Long and very long lamellar phases in model stratum corneum lipid membranes

. 2019 May ; 60 (5) : 963-971. [epub] 20190318

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30885924
Odkazy

PubMed 30885924
PubMed Central PMC6495169
DOI 10.1194/jlr.m090977
PII: S0022-2275(20)32266-5
Knihovny.cz E-zdroje

Membrane models of the stratum corneum (SC) lipid barrier, either healthy or affected by recessive X-linked ichthyosis, constructed from ceramide [Cer; nonhydroxyacyl sphingosine N-tetracosanoyl-d-erythro-sphingosine (CerNS24) alone or with omega-O-acylceramide N-(32-linoleyloxy)dotriacontanoyl-d-erythro-sphingosine (CerEOS)], FFAs(C16-24), cholesterol (Chol), and sodium cholesteryl sulfate (CholS) were investigated. X-ray diffraction (XRD) revealed a previously unreported polymorphism of the membranes. In the absence of CerEOS, the membranes formed a short lamellar phase (SLP; the repeat distance d = 5.3 nm), a medium lamellar phase (MLP; d = 10.6 nm), or very long lamellar phases (VLLP; d = 15.9 and 21.2 nm). An increased CholS-to-Chol ratio modulated the membrane polymorphism, although the CholS phase separated at ≥ 7 weight% (of total lipids). The presence of CerEOS led to the stable long lamellar phase (LLP) with d = 12.2 nm and prevented VLLP formation. Our XRD results agree well with recently published cryo-electron microscopy data for vitreous skin sections, while also revealing new structures. Thus, lamellar phases with long repeat distances (MLP and VLLP) may be formed in the absence of omega-O-acylceramide, whereas these ultralong Cer species likely stabilize the final SC lipid architecture of LLP by riveting the adjacent lipid layers.

Zobrazit více v PubMed

Matsui T., and Amagai M.. 2015. Dissecting the formation, structure and barrier function of the stratum corneum. Int. Immunol. 27: 269–280. PubMed

Wertz P. W. 2004. Stratum corneum lipids and water. Exogenous Dermatol. 3: 53–56.

Elias P. M. 1981. Epidermal lipids, membranes, and keratinization. Int. J. Dermatol. 20: 1–19. PubMed

Williams M. L., and Elias P. M.. 1981. Stratum corneum lipids in disorders of cornification: increased cholesterol sulfate content of stratum corneum in recessive x-linked ichthyosis. J. Clin. Invest. 68: 1404–1410. PubMed PMC

Masukawa Y., Narita H., Shimizu E., Kondo N., Sugai Y., Oba T., Homma R., Ishikawa J., Takagi Y., Kitahara T., et al. . 2008. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 49: 1466–1476. PubMed

Robson K. J., Stewart M. E., Michelsen S., Lazo N. D., and Downing D. T.. 1994. 6-Hydroxy-4-sphingenine in human epidermal ceramides. J. Lipid Res. 35: 2060–2068. PubMed

t’Kindt, R., L. Jorge, E. Dumont, P. Couturon, F. David, P. Sandra, and K. Sandra. 2012. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography–quadrupole time-of-flight mass spectrometry. Anal. Chem. 84: 403–411. PubMed

Rabionet M., Bayerle A., Marsching C., Jennemann R., Gröne H-J., Yildiz Y., Wachten D., Shaw W., Shayman J. A., and Sandhoff R.. 2013. 1-O-acylceramides are natural components of human and mouse epidermis. J. Lipid Res. 54: 3312–3321. PubMed PMC

van Smeden J., Boiten W. A., Hankemeier T., Rissmann R., Bouwstra J. A., and Vreeken R. J.. 2014. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta. 1841: 70–79. PubMed

Rabionet M., Gorgas K., and Sandhoff R.. 2014. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 1841: 422–434. PubMed

Elias P. M., and Friend D. S.. 1975. The permeability barrier in mammalian epidermis. J. Cell Biol. 65: 180–191. PubMed PMC

Hou S. Y. E., Mitra A. K., White S. H., Menon G. K., Ghadially R., and Elias P. M.. 1991. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and X-ray diffraction. J. Invest. Dermatol. 96: 215–223. PubMed

Elias P. M., and Menon G. K.. 1991. Structural and lipid biochemical correlates of the epidermal permeability barrier. Adv. Lipid Res. 24: 1–26. PubMed

Bouwstra J. A., Gooris G. S., van der Spek J. A., and Bras W.. 1991. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 97: 1005–1012. PubMed

White S. H., Mirejovsky D., and King G. I.. 1988. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 27: 3725–3732. PubMed

McIntosh T. J., Stewart M. E., and Downing D. T.. 1996. X-ray diffraction analysis of isolated skin lipids: reconstitution of intercellular lipid domains. Biochemistry. 35: 3649–3653. PubMed

