The intriguing molecular dynamics of Cer[EOS] in rigid skin barrier lipid layers requires improvement of the model
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36948272
PubMed Central
PMC10154977
DOI
10.1016/j.jlr.2023.100356
PII: S0022-2275(23)00029-9
Knihovny.cz E-zdroje
- Klíčová slova
- NMR spectroscopy, lipid assembly, lipid chain order, long periodicity phase, molecular dynamics, neutron diffraction, stratum corneum models,
- MeSH
- ceramidy chemie MeSH
- epidermis MeSH
- kůže chemie MeSH
- kyselina linolová * MeSH
- sfingosin analýza MeSH
- simulace molekulární dynamiky * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- kyselina linolová * MeSH
- sfingosin MeSH
Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion toward the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid, and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic "fillings" i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes, or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.
Faculty of Pharmacy Comenius University in Bratislava Bratislava Slovakia
Institut Laue Langevin Grenoble France
Institute of Macromolecular Chemistry Czech Academy of Science Prague Prague Czech Republic
Institute of Medical Physics and Biophysics University of Leipzig Leipzig Germany
Skin Barrier Research Group Faculty of Pharmacy Charles University Hradec Králové Czech Republic
Zobrazit více v PubMed
Scheuplein R.J., Blank I.H. Permeability of the skin. Physiol. Rev. 1971;51:702–747. PubMed
Iwai I., Han H., den H.L., Svensson S., Ofverstedt L.G., Anwar J., et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215–2225. PubMed
Madison K.C., Swartzendruber D.C., Wertz P.W., Downing D.T. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 1987;88:714–718. PubMed
Swartzendruber D.C., Wertz P.W., Kitko D.J., Madison K.C., Downing D.T. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J. Invest. Dermatol. 1989;92:251–257. PubMed
van Smeden J., Janssens M., Gooris G.S., Bouwstra J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta. 2014;1841:295–313. PubMed
Bouwstra J.A., Ponec M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta. 2006;1758:2080–2095. PubMed
White S.H., Mirejovsky D., King G.I. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 1988;27:3725–3732. PubMed
Kessner D., Ruettinger A., Kiselev M.A., Wartewig S., Neubert R.H. Properties of ceramides and their impact on the stratum corneum structure. Part 2: stratum corneum lipid model systems. Skin Pharmacol. Physiol. 2008;21:58–74. PubMed
Hou S.Y., Mitra A.K., White S.H., Menon G.K., Ghadially R., Elias P.M. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J. Invest. Dermatol. 1991;96:215–223. PubMed
Bouwstra J.A., Gooris G.S., van der Spek J.A., Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 1991;97:1005–1012. PubMed
Mendelsohn R., Moore D.J. Infrared determination of conformational order and phase behavior in ceramides and stratum corneum models. Met. Enzymol. 2000;312:228–247. PubMed
Pham Q.D., Topgaard D., Sparr E. Tracking solvents in the skin through atomically resolved measurements of molecular mobility in intact stratum corneum. Proc. Natl. Acad. Sci. U. S. A. 2017;114:E112–E121. PubMed PMC
Stahlberg S., Skolova B., Madhu P.K., Vogel A., Vavrova K., Huster D. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by 2H solid-state NMR spectroscopy. Langmuir. 2015;31:4906–4915. PubMed
Kitson N., Thewalt J., Lafleur M., Bloom M. A model membrane approach to the epidermal permeability barrier. Biochemistry. 1994;33:6707–6715. PubMed
Brief E., Kwak S., Cheng J.T., Kitson N., Thewalt J., Lafleur M. Phase behavior of an equimolar mixture of N-palmitoyl-D-erythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. Langmuir. 2009;25:7523–7532. PubMed
Engelbrecht T.N., Schröter A., Hauss T., Deme B., Scheidt H.A., Huster D. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: neutron diffraction and H-2 NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter. 2012;8:6599–6607.
