Behavior of 1-Deoxy-, 3-Deoxy- and N-Methyl-Ceramides in Skin Barrier Lipid Models
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32123227
PubMed Central
PMC7051948
DOI
10.1038/s41598-020-60754-4
PII: 10.1038/s41598-020-60754-4
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána metabolismus MeSH
- ceramidy chemie metabolismus MeSH
- kůže metabolismus MeSH
- membrány umělé * MeSH
- permeabilita MeSH
- voda metabolismus MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- membrány umělé * MeSH
- voda MeSH
Ceramides (Cer) are essential components of the skin permeability barrier. To probe the role of Cer polar head groups involved in the interfacial hydrogen bonding, the N-lignoceroyl sphingosine polar head was modified by removing the hydroxyls in C-1 (1-deoxy-Cer) or C-3 positions (3-deoxy-Cer) and by N-methylation of amide group (N-Me-Cer). Multilamellar skin lipid models were prepared as equimolar mixtures of Cer, lignoceric acid and cholesterol, with 5 wt% cholesteryl sulfate. In the 1-deoxy-Cer-based models, the lipid species were separated into highly ordered domains (as found by X-ray diffraction and infrared spectroscopy) resulting in similar water loss but 4-5-fold higher permeability to model substances compared to control with natural Cer. In contrast, 3-deoxy-Cer did not change lipid chain order but promoted the formation of a well-organized structure with a 10.8 nm repeat period. Yet both lipid models comprising deoxy-Cer had similar permeabilities to all markers. N-Methylation of Cer decreased lipid chain order, led to phase separation, and improved cholesterol miscibility in the lipid membranes, resulting in 3-fold increased water loss and 10-fold increased permeability to model compounds compared to control. Thus, the C-1 and C-3 hydroxyls and amide group, which are common to all Cer subclasses, considerably affect lipid miscibility and chain order, formation of periodical nanostructures, and permeability of the skin barrier lipid models.
Zobrazit více v PubMed
Elias PM. Epidermal lipids, membranes, and keratinization. Int. J. Dermatol. 1981;20(1):1–19. doi: 10.1111/j.1365-4362.1981.tb05278.x. PubMed DOI
Breiden B, Sandhoff K. The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim. Biophys. Acta. 2014;1841(3):441–52. doi: 10.1016/j.bbalip.2013.08.010. PubMed DOI
Rabionet M, Gorgas K, Sandhoff R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 2014;1841(3):422–34. doi: 10.1016/j.bbalip.2013.08.011. PubMed DOI
Jimenez-Rojo N, et al. Biophysical properties of novel 1-deoxy-(dihydro)ceramides occurring in mammalian cells. Biophys. J. 2014;107(12):2850–2859. doi: 10.1016/j.bpj.2014.10.010. PubMed DOI PMC
Li L, Tang X, Taylor KG, DuPre DB, Yappert MC. Conformational characterization of ceramides by nuclear magnetic resonance spectroscopy. Biophys. J. 2002;82(4):2067–80. doi: 10.1016/S0006-3495(02)75554-9. PubMed DOI PMC
Maula T, et al. Effects of sphingosine 2N- and 3O-methylation on palmitoyl ceramide properties in bilayer membranes. Biophys. J. 2011;101(12):2948–56. doi: 10.1016/j.bpj.2011.11.007. PubMed DOI PMC
Rerek ME, et al. Phytosphingosine and sphingosine ceramide headgroup hydrogen bonding: Structural insights through thermotropic hydrogen/deuterium exchange. J. Phys. Chem. B. 2001;105(38):9355–9362. doi: 10.1021/jp0118367. DOI
