Permeability Barrier and Microstructure of Skin Lipid Membrane Models of Impaired Glucosylceramide Processing

. 2017 Jul 25 ; 7 (1) : 6470. [epub] 20170725

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28744000
Odkazy

PubMed 28744000
PubMed Central PMC5527096
DOI 10.1038/s41598-017-06990-7
PII: 10.1038/s41598-017-06990-7
Knihovny.cz E-zdroje

Ceramide (Cer) release from glucosylceramides (GlcCer) is critical for the formation of the skin permeability barrier. Changes in β-glucocerebrosidase (GlcCer'ase) activity lead to diminished Cer, GlcCer accumulation and structural defects in SC lipid lamellae; however, the molecular basis for this impairment is not clear. We investigated impaired GlcCer-to-Cer processing in human Cer membranes to determine the physicochemical properties responsible for the barrier defects. Minor impairment (5-25%) of the Cer generation from GlcCer decreased the permeability of the model membrane to four markers and altered the membrane microstructure (studied by X-ray powder diffraction and infrared spectroscopy), in agreement with the effects of topical GlcCer in human skin. At these concentrations, the accumulation of GlcCer was a stronger contributor to this disturbance than the lack of human Cer. However, replacement of 50-100% human Cer by GlcCer led to the formation of a new lamellar phase and the maintenance of a rather good barrier to the four studied permeability markers. These findings suggest that the major cause of the impaired water permeability barrier in complete GlcCer'ase deficiency is not the accumulation of free GlcCer but other factors, possibly the retention of GlcCer bound in the corneocyte lipid envelope.

Zobrazit více v PubMed

Lampe MA, et al. Human stratum corneum lipids: characterization and regional variations. J Lipid Res. 1983;24:120–130. PubMed

Elias PM. Epidermal Lipids, Barrier Function, and Desquamation. J Invest Dermatol. 1983;80:44s–49s. doi: 10.1038/jid.1983.12. PubMed DOI

Holleran WM, Takagi Y, Uchida Y. Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 2006;580:5456–5466. doi: 10.1016/j.febslet.2006.08.039. PubMed DOI

Hamanaka S, et al. Human Epidermal Glucosylceramides are Major Precursors of Stratum Corneum Ceramides. J Invest Dermatol. 2002;119:416–423. doi: 10.1046/j.1523-1747.2002.01836.x. PubMed DOI

Holleran WM, et al. Processing of epidermal glucosylceramides is required for optimal mammalian cutaneous permeability barrier function. Journal of Clinical Investigation. 1993;91:1656–1664. doi: 10.1172/JCI116374. PubMed DOI PMC

Sidransky E, et al. Epidermal Abnormalities May Distinguish Type 2 from Type 1 and Type 3 of Gaucher Disease. Pediatr Res. 1996;39:134–141. doi: 10.1203/00006450-199601000-00020. PubMed DOI

Holleran WM, et al. Consequences of beta-glucocerebrosidase deficiency in epidermis. Ultrastructure and permeability barrier alterations in Gaucher disease. Journal of Clinical Investigation. 1994;93:1756–1764. doi: 10.1172/JCI117160. PubMed DOI PMC

Doering T, Proia RL, Sandhoff K. Accumulation of protein-bound epidermal glucosylceramides in β-glucocerebrosidase deficient type 2 Gaucher mice. FEBS Lett. 1999;447:167–170. doi: 10.1016/S0014-5793(99)00274-4. PubMed DOI

Doering T, et al. Sphingolipid activator proteins are required for epidermal permeability barrier formation. J Biol Chem. 1999;274:11038–11045. doi: 10.1074/jbc.274.16.11038. PubMed DOI

Alessandrini F, Stachowitz S, Ring J, Behrendt H. The Level of Prosaposin is Decreased in the Skin of Patients with Psoriasis Vulgaris. J Invest Dermatol. 2001;116:394–400. doi: 10.1046/j.1523-1747.2001.01283.x. PubMed DOI

Chang-Yi C, et al. Decreased Level of Prosaposin in Atopic Skin. J Invest Dermatol. 1997;109:319–323. doi: 10.1111/1523-1747.ep12335839. PubMed DOI

Alessandrini F, et al. Alterations of Glucosylceramide-[beta]-Glucosidase Levels in the Skin of Patients with Psoriasis Vulgaris. J Invest Dermatol. 2004;123:1030–1036. doi: 10.1111/j.0022-202X.2004.23469.x. PubMed DOI

Bouwstra JA, Gooris GS, van der Spek JA, Bras W. Structural Investigations of Human Stratum Corneum by Small-Angle X-Ray Scattering. J Invest Dermatol. 1991;97:1005–1012. doi: 10.1111/1523-1747.ep12492217. PubMed DOI

Madison KC, Swartzendruber DC, Wertz PW, Downing DT. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. The Journal of investigative dermatology. 1987;88:714–718. doi: 10.1111/1523-1747.ep12470386. PubMed DOI

White SH, Mirejovsky D, King GI. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 1988;27:3725–3732. PubMed

