesterol. Although numerous studies performed in the past could demonstrate the importance of these lipids for an intact skin barrier function, knowledge about the impact of each single component on the lamellar lipid films is still lacking. Especially, the CERs are a very heterogeneous group with high relevance for a proper barrier. It was found that the reason for the high stability of the lamellae is related to the lipid structure and function, with the type and extent of interactions between the head groups of the individual CER subspecies being particularly important. Elucidating these at the molecular level could help us to understand CER phase behavior in general. Using grazing incidence X-ray diffraction and measurements of Langmuir isotherms, the current work investigated the lateral packing of the monolayers of different subclasses of C18:0 CERs at air-water interfaces, including phytosphingosine, sphingosine, and dihydrosphingosine CERs, all with either α-hydroxy and nonhydroxy N-acylated fatty acyl. We were able to observe clear effects of the minimal differences in the polar headgroup structures of the sphingoid bases, with respect to the number and position of hydroxyl groups and double bonds, on the CER arrangement regarding the compressibility and structure of the films they formed, revealing that the hydroxyl group at the C4 of the phytosphingosine CERs leads not only to the formation of a hydrogen bond network but also to a stable suprastructure, which might be of high benefit for the barrier properties of intact skin.
See more in PubMed
Rousel J., Nădăban A., Saghari M., Pagan L., Zhuparris A., Theelen B., Gambrah T., van der Wall H. E. C., Vreeken R. J., Feiss G. L.. et al. Lesional skin of seborrheic dermatitis patients is characterized by skin barrier dysfunction and correlating alterations in the stratum corneum ceramide composition. Exp. Dermatol. 2024;33:e14952. doi: 10.1111/exd.14952. PubMed DOI
Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Hankemeier T., Kezic S., Wolterbeek R.. et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 2012;53:2755–2766. doi: 10.1194/jlr.P030338. PubMed DOI PMC
Di Nardo A., Wertz P., Giannetti A., Seidenari S.. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 1998;78:27–30. PubMed
Rousel J., Mergen C., Bergmans M. E., Klarenbeek N., der Kolk T., van Doorn M., Bouwstra J., Rissmann R., Rissmann R., Consortium t. N.-G. I.. Lesional Psoriasis is Associated With Alterations in the Stratum Corneum Ceramide Profile and Concomitant Decreases in Barrier Function. Exp. Dermatol. 2024;33:e15185. doi: 10.1111/exd.15185. PubMed DOI
Elias P. M.. Epidermal lipids, barrier function, and desquamation. J. Invest. Dermatol. 1983;80:44s–49s. doi: 10.1111/1523-1747.ep12537108. PubMed DOI
Gray G. M., Yardley H. J.. Lipid compositions of cells isolated from pig, human, and rat epidermis. J. Lipid Res. 1975;16:434–440. doi: 10.1016/S0022-2275(20)34493-X. PubMed DOI
Yardley H. J., Summerly R.. Lipid composition and metabolism in normal and diseased epidermis. Pharmacol. Ther. 1981;13:357–383. doi: 10.1016/0163-7258(81)90006-1. PubMed DOI
Pascher I., Lundmark M., Nyholm P.-G., Sundell S.. Crystal structures of membrane lipids. Biochim. Biophys. Acta Rev. Biomembr. 1992;1113:339–373. doi: 10.1016/0304-4157(92)90006-V. PubMed DOI
Kawana M., Miyamoto M., Ohno Y., Kihara A.. Comparative profiling and comprehensive quantification of stratum corneum ceramides in humans and mice by LC/MS/MS. J. Lipid Res. 2020;61:884–895. doi: 10.1194/jlr.RA120000671. PubMed DOI PMC
Motta S., Monti M., Sesana S., Caputo R., Carelli S., Ghidoni R.. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1993;1182:147–151. doi: 10.1016/0925-4439(93)90135-N. PubMed DOI
Masukawa Y., Narita H., Sato H., Naoe A., Kondo N., Sugai Y., Oba T., Homma R., Ishikawa J., Takagi Y.. et al. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 2009;50:1708–1719. doi: 10.1194/jlr.D800055-JLR200. PubMed DOI PMC
van Smeden J., Al-Khakany H., Wang Y., Visscher D., Stephens N., Absalah S., Overkleeft H. S., Aerts J. M. F. G., Hovnanian A., Bouwstra J. A.. Skin barrier lipid enzyme activity in Netherton patients is associated with protease activity and ceramide abnormalities[S] J. Lipid Res. 2020;61:859–869. doi: 10.1194/jlr.RA120000639. PubMed DOI PMC
t’Kindt R. J. L., Dumont E., Couturon P., David F., Sandra P., Sandra K.. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012;84:403–411. PubMed
Nădăban A., Frame C. O., El Yachioui D., Gooris G. S., Dalgliesh R. M., Malfois M., Iacovella C. R., Bunge A. L., McCabe C., Bouwstra J. A.. The Sphingosine and Phytosphingosine Ceramide Ratio in Lipid Models Forming the Short Periodicity Phase: An Experimental and Molecular Simulation Study. Langmuir. 2024;40:13794–13809. doi: 10.1021/acs.langmuir.4c00554. PubMed DOI PMC
White S. H., Mirejovsky D., King G. I.. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An x-ray diffraction study. Biochemistry. 1988;27:3725–3732. doi: 10.1021/bi00410a031. PubMed DOI
Schroter A., Kessner D., Kiselev M. A., Hauss T., Dante S., Neubert R. H.. Basic nanostructure of stratum corneum lipid matrices based on ceramides [EOS] and [AP]: a neutron diffraction study. Biophys. J. 2009;97:1104–1114. doi: 10.1016/j.bpj.2009.05.041. PubMed DOI PMC
Eichner A., Sonnenberger S., Dobner B., Hauss T., Schroeter A., Neubert R. H. H.. Localization of methyl-branched ceramide [EOS] species within the long-periodicity phase in stratum corneum lipid model membranes: A neutron diffraction study. Biochim. Biophys. Acta. 2016;1858:2911–2922. doi: 10.1016/j.bbamem.2016.09.002. PubMed DOI
Sonnenberger S., Eichner A., Hauss T., Schroeter A., Neubert R. H., Dobner B.. Synthesis of specifically deuterated ceramide [AP]-C18 and its biophysical characterization using neutron diffraction. Chem. Phys. Lipids. 2017;204:15–24. doi: 10.1016/j.chemphyslip.2017.02.001. PubMed DOI
Engelbrecht T. N., Schroeter A., Hauß T., Demé B., Scheidt H. A., Huster D., Neubert R. H. H.. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter. 2012;8:6599–6607. doi: 10.1039/c2sm25420d. DOI
Schmitt T., Lange S., Dobner B., Sonnenberger S., Hauss T., Neubert R. H. H.. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. Langmuir. 2018;34:1742–1749. doi: 10.1021/acs.langmuir.7b01848. PubMed DOI
Schmitt T., Lange S., Sonnenberger S., Dobner B., Deme B., Neubert R. H. H., Gooris G., Bouwstra J. A.. Determination of the influence of C24 D/(2R)- and L/(2S)-isomers of the CER[AP] on the lamellar structure of stratum corneum model systems using neutron diffraction. Chem. Phys. Lipids. 2017;209:29–36. doi: 10.1016/j.chemphyslip.2017.11.001. PubMed DOI
