The Sphingosine and Acyl Chains of Ceramide [NS] Show Very Different Structure and Dynamics That Challenge Our Understanding of the Skin Barrier
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32515145
PubMed Central
PMC7540555
DOI
10.1002/anie.202003375
Knihovny.cz E-resources
- Keywords
- NMR spectroscopy, chain conformation, lipids, membranes, nanostructure,
- MeSH
- Ceramides chemistry MeSH
- Cholesterol chemistry MeSH
- Deuterium chemistry MeSH
- Skin chemistry metabolism MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy MeSH
- Nanostructures chemistry MeSH
- Sphingosine chemistry MeSH
- Spectrophotometry, Infrared MeSH
- Temperature MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Ceramides MeSH
- Cholesterol MeSH
- Deuterium MeSH
- Sphingosine MeSH
The lipid phase of the uppermost human skin layer is thought to comprise highly rigid lipids in an orthorhombic phase state to protect the body against the environment. By synthesizing sphingosine-d28 deuterated N-lignoceroyl-d-erythro-sphingosine (ceramide [NS]), we compare the structure and dynamics of both chains of that lipid in biologically relevant mixtures using X-ray diffraction, 2 H NMR analysis, and infrared spectroscopy. Our results reveal a substantial fraction of sphingosine chains in a fluid and dynamic phase state at physiological temperature. These findings prompt revision of our current understanding of the skin lipid barrier, where an extended ceramide [NS] conformation is preferred and a possible domain structure is proposed. Mobile lipid chains may be crucial for skin elasticity and the translocation of physiologically important molecules.
See more in PubMed
Knutson K., Krill S., Lambert W., Higuchi W., J. Controlled Release 1987, 6, 59–74.
Groen D., Gooris G. S., Barlow D. J., Lawrence M. J., van Mechelen J. B., Deme B., Bouwstra J. A., Biophys. J. 2011, 100, 1481–1489. PubMed PMC
Bouwstra J. A., Gooris G. S., Cheng K., Weerheim A., Bras W., Ponec M., J. Lipid Res. 1996, 37, 999–1011. PubMed
Brief E., Kwak S., Cheng J. T., Kitson N., Thewalt J., Lafleur M., Langmuir 2009, 25, 7523–7532. PubMed
Stahlberg S., Skolova B., Madhu P. K., Vogel A., Vavrova K., Huster D., Langmuir 2015, 31, 4906–4915. PubMed
Pham Q. D., Topgaard D., Sparr E., Proc. Natl. Acad. Sci. USA 2017, 114, E112–E121. PubMed PMC
Mendelsohn R., Moore D. J., Methods Enzymol. 2000, 312, 228–247. PubMed
Chen X., Kwak S., Lafleur M., Bloom M., Kitson N., Thewalt J., Langmuir 2007, 23, 5548–5556. PubMed
Paz R. A., Gooris G., Bouwstra J., Lafleur M., J. Lipid Res. 2018, 59, 137–143. PubMed PMC
Pham Q. D., Mojumdar E. H., Gooris G. S., Bouwstra J. A., Sparr E., Topgaard D., Q Rev Biophys 2018, 51, e7. PubMed
Huster D., Gawrisch K., J. Am. Chem. Soc. 1999, 121, 1992–1993.
Stahlberg S., Eichner A., Sonnenberger S., Kovácik A., Lange S., Schmitt T., Deme B., Hauß T., Dobner B., Neubert R. H. H., Huster D., Langmuir 2017, 33, 9211–9221. PubMed
Wang E., Klauda J. B., J. Am. Chem. Soc. 2019, 141, 16930–16943. PubMed
Grieco P. A., Gilman S., Nishizawa M., J. Org. Chem. 1976, 41, 1485–1486.
Atzrodt J., Derdau V., Kerr W. J., Reid M., Angew. Chem. Int. Ed. 2018, 57, 1758–1784; PubMed
Angew. Chem. 2018, 130, 1774–1802.
Mlynarski S. N., Schuster C. H., Morken J. P., Nature 2014, 505, 386–390. PubMed PMC
Ulman M., Grubbs R. H., Organometallics 1998, 17, 2484–2489.
Školová B., Hudská K., Pullmannová P., Kováčik A., Palát K., Roh J., Fleddermann J., Hrabalek A., Estrela-Lopis I., Vávrová K., J. Phys. Chem. B 2014, 118, 10460–10470. PubMed
Bouwstra J. A., Gooris G. S., Salomons-d Vries M. A., van der Spek J. A., Bras W., Int. J. Pharm. 1992, 84, 205–216.
Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., Vávrová K., Langmuir 2013, 29, 15624–15633. PubMed
Beshah K., Olejniczak E. T., Griffin R. G., J. Chem. Phys. 1987, 86, 4730–4736.
Davis J. H., Biochim. Biophys. Acta Rev. Biomembr. 1983, 737, 117–171. PubMed
Thurmond R. L., Lindblom G., Brown M. F., Biochemistry 1993, 32, 5394–5410. PubMed
Petrache H. I., Dodd S. W., Brown M. F., Biophys. J. 2000, 79, 3172–3192. PubMed PMC
Feller S. E., Gawrisch K., A. D. MacKerell, Jr. , J. Am. Chem. Soc. 2002, 124, 318–326. PubMed
Bunge A., Müller P., Stöckl M., Herrmann A., Huster D., Biophys. J. 2008, 94, 2680–2690. PubMed PMC
Veatch S. L., Soubias O., Keller S. L., Gawrisch K., Proc. Natl. Acad. Sci. USA 2007, 104, 17650–17655. PubMed PMC
Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Hankemeier T., Kezic S., Wolterbeek R., Lavrijsen A. P., Bouwstra J. A., J. Lipid Res. 2012, 53, 2755–2766. PubMed PMC
Gay C. L., Guy R. H., Golden G. M., Mak V. H., Francoeur M. L., J. Invest. Dermatol. 1994, 103, 233–239. PubMed
de Jager M., Groenink W., van der Spek J., Janmaat C., Gooris G., Ponec M., Bouwstra J., Biochim. Biophys. Acta Biomembr. 2006, 1758, 636–644. PubMed
Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films