Skolova B, Kovacik A, Tesar O, Opalka L, Vavrova K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. BBA - Biomembranes. 2017;1859(5):824–834. doi: 10.1016/j.bbamem.2017.01.019. PubMed DOI
Kovacik A, Silarova M, Pullmannova P, Maixner J, Vavrova K. Effects of 6-Hydroxyceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes. Langmuir. 2017;33(11):2890–2899. doi: 10.1021/acs.langmuir.7b00184. PubMed DOI
Kovacik A, et al. Probing the role of ceramide hydroxylation in skin barrier lipid models by (2)H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta. 2018;1860(5):1162–1170. doi: 10.1016/j.bbamem.2018.02.003. PubMed DOI
Janusova B, et al. Effect of ceramide acyl chain length on skin permeability and thermotropic phase behavior of model stratum corneum lipid membranes. BBA - Biomembranes. 2011;1811(3):129–37. PubMed
Skolova B, et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29(50):15624–33. doi: 10.1021/la4037474. PubMed DOI
Skolova B, Janusova B, Vavrova K. Ceramides with a pentadecasphingosine chain and short acyls have strong permeabilization effects on skin and model lipid membranes. BBA - Biomembranes. 2016;1858(2):220–32. doi: 10.1016/j.bbamem.2015.11.019. PubMed DOI
Novotny J, Janusova B, Novotny M, Hrabalek A, Vavrova K. Short-chain ceramides decrease skin barrier properties. Skin Pharmacol. Physiol. 2009;22(1):22–30. doi: 10.1159/000183923. PubMed DOI
Vávrová K. Emerging small-molecule compounds for treatment of atopic dermatitis: a review. Expert Opin Ther Pats. 2016;26(1):21–34. doi: 10.1517/13543776.2016.1101451. PubMed DOI
Motta S, et al. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta. 1993;1182(2):147–51. doi: 10.1016/0925-4439(93)90135-N. PubMed DOI
Wertz PW. Lipids and barrier function of the skin. Acta Derm. Venereol. Suppl. (Stockh.) 2000;208:7–11. doi: 10.1080/000155500750042790. PubMed DOI
Kovacik A, Opalka L, Silarova M, Roh J, Vavrova K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation-protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016;6(77):73343–73350. doi: 10.1039/C6RA16565F. DOI
Pullmannova P, et al. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. doi: 10.1016/j.bpc.2017.03.004. PubMed DOI
Mendelsohn R, et al. Kinetic evidence suggests spinodal phase separation in stratum corneum models by IR spectroscopy. J. Phys. Chem. B. 2014;118(16):4378–87. doi: 10.1021/jp501003c. PubMed DOI
Mendelsohn R, Rabie E, Walters RM, Flach CR. Fatty Acid Chain Length Dependence of Phase Separation Kinetics in Stratum Corneum Models by IR Spectroscopy. J. Phys. Chem. B. 2015;119(30):9740–50. doi: 10.1021/acs.jpcb.5b03045. PubMed DOI
Pullmannova P, et al. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 2019;60(5):963–971. doi: 10.1194/jlr.M090977. PubMed DOI PMC
Kovacik A, Pullmannova P, Maixner J, Vavrova K. Effects of Ceramide and Dihydroceramide Stereochemistry at C-3 on the Phase Behavior and Permeability of Skin Lipid Membranes. Langmuir. 2018;34(1):521–529. doi: 10.1021/acs.langmuir.7b03448. PubMed DOI
de Jager MW, et al. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids. 2003;124(2):123–34.. doi: 10.1016/S0009-3084(03)00050-1. PubMed DOI