Paz Ramos A., Gooris G., Bouwstra J., Lafleur M. Evidence of hydrocarbon nanodrops in highly ordered stratum corneum model membranes. J. Lipid Res. 2018;59:137–143. PubMed PMC
Eichner A., Stahlberg S., Sonnenberger S., Lange S., Dobner B., Ostermann A., et al. Influence of the penetration enhancer isopropyl myristate on stratum corneum lipid model membranes revealed by neutron diffraction and 2H NMR experiments. Biochim. Biophys. Acta. 2017;1859:745–755. PubMed
Paz Ramos A., Lafleur M. Chain length of free fatty acids influences the phase behavior of stratum corneum model membranes. Langmuir. 2015;31:11621–11629. PubMed
Bouwstra J.A., Gooris G.S., Dubbelaar F.E., Ponec M. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid Res. 2001;42:1759–1770. PubMed
Pham Q.D., Mojumdar E.H., Gooris G.S., Bouwstra J.A., Sparr E., Topgaard D. Solid and fluid segments within the same molecule of stratum corneum ceramide lipid. Q. Rev. Biophys. 2018;51:e7. PubMed
Wang E., Klauda J.B. Molecular structure of the long periodicity phase in the stratum corneum. J. Am. Chem. Soc. 2019;141:16930–16943. PubMed
Engberg O., Kovacik A., Pullmannová P., Juhašcik M., Opálka L., Huster D., et al. The sphingosine and acyl chains of ceramide [NS] show very different structure and dynamics challenging our understanding of the skin barrier. Angew. Chem. Int. Ed. 2020;59:17383–17387. PubMed PMC
Fandrei F., Engberg O., Opalka L., Jancalkova P., Pullmannova P., Steinhart M., et al. Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability. J. Lipid Res. 2022;63 PubMed PMC
Opalka L., Kovacik A., Sochorova M., Roh J., Kunes J., Lenco J., et al. Scalable synthesis of human ultralong chain ceramides. Org. Lett. 2015;17:5456–5459. PubMed
Kovacik A., Vogel A., Adler J., Pullmannova P., Vavrova K., Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta. 2018;1860:1162–1170. PubMed
Groen D., Gooris G.S., Bouwstra J.A. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 2010;26:4168–4175. PubMed
Davis J.H., Jeffrey K.R., Bloom M., Valic M.I., Higgs T.P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 1976;42:390–394.
Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid membranes. Biochemistry. 1998;37:17299–17308. PubMed
Zhou Z., Kümmerle R., Qiu X., Redwine D., Cong R., Taha A., et al. A new decoupling method for accurate quantification of polyethylene copolymer composition and triad sequence distribution with 13C NMR. J. Magn. Reson. 2007;187:225–233. PubMed
Smith A.A. INFOS: spectrum fitting software for NMR analysis. J. Biomol. NMR. 2017;67:77–94. PubMed
Smith A.A., Ernst M., Meier B.H. Optimized "detectors" for dynamics analysis in solid-state NMR. J. Chem. Phys. 2018;148 PubMed
Gonthier J., Barrett M.A., Aguettaz O., Baudoin S., Bourgeat-Lami E., Deme B., et al. BerILL: the ultimate humidity chamber for neutron scattering. J. Neutron Res. 2019;21:65–76.
Kucerka N., Nieh M.P., Pencer J., Sachs J.N., Katsaras J. What determines the thickness of a biological membrane. Gen. Physiol. Biophys. 2009;28:117–125. PubMed
Kirschner D.A., Sidman R.L. X-ray diffraction study of myelin structure in immature and mutant mice. Biochim. Biophys. Acta. 1976;448:73–87. PubMed
Pullmannova P., Curikova-Kindlova B.A., Ondrejcekova V., Kovacik A., Dvorakova K., Dulanska L., et al. Polymorphism, nanostructures, and barrier properties of ceramide-based lipid films. ACS Omega. 2023;8:422–435. PubMed PMC
Kiuchi F., Nakamura N., Saitoh M., Komagome K., Hiramatsu H., Takimoto N., et al. Synthesis and nematocidal activity of aralkyl- and aralkenylamides related to piperamide on second-stage larvae of Toxocara canis. Chem. Pharm. Bull. 1997;45:685–696. PubMed
Dhimitruka H., SantaLucia J. Investigation of the Yamaguchi esterification mechanism. Synthesis of a Lux-S enzyme inhibitor using an improved esterification method. Org. Lett. 2006;8:47–50. PubMed
Pullmannova P., Ermakova E., Kovacik A., Opalka L., Maixner J., Zbytovska J., et al. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 2019;60:963–971. PubMed PMC
Marsh D. Lateral order in gel, subgel and crystalline phases of lipid membranes: wide-angle X-ray scattering. Chem. Phys. Lipids. 2012;165:59–76. PubMed
Taylor M.G., Akiyama T., Smith I.C.P. The molecular dynamics of cholesterol in bilayer membranes: a deuterium NMR study. Chem. Phys. Lipids. 1981;29:327–339.