Engberg O., Kováčik A., Pullmannová P., Juhaščik M., Opálka L., Huster D., Vávrová K.. The Sphingosine and Acyl Chains of Ceramide [NS] Show Very Different Structure and Dynamics That Challenge Our Understanding of the Skin Barrier. Angew. Chem., Int. Ed. 2020;59:17383–17387. doi: 10.1002/anie.202003375. PubMed DOI PMC
Schroeter A., Stahlberg S., Skolova B., Sonnenberger S., Eichner A., Huster D., Vavrova K., Hauss T., Dobner B., Neubert R. H.. et al. Phase separation in ceramide[NP] containing lipid model membranes: neutron diffraction and solid-state NMR. Soft Matter. 2017;13:2107–2119. doi: 10.1039/C6SM02356H. PubMed DOI
Stahlberg S., Eichner A., Sonnenberger S., Kovacik A., Lange S., Schmitt T., Deme B., Hauss T., Dobner B., Neubert R. H. H.. et al. Influence of a Novel Dimeric Ceramide Molecule on the Nanostructure and Thermotropic Phase Behavior of a Stratum Corneum Model Mixture. Langmuir. 2017;33:9211–9221. doi: 10.1021/acs.langmuir.7b01227. PubMed DOI
Nădăban A., Rousel J., El Yachioui D., Gooris G. S., Beddoes C. M., Dalgliesh R. M., Malfois M., Rissmann R., Bouwstra J. A.. Effect of sphingosine and phytosphingosine ceramide ratio on lipid arrangement and barrier function in skin lipid models. J. Lipid Res. 2023;64:100400. doi: 10.1016/j.jlr.2023.100400. PubMed DOI PMC
Nădăban A., Gooris G. S., Beddoes C. M., Dalgliesh R. M., Malfois M., Demé B., Bouwstra J. A.. The molecular arrangement of ceramides in the unit cell of the long periodicity phase of stratum corneum models shows a high adaptability to different ceramide head group structures. Biochim. Biophys. Acta Biomembr. 2024;1866:184324. doi: 10.1016/j.bbamem.2024.184324. PubMed DOI
Ramos A. P., Bouwstra J. A., Lafleur M.. Very Long Chain Lipids Favor the Formation of a Homogeneous Phase in Stratum Corneum Model Membranes. Langmuir. 2020;36:13899–13907. doi: 10.1021/acs.langmuir.0c02305. PubMed DOI
Elias P. M., Bonar L., Grayson S., Baden H. P.. X-ray Diffraction Analysis of Stratum Corneum Membrane Couplets. J. Invest. Dermatol. 1983;80:213–214. doi: 10.1111/1523-1747.ep12534362. PubMed DOI
Boncheva M., Damien F., Normand V.. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta Biomembr. 2008;1778:1344–1355. doi: 10.1016/j.bbamem.2008.01.022. PubMed DOI
Lafleur M.. Phase behaviour of model stratum corneum lipid mixtures: an infrared spectroscopy investigation. Can. J. Chem. 1998;76:1501–1511. doi: 10.1139/v98-114. DOI
Moore D. J., Rerek M. E., Mendelsohn R.. Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. Biochem. Biophys. Res. Commun. 1997;231:797–801. doi: 10.1006/bbrc.1997.6189. PubMed DOI
Damien F., Boncheva M.. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010;130:611–614. doi: 10.1038/jid.2009.272. PubMed DOI
Sahle F. F., Gebre-Mariam T., Dobner B., Wohlrab J., Neubert R. H.. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol. Physiol. 2015;28:42–55. doi: 10.1159/000360009. PubMed DOI
Uche L. E., Gooris G. S., Beddoes C. M., Bouwstra J. A.. New insight into phase behavior and permeability of skin lipid models based on sphingosine and phytosphingosine ceramides. Biochim. Biophys. Acta Biomembr. 2019;1861:1317–1328. doi: 10.1016/j.bbamem.2019.04.005. PubMed DOI
Školová B., Kováčik A., Tesar O., Opálka L., Vávrová K.. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. Biochim. Biophys. Acta Biomembr. 2017;1859:824–834. doi: 10.1016/j.bbamem.2017.01.019. PubMed DOI
Moore D. J., Rerek M. E., Mendelsohn R.. Role of Ceramides 2 and 5 in the Structure of the Stratum Corneum Lipid Barrier. Int. J. Cosmet. Sci. 1999;21:353–368. doi: 10.1046/j.1467-2494.1999.211916.x. PubMed DOI
Pascher I.. Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim. Biophys. Acta. 1976;455:433–451. doi: 10.1016/0005-2736(76)90316-3. PubMed DOI
Rerek M. E., Chen, Markovic B., Van Wyck D., Garidel P., Mendelsohn R., Moore D. J.. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355–9362. doi: 10.1021/jp0118367. DOI
Moore D. J., Rerek M. E., Mendelsohn R.. FTIR Spectroscopy Studies of the Conformational Order and Phase Behavior of Ceramides. J. Phys. Chem. B. 1997;101:8933–8940. doi: 10.1021/jp9718109. DOI
Mendelsohn R., Rerek M. E., Moore D. J.. Infrared spectroscopy and microscopic imaging of stratum corneum models and skin. Invited Lecture. Phys. Chem. Chem. Phys. 2000;2:4651–4657. doi: 10.1039/b003861j. DOI
Gillams R. J., Busto J. V., Busch S., Goñi F. M., Lorenz C. D., McLain S. E.. Solvation and Hydration of the Ceramide Headgroup in a Non-Polar Solution. J. Phys. Chem. B. 2015;119:128–139. doi: 10.1021/jp5107789. PubMed DOI
Raudenkolb S., Wartewig S., Brezesinski G., Funari S. S., Neubert R. H. H.. Hydration properties of N-(α-hydroxyacyl)-sphingosine: X-ray powder diffraction and FT–Raman spectroscopic studies. Chem. Phys. Lipids. 2005;136:13–22. doi: 10.1016/j.chemphyslip.2005.03.005. PubMed DOI
Groen D., Gooris G. S., Barlow D. J., Lawrence M. J., van Mechelen J. B., Demé B., Bouwstra J. A.. Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys. J. 2011;100:1481–1489. doi: 10.1016/j.bpj.2011.02.001. PubMed DOI PMC
Kiselev M. A., Ryabova N. Y., Balagurov A. M., Dante S., Hauss T., Zbytovska J., Wartewig S., Neubert R. H. H.. New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur. Biophys. J. 2005;34:1030–1040. doi: 10.1007/s00249-005-0488-6. PubMed DOI
Moore D. J., Rerek M. E.. Insights into the molecular organization of lipids in the skin barrier from infrared spectroscopy studies of stratum corneum lipid models. Acta Derm. Venereol. Suppl. 2000;80:16–22. PubMed
Löfgren H., Pascher I.. Molecular arrangements of sphingolipids. The monolayer behaviour of ceramides. Chem. Phys. Lipids. 1977;20:273–284. doi: 10.1016/0009-3084(77)90068-8. PubMed DOI
Dahlén B., Pascher I.. Molecular arrangements in sphingolipids. Thermotropic phase behaviour of tetracosanoylphytosphingosine. Chem. Phys. Lipids. 1979;24:119–133. doi: 10.1016/0009-3084(79)90082-3. DOI
Rerek M. E., Van Wyck D., Mendelsohn R., Moore D. J.. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids. 2005;134:51–58. doi: 10.1016/j.chemphyslip.2004.12.002. PubMed DOI
Školová B., Jandovská K., Pullmannová P., Tesař O., Roh J., Hrabálek A., Vávrová K.. The Role of the Trans Double Bond in Skin Barrier Sphingolipids: Permeability and Infrared Spectroscopic Study of Model Ceramide and Dihydroceramide Membranes. Langmuir. 2014;30:5527–5535. doi: 10.1021/la500622f. PubMed DOI
Kováčik A., Pullmannová P., Opálka L., Šilarová M., Maixner J., Vávrová K.. Effects of (R)- and (S)-α-Hydroxylation of Acyl Chains in Sphingosine, Dihydrosphingosine, and Phytosphingosine Ceramides on Phase Behavior and Permeability of Skin Lipid Models. Int. J. Mol. Sci. 2021;22:7468. doi: 10.3390/ijms22147468. PubMed DOI PMC
Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., Berka P., Roh J., Palát K., Hrabálek A.. et al. Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir. 2013;29:15624–15633. doi: 10.1021/la4037474. PubMed DOI
Touge T., Kuwana M., Komatsuki Y., Tanaka S., Nara H., Matsumura K., Sayo N., Kashibuchi Y., Saito T.. Development of Asymmetric Transfer Hydrogenation with a Bifunctional Oxo-Tethered Ruthenium Catalyst in Flow for the Synthesis of a Ceramide (D-erythro-CER[NDS]) Org. Process Res. Dev. 2018;23:452–461. doi: 10.1021/acs.oprd.8b00338. DOI
Blume A.. A comparative study of the phase transitions of phospholipid bilayers and monolayers. Biochim. Biophys. Acta Biomembr. 1979;557:32–44. doi: 10.1016/0005-2736(79)90087-7. PubMed DOI
Marsh D.. Lateral pressure in membranes. Biochim. Biophys. Acta. 1996;1286:183–223. doi: 10.1016/S0304-4157(96)00009-3. PubMed DOI
Seeck O. H., Deiter C., Pflaum K., Bertam F., Beerlink A., Franz H., Horbach J., Schulte-Schrepping H., Murphy B. M., Greve M.. et al. The high-resolution diffraction beamline P08 at PETRA III. J. Synchrotron Radiat. 2012;19:30–38. doi: 10.1107/S0909049511047236. PubMed DOI
Shen C., Kirchhof R., Bertram F.. A grazing incidence diffraction setup for Langmuir trough experiments at the high-resolution diffraction beamline P08 at PETRA III. J. Phys.: Conf. Ser. 2022;2380:012047. doi: 10.1088/1742-6596/2380/1/012047. DOI
Als-Nielsen J., Jacquemain D., Kjaer K., Leveiller F., Lahav M., Leiserowitz L.. Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air-water interface. Phys. Rep. 1994;246:251–313. doi: 10.1016/0370-1573(94)90046-9. DOI
Kjaer K.. Some simple ideas on X-ray reflection and grazing-incidence diffraction from thin surfactant films. Phys. B. 1994;198:100–109. doi: 10.1016/0921-4526(94)90137-6. DOI
Stefaniu C., Brezesinski G.. Grazing incidence X-ray diffraction studies of condensed double-chain phospholipid monolayers formed at the soft air/water interface. Adv. Colloid Interface Sci. 2014;207:265–279. doi: 10.1016/j.cis.2014.01.005. PubMed DOI
Jensen, T. R. ; Kjaer, K. . Structural Properties and Interactions of Thin Films at the Air-Liquid Interface Explored by Synchrotron X-Ray Scattering. In Studies in Interface Science; Möbius, D. , Miller, R. , Eds.; Elsevier, 2001; Vol. 11, pp 205–254.
Mukhina T., Brezesinski G., Shen C., Schneck E.. Phase behavior and miscibility in lipid monolayers containing glycolipids. J. Colloid Interface Sci. 2022;615:786–796. doi: 10.1016/j.jcis.2022.01.146. PubMed DOI
Strati F., Neubert R. H. H., Opalka L., Kerth A., Brezesinski G.. Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur. J. Pharm. Sci. 2021;157:105620. doi: 10.1016/j.ejps.2020.105620. PubMed DOI
Clark, R. P. Human Skin Temperature and Its Relevance in Physiology and Clinical Assessment. In Recent Advances in Medical Thermology; Ring, E. F. J. , Phillips, B. , Eds.; Springer: New York, 1984; pp 5–15.