Bouwstra JA, Gooris GS, Salomonsdevries MA, Vanderspek JA, Bras W. Structure of Human Stratum-Corneum as a Function of Temperature and Hydration - a Wide-Angle X-Ray-Diffraction Study. Int. J. Pharm. 1992;84(3):205–216. doi: 10.1016/0378-5173(92)90158-X. DOI
Craven BM. Pseudosymmetry in Cholesterol Monohydrate. Acta Crystallogr. Sect. B: Struct. Sci. 1979;35(May):1123–1128. doi: 10.1107/S0567740879005719. DOI
Abrahamsson S, Vonsydow E. Variation of Unit-Cell Dimensions of a Crystal Form of Long Normal Chain Carboxylic Acids. Acta Crystallogr. 1954;7(8-9):591–592. doi: 10.1107/S0365110X54001910. DOI
Raudenkolb S, Wartewig S, Neubert RH. Polymorphism of ceramide 3. Part 2: a vibrational spectroscopic and X-ray powder diffraction investigation of N-octadecanoyl phytosphingosine and the analogous specifically deuterated d(35) derivative. Chem. Phys. Lipids. 2003;124(2):89–101. doi: 10.1016/S0009-3084(03)00045-8. PubMed DOI
Bouwstra JA, Ponec M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta. 2006;1758(12):2080–95. doi: 10.1016/j.bbamem.2006.06.021. PubMed DOI
Boncheva M, Damien F, Normand V. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta. 2008;1778(5):1344–1355. doi: 10.1016/j.bbamem.2008.01.022. PubMed DOI
Moore DJ, Rerek ME, Mendelsohn R. Lipid domains and orthorhombic phases in model stratum corneum: evidence from Fourier transform infrared spectroscopy studies. Biochem. Biophys. Res. Commun. 1997;231(3):797–801. doi: 10.1006/bbrc.1997.6189. PubMed DOI
Chen H, Mendelsohn R, Rerek ME, Moore DJ. Fourier transform infrared spectroscopy and differential scanning calorimetry studies of fatty acid homogeneous ceramide 2. Biochim. Biophys. Acta. 2000;1468(1-2):293–303. doi: 10.1016/S0005-2736(00)00271-6. PubMed DOI
Mantsch HH, Mcelhaney RN. Phospholipid Phase-Transitions in Model and Biological-Membranes as Studied by Infrared-Spectroscopy. Chem. Phys. Lipids. 1991;57(2–3):213–226. doi: 10.1016/0009-3084(91)90077-O. PubMed DOI
Janssens M, et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 2012;53(12):2755–66. doi: 10.1194/jlr.P030338. PubMed DOI PMC
Mendelsohn R, Moore DJ. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96(1-2):141–57. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI
Mantsch HH, Madec C, Lewis RN, McElhaney RN. Thermotropic phase behavior of model membranes composed of phosphatidylcholines containing iso-branched fatty acids. 2. Infrared and phosphorus-31 NMR spectroscopic studies. Biochemistry. 1985;24(10):2440–2446. doi: 10.1021/bi00331a008. PubMed DOI
Kodati VR, Eljastimi R, Lafleur M. Contribution of the Intermolecular Coupling and Librotorsional Mobility in the Methylene Stretching Modes in the Infrared-Spectra of Acyl Chains. J. Phys. Chem. 1994;98(47):12191–12197. doi: 10.1021/j100098a012. DOI
Skolova B, et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118(35):10460–70. doi: 10.1021/jp506407r. PubMed DOI
Mendelsohn R, Flach CR, Moore DJ. Determination of molecular conformation and permeation in skin via IR spectroscopy, microscopy, and imaging. Biochim. Biophys. Acta. 2006;1758(7):923–33. doi: 10.1016/j.bbamem.2006.04.009. PubMed DOI
Snyder RG, Schachtschneider JH. Vibrational analysis of the n-paraffins—I. Spectrochim. Acta. 1963;19(1):85–116. doi: 10.1016/0371-1951(63)80095-8. DOI
Motta S, et al. Abnormality of water barrier function in psoriasis. Role of ceramide fractions. Arch. Dermatol. 1994;130(4):452–6. doi: 10.1001/archderm.1994.01690040056007. PubMed DOI