Iwai I, et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. The Journal of investigative dermatology. 2012;132:2215–2225. doi: 10.1038/jid.2012.43. PubMed DOI

Mendelsohn R, Moore DJ. Vibrational spectroscopic studies of lipid domains in biomembranes and model systems. Chem. Phys. Lipids. 1998;96:141–157. doi: 10.1016/S0009-3084(98)00085-1. PubMed DOI

Mantsch H, McElhaney R. Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem. Phys. Lipids. 1991;57:213–226. doi: 10.1016/0009-3084(91)90077-O. PubMed DOI

Holleran WM, et al. Permeability barrier requirements regulate epidermal beta-glucocerebrosidase. J Lipid Res. 1994;35:905–912. PubMed

Opalka L, Kovacik A, Maixner J, Vavrova K. Omega-O-Acylceramides in Skin Lipid Membranes: Effects of Concentration, Sphingoid Base, and Model Complexity on Microstructure and Permeability. Langmuir. 2016;32:12894–12904. doi: 10.1021/acs.langmuir.6b03082. PubMed DOI

Pullmannová P, et al. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. Biochim Biophys Acta - Biomembranes. 2014;1838:2115–2126. doi: 10.1016/j.bbamem.2014.05.001. PubMed DOI

Školová B, et al. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624–15633. doi: 10.1021/la4037474. PubMed DOI

de Jager M, et al. A novel in vitro percutaneous penetration model: evaluation of barrier properties with p-aminobenzoic acid and two of its derivatives. Pharm. Res. 2006;23:951–960. doi: 10.1007/s11095-006-9909-1. PubMed DOI

Kopecna M, et al. Dodecyl Amino Glucoside Enhances Transdermal and Topical Drug Delivery via Reversible Interaction with Skin Barrier Lipids. Pharm Res. 2017;34:640–653. doi: 10.1007/s11095-016-2093-z. PubMed DOI

Takagi Y, Nakagawa H, Yaginuma T, Takema Y, Imokawa G. An accumulation of glucosylceramide in the stratum corneum due to attenuated activity of beta-glucocerebrosidase is associated with the early phase of UVB-induced alteration in cutaneous barrier function. Arch Dermatol Res. 2005;297:18–25. doi: 10.1007/s00403-005-0567-7. PubMed DOI

Motta S, et al. Abnormality of water barrier function in psoriasis: role of ceramide fractions. Arch. Dermatol. 1994;130:452–456. doi: 10.1001/archderm.1994.01690040056007. PubMed DOI

Uchida Y, Holleran WM. Omega-O-acylceramide, a lipid essential for mammalian survival. J Dermatol Sci. 2008;51:77–87. doi: 10.1016/j.jdermsci.2008.01.002. PubMed DOI

Vavrova K, et al. Filaggrin Deficiency Leads to Impaired Lipid Profile and Altered Acidification Pathways in a 3D Skin Construct. J Invest Dermatol. 2014;134:746–753. doi: 10.1038/jid.2013.402. PubMed DOI

Bouwstra JA, et al. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J Lipid Res. 1998;39:186–196. PubMed

Menon GK, Grayson S, Brown BE, Elias PM. Lipokeratinocytes of the epidermis of a cetacean (Phocena phocena) Cell Tissue Res. 1986;244:385–394. doi: 10.1007/BF00219214. PubMed DOI

Elias PM, et al. Formation and functions of the corneocyte lipid envelope (CLE) Biochim Biophys Acta. 2014;1841:314–318. doi: 10.1016/j.bbalip.2013.09.011. PubMed DOI PMC

Kligman AM, Christophers E. Preparation of Isolated Sheets of Human Stratum Corneum. Arch Dermatol. 1963;88:702–705. doi: 10.1001/archderm.1963.01590240026005. PubMed DOI

Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canad J Biochem Physiol. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI

Wallmeyer L, et al. Stimulation of PPARα normalizes the skin lipid ratio and improves the skin barrier of normal and filaggrin deficient reconstructed skin. J. Dermatol. Sci. 2015;80:102–110. doi: 10.1016/j.jdermsci.2015.09.012. PubMed DOI

Masukawa Y, et al. Comprehensive quantification of ceramide species in human stratum corneum. J Lipid Res. 2009;50:1708–1719. doi: 10.1194/jlr.D800055-JLR200. PubMed DOI PMC

Groen D, Gooris GS, Bouwstra JA. Model Membranes Prepared with Ceramide EOS, Cholesterol and Free Fatty Acids Form a Unique Lamellar Phase. Langmuir. 2010;26:4168–4175. doi: 10.1021/la9047038. PubMed DOI

Pullmannová, P. et al. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. in press, doi:10.1016/j.bpc.2017.03.004 (2017). PubMed

Školová B, Kováčik A, Tesař O, Opálka L, Vávrová K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. Biochim. Biophys. Acta-Biomembranes. 2017;1859:824–834. doi: 10.1016/j.bbamem.2017.01.019. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace