Long and very long lamellar phases in model stratum corneum lipid membranes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30885924
PubMed Central
PMC6495169
DOI
10.1194/jlr.m090977
PII: S0022-2275(20)32266-5
Knihovny.cz E-zdroje
- Klíčová slova
- X-ray crystallography, ceramide, cholesterol, cholesteryl sulfate, extracellular matrix, membranes/model, skin, skin barrier,
- MeSH
- biologické modely * MeSH
- elektronová kryomikroskopie MeSH
- ichtyóza vázaná na chromozom X genetika metabolismus patologie MeSH
- kůže chemie metabolismus patologie MeSH
- lidé MeSH
- membránové lipidy chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové lipidy MeSH
Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide [Cer; nonhydroxyacyl sphingosine N-tetracosanoyl-d-erythro-sphingosine (CerNS24) alone or with omega-O-acylceramide N-(32-linoleyloxy)dotriacontanoyl-d-erythro-sphingosine (CerEOS)], FFAs(C16-24), cholesterol (Chol), and sodium cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of CerEOS, the membranes formed a short lamellar phase (SLP; the repeat distance d = 5.3 nm), a medium lamellar phase (MLP; d = 10.6 nm), or very long lamellar phases (VLLP; d = 15.9 and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at ≥ 7 weight% (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with d = 12.2 nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-O-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.
Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna 141980 Russia
University of Chemistry and Technology Prague 166 28 Prague Czech Republic
Zobrazit více v PubMed
Matsui T., and Amagai M.. 2015. Dissecting the formation, structure and barrier function of the stratum corneum. Int. Immunol. 27: 269–280. PubMed
Wertz P. W. 2004. Stratum corneum lipids and water. Exogenous Dermatol. 3: 53–56.
Elias P. M. 1981. Epidermal lipids, membranes, and keratinization. Int. J. Dermatol. 20: 1–19. PubMed
Williams M. L., and Elias P. M.. 1981. Stratum corneum lipids in disorders of cornification: increased cholesterol sulfate content of stratum corneum in recessive x-linked ichthyosis. J. Clin. Invest. 68: 1404–1410. PubMed PMC
Masukawa Y., Narita H., Shimizu E., Kondo N., Sugai Y., Oba T., Homma R., Ishikawa J., Takagi Y., Kitahara T., et al. . 2008. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 49: 1466–1476. PubMed
Robson K. J., Stewart M. E., Michelsen S., Lazo N. D., and Downing D. T.. 1994. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid Res. 35: 2060–2068. PubMed
t’Kindt, R., L. Jorge, E. Dumont, P. Couturon, F. David, P. Sandra, and K. Sandra. 2012. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal. Chem. 84: 403–411. PubMed
Rabionet M., Bayerle A., Marsching C., Jennemann R., Gröne H-J., Yildiz Y., Wachten D., Shaw W., Shayman J. A., and Sandhoff R.. 2013. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid Res. 54: 3312–3321. PubMed PMC
van Smeden J., Boiten W. A., Hankemeier T., Rissmann R., Bouwstra J. A., and Vreeken R. J.. 2014. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta. 1841: 70–79. PubMed
Rabionet M., Gorgas K., and Sandhoff R.. 2014. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 1841: 422–434. PubMed
Elias P. M., and Friend D. S.. 1975. The permeability barrier in mammalian epidermis. J. Cell Biol. 65: 180–191. PubMed PMC
Hou S. Y. E., Mitra A. K., White S. H., Menon G. K., Ghadially R., and Elias P. M.. 1991. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and X-ray diffraction. J. Invest. Dermatol. 96: 215–223. PubMed
Elias P. M., and Menon G. K.. 1991. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv. Lipid Res. 24: 1–26. PubMed
Bouwstra J. A., Gooris G. S., van der Spek J. A., and Bras W.. 1991. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 97: 1005–1012. PubMed
White S. H., Mirejovsky D., and King G. I.. 1988. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 27: 3725–3732. PubMed
McIntosh T. J., Stewart M. E., and Downing D. T.. 1996. X-ray diffraction analysis of isolated skin lipids: reconstitution of intercellular lipid domains. Biochemistry. 35: 3649–3653. PubMed
Bouwstra J. A., Gooris G. S., Cheng K., Weerheim A., Bras W., and Ponec M.. 1996. Phase behavior of isolated skin lipids. J. Lipid Res. 37: 999–1011. PubMed
Bouwstra J. A., Gooris G. S., Dubbelaar F. E. R., Weerheim A. M., IJzerman A. P., and Ponec M.. 1998. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 39: 186–196. PubMed
de Jager M. W., Gooris G. S., Dolbnya I. P., Bras W., Ponec M., and Bouwstra J. A.. 2003. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids. 124: 123–134. PubMed
Bouwstra J. A., Gooris G. S., Vries M. A. S., van der Spek J. A., and Bras W.. 1992. Structure of human stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction study. Int. J. Pharm. 84: 205–216.