De Paepe K, Houben E, Adam R, Wiesemann F, Rogiers V. Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter. Skin Res. Technol. 2005;11(1):61–9. doi: 10.1111/j.1600-0846.2005.00101.x. PubMed DOI
Sochorova M, et al. Permeability Barrier and Microstructure of Skin Lipid Membrane Models of Impaired Glucosylceramide Processing. Sci. Rep. 2017;7(1):6470. doi: 10.1038/s41598-017-06990-7. PubMed DOI PMC
Netzlaff F, Kostka KH, Lehr CM, Schaefer UF. TEWL measurements as a routine method for evaluating the integrity of epidermis sheets in static Franz type diffusion cells in vitro. Limitations shown by transport data testing. Eur. J. Pharm. Biopharm. 2006;63(1):44–50. doi: 10.1016/j.ejpb.2005.10.009. PubMed DOI
Chilcott RP, Dalton CH, Emmanuel AJ, Allen CE, Bradley ST. Transepidermal water loss does not correlate with skin barrier function in vitro. J. Invest. Dermatol. 2002;118(5):871–5. doi: 10.1046/j.1523-1747.2002.01760.x. PubMed DOI
Pullmannova P, et al. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. Biochim. Biophys. Acta. 2014;1838(8):2115–26. doi: 10.1016/j.bbamem.2014.05.001. PubMed DOI
Vavrova K, Hrabalek A, Mac-Mary S, Humbert P, Muret P. Ceramide analogue 14S24 selectively recovers perturbed human skin barrier. Br. J. Dermatol. 2007;157(4):704–12.. doi: 10.1111/j.1365-2133.2007.08113.x. PubMed DOI
Di Nardo A, Wertz P, Giannetti A, Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 1998;78(1):27–30. doi: 10.1080/00015559850135788. PubMed DOI
Ishikawa J, et al. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 2010;130(10):2511–4. doi: 10.1038/jid.2010.161. PubMed DOI
Mitragotri S. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J. Control. Release. 2003;86(1):69–92. doi: 10.1016/S0168-3659(02)00321-8. PubMed DOI
Mitragotri S, et al. Mathematical models of skin permeability: an overview. Int. J. Pharm. 2011;418(1):115–29. doi: 10.1016/j.ijpharm.2011.02.023. PubMed DOI
Kopečná M, et al. Esters of terpene alcohols as highly potent, reversible, and low toxic skin penetration enhancers. Sci. Rep. 2019;9(1):1–12.. doi: 10.1038/s41598-019-51226-5. PubMed DOI PMC
Gutknecht J, Walter A. Histamine, theophylline and tryptamine transport through lipid bilayer membranes. Biochim. Biophys. Acta. 1981;649(2):149–54. doi: 10.1016/0005-2736(81)90401-6. PubMed DOI
Halling-Overgaard AS, et al. Skin absorption through atopic dermatitis skin: a systematic review. Brit. J. Dermatol. 2017;177(1):84–106. doi: 10.1111/bjd.15065. PubMed DOI
Sochorova M, et al. Permeability and microstructure of cholesterol-depleted skin lipid membranes and human stratum corneum. J. Colloid Interf. Sci. 2019;535:227–238. doi: 10.1016/j.jcis.2018.09.104. PubMed DOI
Duan J, Merrill AH., Jr. 1-Deoxysphingolipids Encountered Exogenously and Made de Novo: Dangerous Mysteries inside an Enigma. J. Biol. Chem. 2015;290(25):15380–9. doi: 10.1074/jbc.R115.658823. PubMed DOI PMC
McIntosh TJ, Waldbillig RC, Robertson JD. The molecular organization of asymmetric lipid bilayers and lipid-peptide complexes. Biochim. Biophys. Acta. 1977;466(2):209–30.. doi: 10.1016/0005-2736(77)90220-6. PubMed DOI