Bouwstra J. A., Gooris G. S., Cheng K., Weerheim A., Bras W., and Ponec M.. 1996. Phase behavior of isolated skin lipids. J. Lipid Res. 37: 999–1011. PubMed

Bouwstra J. A., Gooris G. S., Dubbelaar F. E. R., Weerheim A. M., IJzerman A. P., and Ponec M.. 1998. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 39: 186–196. PubMed

de Jager M. W., Gooris G. S., Dolbnya I. P., Bras W., Ponec M., and Bouwstra J. A.. 2003. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids. 124: 123–134. PubMed

Bouwstra J. A., Gooris G. S., Vries M. A. S., van der Spek J. A., and Bras W.. 1992. Structure of human stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction study. Int. J. Pharm. 84: 205–216.

Sochorová M., Audrlická P., Červená M., Kováčik A., Kopečná M., Opálka L., Pullmannová P., and Vávrová K.. 2019. Permeability and microstructure of cholesterol-depleted skin lipid membranes and human stratum corneum. J. Colloid Interface Sci. 535: 227–238. PubMed

Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., et al. . 2013. Ceramides in the skin lipid membranes: length matters. Langmuir. 29: 15624–15633. PubMed

Schreiner V., Gooris G. S., Pfeiffer S., Lanzendörfer G., Wenck H., Diembeck W., Proksch E., and Bouwstra J.. 2000. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Dermatol. 114: 654–660. PubMed

Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Kezic S., Lavrijsen A. P. M., and Bouwstra J. A.. 2011. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 131: 2136–2138. PubMed

Swartzendruber D. C., Wertz P. W., Kitko D. J., Madison K. C., and Downing D. T.. 1989. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J. Invest. Dermatol. 92: 251–257. PubMed

Iwai I., Han H., den Hollander L., Svensson S., Öfverstedt L-G., Anwar J., Brewer J., Bloksgaard M., Laloeuf A., Nosek D., et al. . 2012. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 132: 2215–2225. PubMed

Mojumdar E. H., Gooris G. S., Groen D., Barlow D. J., Lawrence M. J., Demé B., and Bouwstra J. A.. 2016. Stratum corneum lipid matrix: location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase. Biochim. Biophys. Acta. 1858: 1926–1934. PubMed

Lundborg M., Narangifard A., Wennberg C. L., Lindahl E., Daneholt B., and Norlén L.. 2018. Human skin barrier structure and function analyzed by cryo-EM and molecular dynamics simulation. J. Struct. Biol. 203: 149–161. PubMed

Elias P. M., Williams M. L., Maloney M. E., Bonifas J. A., Brown B. E., Grayson S., and Epstein E. H.. 1984. Stratum corneum lipids in disorders of cornification. Steroid sulfatase and cholesterol sulfate in normal desquamation and the pathogenesis of recessive X-linked ichthyosis. J. Clin. Invest. 74: 1414–1421. PubMed PMC

Ranasinghe A. W., Wertz P. W., Downing D. T., and Mackenzie I. C.. 1986. Lipid composition of cohesive and desquamated corneocytes from mouse ear skin. J. Invest. Dermatol. 86: 187–190. PubMed

Zettersten E., Man M-Q., Farrell A., Ghadially R., Williams M. L., Feingold K. R., Elias P. M., Sato J., and Denda M.. 1998. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J. Invest. Dermatol. 111: 784–790. PubMed

Elias P. M., Crumrine D., Rassner U., Hachem J-P., Menon G. K., Man W., Wun C., Leypoldt L., Feingold K. R., and Williams M. L.. 2004. Basis for abnormal desquamation and permeability barrier dysfunction in RXLI. J. Invest. Dermatol. 122: 314–319. PubMed

Groen D., Poole D. S., Gooris G. S., and Bouwstra J. A.. 2011. Investigating the barrier function of skin lipid models with varying compositions. Eur. J. Pharm. Biopharm. 79: 334–342. PubMed

Rehfeld S. J., Plachy W. Z., Williams M. L., and Elias P. M.. 1988. Calorimetric and electron spin resonance examination of lipid phase transitions in human stratum corneum: molecular basis for normal cohesion and abnormal desquamation in recessive X-linked ichthyosis. J. Invest. Dermatol. 91: 499–505. PubMed

Opálka L., Kováčik A., Sochorová M., Roh J., Kuneš J., Lenčo J., and Vávrová K.. 2015. Scalable synthesis of human ultralong chain ceramides. Org. Lett. 17: 5456–5459. PubMed

Groen D., Gooris G. S., and Bouwstra J. A.. 2010. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 26: 4168–4175. PubMed