Dufourc E.J., Parish E.J., Chitrakorn S., Smith C.P. Structural and dynamical details of cholesterol-lipid interaction as revealed by deuterium NMR. Biochemistry. 1984;23:6062–6071.
Polozov I.V., Gawrisch K. Characterization of the liquid-ordered state by proton MAS NMR. Biophys. J. 2006;90:2051–2061. PubMed PMC
Bunge A., Müller P., Stöckl M., Herrmann A., Huster D. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Biophys. J. 2008;94:2680–2690. PubMed PMC
Bartels T., Lankalapalli R.S., Bittman R., Beyer K., Brown M.F. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J. Am. Chem. Soc. 2008;130:14521–14532. PubMed PMC
Veatch S.L., Soubias O., Keller S.L., Gawrisch K. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl. Acad. Sci. U. S. A. 2007;104:17650–17655. PubMed PMC
Stahlberg S., Lange S., Dobner B., Huster D. Probing the role of ceramide headgroup polarity in short-chain model skin barrier lipid mixtures by 2H solid-state NMR spectroscopy. Langmuir. 2016;32:2023–2031. PubMed
Kwak S., Brief E., Langlais D., Kitson N., Lafleur M., Thewalt J. Ethanol perturbs lipid organization in models of stratum corneum membranes: an investigation combining differential scanning calorimetry, infrared and 2H NMR spectroscopy. Biochim. Biophys. Acta. 2012;1818:1410–1419. PubMed
Castro B.M., Prieto M., Silva L.C. Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 2014;54:53–67. PubMed
Mouts A., Vattulainen E., Matsufuji T., Kinoshita M., Matsumori N., Slotte J.P. On the importance of the C(1)-OH and C(3)-OH functional groups of the long-chain base of ceramide for interlipid interaction and lateral segregation into ceramide-rich domains. Langmuir. 2018;34:15864–15870. PubMed
Fanani M.L., Maggio B. The many faces (and phases) of ceramide and sphingomyelin II - binary mixtures. Biophys. Rev. 2017;9:601–616. PubMed PMC
Alonso A., Goni F.M. The physical properties of ceramides in membranes. Annu. Rev. Biophys. 2018;47:633–654. PubMed
Vavrova K., Hrabalek A., Mac-Mary S., Humbert P., Muret P. Ceramide analogue 14S24 selectively recovers perturbed human skin barrier. Br. J. Dermatol. 2007;157:704–712. PubMed
Pham Q.D., Carlstrom G., Lafon O., Sparr E., Topgaard D. Quantification of the amount of mobile components in intact stratum corneum with natural-abundance 13C solid-state NMR. Phys. Chem. Chem. Phys. 2020;22:6572–6583. PubMed
Huster D., Arnold K., Gawrisch K. Investigation of lipid organization in biological membranes by two-dimensional nuclear Overhauser enhancement spectroscopy. J. Phys. Chem. B. 1999;103:243–251.
Davis J.H., Auger M., Hodges R.S. High resolution 1H nuclear magnetic resonance of a transmembrane peptide. Biophys. J. 1995;69:1917–1932. PubMed PMC
Forbes J., Husted C., Oldfield E. High-field, high-resolution proton "magic-angle" sample-spinning nuclear magnetic resonance spectroscopic studies of gel and liquid crystalline lipid bilayers and the effects of cholesterol. J. Am. Chem. Soc. 1988;110:1059–1065.