Stahlberg S, et al. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by (2)H solid-state NMR spectroscopy. Langmuir. 2015;31(17):4906–15. doi: 10.1021/acs.langmuir.5b00751. PubMed DOI
Bouwstra JA, Honeywell-Nguyen PL, Gooris GS, Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003;42(1):1–36. doi: 10.1016/S0163-7827(02)00028-0. PubMed DOI
Groen D, et al. Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys. J. 2011;100(6):1481–9. doi: 10.1016/j.bpj.2011.02.001. PubMed DOI PMC
Pham QD, Bjorklund S, Engblom J, Topgaard D, Sparr E. Chemical penetration enhancers in stratum corneum - Relation between molecular effects and barrier function. J. Control. Release. 2016;232:175–87. doi: 10.1016/j.jconrel.2016.04.030. PubMed DOI
Lister MD, Ruan ZS, Bittman R. Interaction of Sphingomyelinase with Sphingomyelin Analogs Modified at the C-1 and C-3 Positions of the Sphingosine Backbone. Biochim. Biophys. Acta. 1995;1256(1):25–30. doi: 10.1016/0005-2760(94)00249-X. PubMed DOI
Kan CC, Ruan ZS, Bittman R. Interaction of cholesterol with sphingomyelin in bilayer membranes: evidence that the hydroxy group of sphingomyelin does not modulate the rate of cholesterol exchange between vesicles. Biochemistry. 1991;30(31):7759–7766. doi: 10.1021/bi00245a013. PubMed DOI
Gronberg L, Ruan ZS, Bittman R, Slotte JP. Interaction of cholesterol with synthetic sphingomyelin derivatives in mixed monolayers. Biochemistry. 1991;30(44):10746–54. doi: 10.1021/bi00108a020. PubMed DOI
Ranck J, Zaccai G, Luzzati V. The structure of a lipid–water lamellar phase containing two types of lipid monolayers. An X-ray and neutron scattering study. Journal of Applied Crystallography. 1980;13(6):505–512. doi: 10.1107/S0021889880012678. DOI
Kumar K, et al. The Lgamma Phase of Pulmonary Surfactant. Langmuir. 2018;34(22):6601–6611. doi: 10.1021/acs.langmuir.8b00460. PubMed DOI PMC
Ranck JL, et al. Order-disorder conformational transitions of the hydrocarbon chains of lipids. J. Mol. Biol. 1974;85(2):249–77.. doi: 10.1016/0022-2836(74)90363-5. PubMed DOI
Funari SS, Rapp G, Richter F. Double-Bilayer: A New Phase Formed by Lysophospholipids and the Corresponding Fatty Acid. Quim. Nova. 2009;32(4):908–912. doi: 10.1590/S0100-40422009000400015. DOI
Pascher I. Molecular Arrangements in Sphingolipids Conformation and Hydrogen-Bonding of Ceramide and Their Implication on Membrane Stability and Permeability. Biochim. Biophys. Acta. 1976;455(2):433–451. doi: 10.1016/0005-2736(76)90316-3. PubMed DOI
Bollinger CR, Teichgraber V, Gulbins E. Ceramide-enriched membrane domains. Biochim. Biophys. Acta. 2005;1746(3):284–94. doi: 10.1016/j.bbamcr.2005.09.001. PubMed DOI
Skolova B, et al. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. Langmuir. 2014;30(19):5527–35. doi: 10.1021/la500622f. PubMed DOI
Schroeter A, et al. Phase separation in ceramide[NP] containing lipid model membranes: neutron diffraction and solid-state NMR. Soft Matter. 2017;13(10):2107–2119. doi: 10.1039/C6SM02356H. PubMed DOI
Fasano WJ, Hinderliter PM. The Tinsley LCR Databridge Model 6401 and electrical impedance measurements to evaluate skin integrity in vitro. Toxicol. In Vitro. 2004;18(5):725–9. doi: 10.1016/j.tiv.2004.01.003. PubMed DOI
Janůšová B, et al. Amino acid derivatives as transdermal permeation enhancers. J. Control. Release. 2013;165(2):91–100. doi: 10.1016/j.jconrel.2012.11.003. PubMed DOI