Sochorová M., Audrlická P., Červená M., Kováčik A., Kopečná M., Opálka L., Pullmannová P., and Vávrová K.. 2019. Permeability and microstructure of cholesterol-depleted skin lipid membranes and human stratum corneum. J. Colloid Interface Sci. 535: 227–238. PubMed
Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., et al. . 2013. Ceramides in the skin lipid membranes: length matters. Langmuir. 29: 15624–15633. PubMed
Schreiner V., Gooris G. S., Pfeiffer S., Lanzendörfer G., Wenck H., Diembeck W., Proksch E., and Bouwstra J.. 2000. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Dermatol. 114: 654–660. PubMed
Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Kezic S., Lavrijsen A. P. M., and Bouwstra J. A.. 2011. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 131: 2136–2138. PubMed
Swartzendruber D. C., Wertz P. W., Kitko D. J., Madison K. C., and Downing D. T.. 1989. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J. Invest. Dermatol. 92: 251–257. PubMed
Iwai I., Han H., den Hollander L., Svensson S., Öfverstedt L-G., Anwar J., Brewer J., Bloksgaard M., Laloeuf A., Nosek D., et al. . 2012. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 132: 2215–2225. PubMed
Mojumdar E. H., Gooris G. S., Groen D., Barlow D. J., Lawrence M. J., Demé B., and Bouwstra J. A.. 2016. Stratum corneum lipid matrix: location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase. Biochim. Biophys. Acta. 1858: 1926–1934. PubMed
Lundborg M., Narangifard A., Wennberg C. L., Lindahl E., Daneholt B., and Norlén L.. 2018. Human skin barrier structure and function analyzed by cryo-EM and molecular dynamics simulation. J. Struct. Biol. 203: 149–161. PubMed
Elias P. M., Williams M. L., Maloney M. E., Bonifas J. A., Brown B. E., Grayson S., and Epstein E. H.. 1984. Stratum corneum lipids in disorders of cornification. Steroid sulfatase and cholesterol sulfate in normal desquamation and the pathogenesis of recessive X-linked ichthyosis. J. Clin. Invest. 74: 1414–1421. PubMed PMC
Ranasinghe A. W., Wertz P. W., Downing D. T., and Mackenzie I. C.. 1986. Lipid composition of cohesive and desquamated corneocytes from mouse ear skin. J. Invest. Dermatol. 86: 187–190. PubMed
Zettersten E., Man M-Q., Farrell A., Ghadially R., Williams M. L., Feingold K. R., Elias P. M., Sato J., and Denda M.. 1998. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J. Invest. Dermatol. 111: 784–790. PubMed
Elias P. M., Crumrine D., Rassner U., Hachem J-P., Menon G. K., Man W., Wun C., Leypoldt L., Feingold K. R., and Williams M. L.. 2004. Basis for abnormal desquamation and permeability barrier dysfunction in RXLI. J. Invest. Dermatol. 122: 314–319. PubMed
Groen D., Poole D. S., Gooris G. S., and Bouwstra J. A.. 2011. Investigating the barrier function of skin lipid models with varying compositions. Eur. J. Pharm. Biopharm. 79: 334–342. PubMed
Rehfeld S. J., Plachy W. Z., Williams M. L., and Elias P. M.. 1988. Calorimetric and electron spin resonance examination of lipid phase transitions in human stratum corneum: molecular basis for normal cohesion and abnormal desquamation in recessive X-linked ichthyosis. J. Invest. Dermatol. 91: 499–505. PubMed
Opálka L., Kováčik A., Sochorová M., Roh J., Kuneš J., Lenčo J., and Vávrová K.. 2015. Scalable synthesis of human ultralong chain ceramides. Org. Lett. 17: 5456–5459. PubMed
Groen D., Gooris G. S., and Bouwstra J. A.. 2010. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 26: 4168–4175. PubMed
McIntosh T. J., Waldbillig R. C., and Robertson J. D.. 1977. The molecular organization of asymmetric lipid bilayers and lipid-peptide complexes. Biochim. Biophys. Acta. 466: 209–230. PubMed
Bouwstra J. A., Gooris G. S., Dubbelaar F. E. R., and Ponec M.. 1999. Cholesterol sulfate and calcium affect stratum corneum lipid organization over a wide temperature range. J. Lipid Res. 40: 2303–2312. PubMed
Abrahamsson J., Abrahamsson S., Hellqvist B., Larsson K., Pascher I., and Sundell S.. 1977. Cholesteryl sulphate and phosphate in the solid state and in aqueous systems. Chem. Phys. Lipids. 19: 213–222. PubMed
McIntosh T. J. 2003. Organization of skin stratum corneum extracellular lamellae: diffraction Evidence for asymmetric distribution of cholesterol. Biophys. J. 85: 1675–1681. PubMed PMC
Opálka L., Kováčik A., Maixner J., and Vávrová K.. 2016. Omega-O-acylceramides in skin lipid membranes: effects of concentration, sphingoid base, and model complexity on microstructure and permeability. Langmuir. 32: 12894–12904. PubMed
Madison K. C., Swartzendruber D. C., Wertz P. W., and Downing D. T.. 1987. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 88: 714–718. PubMed
de Jager M. W., Gooris G. S., Dolbnya I. P., Bras W., Ponec M., and Bouwstra J. A.. 2004. Novel lipid mixtures based on synthetic ceramides reproduce the unique stratum corneum lipid organization. J. Lipid Res. 45: 923–932. PubMed
Kováčik A., Šilarová M., Pullmannová P., Maixner J., and Vávrová K.. 2017. Effects of 6-hydroxyceramides on the thermotropic phase behavior and permeability of model skin lipid membranes. Langmuir. 33: 2890–2899. PubMed
Kováčik A., Vogel A., Adler J., Pullmannová P., Vávrová K., and Huster D.. 2018. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta. 1860: 1162–1170. PubMed
Školová B., Hudská K., Pullmannová P., Kováčik A., Palát K., Roh J., Fleddermann J., Estrela-Lopis I., and Vávrová K.. 2014. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 118: 10460–10470. PubMed
Masukawa Y., Narita H., Sato H., Naoe A., Kondo N., Sugai Y., Oba T., Homma R., Ishikawa J., Takagi Y., et al. . 2009. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 50: 1708–1719. PubMed PMC
Elias P. M., Williams M. L., Choi E-H., and Feingold K. R.. 2014. Role of cholesterol sulfate in epidermal structure and function: Lessons from X-linked ichthyosis. Biochim. Biophys. Acta. 1841: 353–361. PubMed PMC
Öhman H., and Vahlquist A.. 1998. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J. Invest. Dermatol. 111: 674–677. PubMed
Elias P. M., Gruber R., Crumrine D., Menon G., Williams M. L., Wakefield J. S., Holleran W. M., and Uchida Y.. 2014. Formation and functions of the corneocyte lipid envelope (CLE). Biochim. Biophys. Acta. 1841: 314–318. PubMed PMC
Wertz P. W., and van den Bergh B.. 1998. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids. 91: 85–96. PubMed
The effect of long-term cigarette smoking on selected skin barrier proteins and lipids
Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films
Behavior of 1-Deoxy-, 3-Deoxy- and N-Methyl-Ceramides in Skin Barrier Lipid Models