McIntosh T. J., Waldbillig R. C., and Robertson J. D.. 1977. The molecular organization of asymmetric lipid bilayers and lipid-peptide complexes. Biochim. Biophys. Acta. 466: 209–230. PubMed

Bouwstra J. A., Gooris G. S., Dubbelaar F. E. R., and Ponec M.. 1999. Cholesterol sulfate and calcium affect stratum corneum lipid organization over a wide temperature range. J. Lipid Res. 40: 2303–2312. PubMed

Abrahamsson J., Abrahamsson S., Hellqvist B., Larsson K., Pascher I., and Sundell S.. 1977. Cholesteryl sulphate and phosphate in the solid state and in aqueous systems. Chem. Phys. Lipids. 19: 213–222. PubMed

McIntosh T. J. 2003. Organization of skin stratum corneum extracellular lamellae: diffraction Evidence for asymmetric distribution of cholesterol. Biophys. J. 85: 1675–1681. PubMed PMC

Opálka L., Kováčik A., Maixner J., and Vávrová K.. 2016. Omega-O-acylceramides in skin lipid membranes: effects of concentration, sphingoid base, and model complexity on microstructure and permeability. Langmuir. 32: 12894–12904. PubMed

Madison K. C., Swartzendruber D. C., Wertz P. W., and Downing D. T.. 1987. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 88: 714–718. PubMed

de Jager M. W., Gooris G. S., Dolbnya I. P., Bras W., Ponec M., and Bouwstra J. A.. 2004. Novel lipid mixtures based on synthetic ceramides reproduce the unique stratum corneum lipid organization. J. Lipid Res. 45: 923–932. PubMed

Kováčik A., Šilarová M., Pullmannová P., Maixner J., and Vávrová K.. 2017. Effects of 6-hydroxyceramides on the thermotropic phase behavior and permeability of model skin lipid membranes. Langmuir. 33: 2890–2899. PubMed

Kováčik A., Vogel A., Adler J., Pullmannová P., Vávrová K., and Huster D.. 2018. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta. 1860: 1162–1170. PubMed

Školová B., Hudská K., Pullmannová P., Kováčik A., Palát K., Roh J., Fleddermann J., Estrela-Lopis I., and Vávrová K.. 2014. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 118: 10460–10470. PubMed

Masukawa Y., Narita H., Sato H., Naoe A., Kondo N., Sugai Y., Oba T., Homma R., Ishikawa J., Takagi Y., et al. . 2009. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 50: 1708–1719. PubMed PMC

Elias P. M., Williams M. L., Choi E-H., and Feingold K. R.. 2014. Role of cholesterol sulfate in epidermal structure and function: Lessons from X-linked ichthyosis. Biochim. Biophys. Acta. 1841: 353–361. PubMed PMC

Öhman H., and Vahlquist A.. 1998. The pH gradient over the stratum corneum differs in X-linked recessive and autosomal dominant ichthyosis: a clue to the molecular origin of the “acid skin mantle”? J. Invest. Dermatol. 111: 674–677. PubMed

Elias P. M., Gruber R., Crumrine D., Menon G., Williams M. L., Wakefield J. S., Holleran W. M., and Uchida Y.. 2014. Formation and functions of the corneocyte lipid envelope (CLE). Biochim. Biophys. Acta. 1841: 314–318. PubMed PMC

Wertz P. W., and van den Bergh B.. 1998. The physical, chemical and functional properties of lipids in the skin and other biological barriers. Chem. Phys. Lipids. 91: 85–96. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The effect of long-term cigarette smoking on selected skin barrier proteins and lipids

. 2023 Jul 18 ; 13 (1) : 11572. [epub] 20230718

The intriguing molecular dynamics of Cer[EOS] in rigid skin barrier lipid layers requires improvement of the model

. 2023 May ; 64 (5) : 100356. [epub] 20230321

Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films

. 2023 Jan 10 ; 8 (1) : 422-435. [epub] 20221223

ω-O-Acylceramides but not ω-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids

. 2022 Jun ; 63 (6) : 100226. [epub] 20220512

Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability

. 2022 Mar ; 63 (3) : 100177. [epub] 20220207

Effects of (R)- and (S)-α-Hydroxylation of Acyl Chains in Sphingosine, Dihydrosphingosine, and Phytosphingosine Ceramides on Phase Behavior and Permeability of Skin Lipid Models

. 2021 Jul 12 ; 22 (14) : . [epub] 20210712

Behavior of 1-Deoxy-, 3-Deoxy- and N-Methyl-Ceramides in Skin Barrier Lipid Models

. 2020 Mar 02 ; 10 (1) : 3832. [epub] 20200302

Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models

. 2020 Feb ; 61 (2) : 219-228. [epub] 20191219

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...