Holopainen J. M., Brockman H. L., Brown R. E., Kinnunen P. K. J.. Interfacial Interactions of Ceramide with Dimyristoylphosphatidylcholine: Impact of the N-Acyl Chain. Biophys. J. 2001;80:765–775. doi: 10.1016/S0006-3495(01)76056-0. PubMed DOI PMC
ten Grotenhuis E., Demel R. A., Ponec M., Boer D. R., van Miltenburg J. C., Bouwstra J. A.. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys. J. 1996;71:1389–1399. doi: 10.1016/S0006-3495(96)79341-4. PubMed DOI PMC
Staneva G., Momchilova A., Wolf C., Quinn P. J., Koumanov K.. Membrane microdomains: role of ceramides in the maintenance of their structure and functions. Biochim. Biophys. Acta. 2009;1788:666–675. doi: 10.1016/j.bbamem.2008.10.026. PubMed DOI
Catapano E., Arriaga L., Espinosa G., Monroy F., Langevin D., López-Montero I.. Solid Character of Membrane Ceramides: A Surface Rheology Study of Their Mixtures with Sphingomyelin. Biophys. J. 2011;101:2721–2730. doi: 10.1016/j.bpj.2011.10.049. PubMed DOI PMC
Kooijman E. E., Vaknin D., Bu W., Joshi L., Kang S. W., Gericke A., Mann E. K., Kumar S.. Structure of ceramide-1-phosphate at the air-water solution interface in the absence and presence of Ca2+ Biophys. J. 2009;96:2204–2215. doi: 10.1016/j.bpj.2008.11.062. PubMed DOI PMC
Crane J. M., Putz G., Hall S. B.. Persistence of Phase Coexistence in Disaturated Phosphatidylcholine Monolayers at High Surface Pressures. Biophys. J. 1999;77:3134–3143. doi: 10.1016/S0006-3495(99)77143-2. PubMed DOI PMC
Mansour H. M., Zografi G.. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface. Langmuir. 2007;23:3809–3819. doi: 10.1021/la063053o. PubMed DOI
Reed J., Grava M., Shen C., Brezesinski G., Schneck E.. Grazing-incidence X-ray diffraction elucidates structural correlations in fluid monolayers of lipids and surfactants. Nanoscale. 2025;17:3257–3269. doi: 10.1039/d4nr04198d. PubMed DOI
Brezesinski G., Bringezu F., Weidemann G., Howes P. B., Kjaer K., Möhwald H.. Influence of head group methylation on the phase behavior of lipid monolayers. Thin Solid Films. 1998;329:256–261. doi: 10.1016/S0040-6090(98)00640-3. DOI
Stefaniu C., Vilotijevic I., Santer M., Silva D. V., Brezesinski G., Seeberger P. H.. Subgel phase structure in monolayers of glycosylphosphatidylinositol glycolipids. Angew. Chem., Int. Ed. Engl. 2012;51:12874–12878. doi: 10.1002/anie.201205825. PubMed DOI
Kaganer V. M., Brezesinski G., Möhwald H., Howes P. B., Kjaer K.. Positional order in Langmuir monolayers: An x-ray diffraction study. Phys. Rev. E. 1999;59:2141–2152. doi: 10.1103/PhysRevE.59.2141. DOI
Fradin C., Daillant J., Braslau A., Luzet D., Alba M., Goldmann M.. Microscopic measurement of the linear compressibilities of two-dimensional fatty acid mesophases. Eur. Phys. J. B. 1998;1:57–69. doi: 10.1007/s100510050152. DOI
Janssens M., Gooris G., Bouwstra J. A.. Infrared spectroscopy studies of mixtures prepared with synthetic ceramides varying in head group architecture: coexistence of liquid and crystalline phases. Biochim. Biophys. Acta. 2009;1788(3):732–742. doi: 10.1016/j.bbamem.2009.01.003. PubMed DOI
Stahlberg S., Lange S., Dobner B., Huster D.. Probing the Role of Ceramide Headgroup Polarity in Short-Chain Model Skin Barrier Lipid Mixtures by 2H Solid-State NMR Spectroscopy. Langmuir. 2016;32:2023–2031. doi: 10.1021/acs.langmuir.5b04173. PubMed DOI
Strati F., Oliveira J. S. L., Opalka L., Mukhina T., Dobner B., Neubert R. H. H., Brezesinski G.. Two- and Three-Dimensional Physical–Chemical Characterization of CER[AP]: A Study of Stereochemistry and Chain Symmetry. J. Phys. Chem. B. 2021;125:9960–9969. doi: 10.1021/acs.jpcb.1c05572. PubMed DOI
Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes; Wiley-Interscience, 1980.
van Smeden J., Boiten W. A., Hankemeier T., Rissmann R., Bouwstra J. A., Vreeken R. J.. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta. 2014;1841:70–79. doi: 10.1016/j.bbalip.2013.10.002. PubMed DOI