Nowacka A., Bongartz N.A., Ollila O.H., Nylander T., Topgaard D. Signal intensities in (1)H-(1)(3)C CP and INEPT MAS NMR of liquid crystals. J. Magn. Reson. 2013;230:165–175. PubMed
Smith A.A., Ernst M., Meier B.H. Because the light is better here: correlation-time analysis by NMR spectroscopy. Angew. Chem. Int. Ed. 2017;56:13590–13595. PubMed
Smith A.A., Vogel A., Engberg O., Hildebrand P.W., Huster D. A method to construct the dynamic landscape of a bio-membrane with experiment and simulation. Nat. Commun. 2022;13:108. PubMed PMC
Franks N.P., Lieb W.R. The structure of lipid bilayers and the effects of general anaesthetics. An x-ray and neutron diffraction study. J. Mol. Biol. 1979;133:469–500. PubMed
Mojumdar E.H., Gooris G.S., Barlow D.J., Lawrence M.J., Deme B., Bouwstra J.A. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys. J. 2015;108:2670–2679. PubMed PMC
Shamaprasad P., Frame C.O., Moore T.C., Yang A., Iacovella C.R., Bouwstra J.A., et al. Using molecular simulation to understand the skin barrier. Prog. Lipid Res. 2022;88 PubMed PMC
Bouwstra J.A., Gooris G.S., Dubbelaar F.E., Ponec M. Phase behavior of stratum corneum lipid mixtures based on human ceramides: the role of natural and synthetic ceramide 1. J. Invest. Dermatol. 2002;118:606–617. PubMed
Janssens M., Gooris G.S., Bouwstra J.A. Infrared spectroscopy studies of mixtures prepared with synthetic ceramides varying in head group architecture: coexistence of liquid and crystalline phases. Biochim. Biophys. Acta. 2009;1788:732–742. PubMed
McIntosh T.J. Organization of skin stratum corneum extracellular lamellae: diffraction evidence for asymmetric distribution of cholesterol. Biophys. J. 2003;85:1675–1681. PubMed PMC
Forslind B. A domain mosaic model of the skin barrier. Acta Derm. Venereol. 1994;74:1–6. PubMed
Elias P.M. Structure and function of the stratum corneum extracellular matrix. J. Invest. Dermatol. 2012;132:2131–2133. PubMed PMC
Sagrafena I., Paraskevopoulos G., Pullmannova P., Opalka L., Novackova A., Lourantou O., et al. Assembly of human stratum corneum lipids in vitro: fluidity matters. J. Invest. Dermatol. 2022;142:2036–2039 e2033. PubMed
Lundborg M., Narangifard A., Wennberg C.L., Lindahl E., Daneholt B., Norlen L. Human skin barrier structure and function analyzed by cryo-EM and molecular dynamics simulation. J. Struct. Biol. 2018;203:149–161. PubMed
Opalka L., Meyer J.M., Ondrejcekova V., Svatosova L., Radner F.P.W., Vavrova K. omega-O-Acylceramides but not omega-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. J. Lipid Res. 2022;63 PubMed PMC
Olzmann J.A., Carvalho P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 2019;20:137–155. PubMed PMC
Breiden B., Sandhoff K. The role of sphingolipid metabolism in cutaneous permeabilitybarrier formation. Biochim. Biophys. Acta. 2014;1841:441–452. PubMed
Pakkanen K.I., Duelund L., Qvortrup K., Pedersen J.S., Ipsen J.H. Mechanics and dynamics of triglyceride-phospholipid model membranes: implications for cellular properties and function. Biochim. Biophys. Acta. 2011;1808:1947–1956. PubMed
Groen D., Gooris G.S., Barlow D.J., Lawrence M.J., van Mechelen J.B., Deme B., et al. Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys J. 2011;100:1481–1489. PubMed PMC
Nagle J.F., Akabori K., Treece B.W., Tristram-Nagle S. Determination of mosaicity in oriented stacks of lipid bilayers. Soft Matter. 2016;12:1884–1891. PubMed PMC
Coleman T.F., Li Y. An interior trust region approach for nonlinear minimization subject to bounds. SIAM J Optim. 1996;6:418–445.
Coleman T.F., Li Y. A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J Optim. 1996;6:1040–1058.