Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31857390
PubMed Central
PMC6997605
DOI
10.1194/jlr.ra119000420
PII: S0022-2275(20)43538-2
Knihovny.cz E-zdroje
- Klíčová slova
- acylceramide, ceramides, disease models, epidermis, extracellular matrix, membrane nanostructure, membranes/model, permeability, sphingolipids,
- MeSH
- ceramidy analýza metabolismus MeSH
- kožní nemoci metabolismus MeSH
- kůže chemie metabolismus MeSH
- lidé MeSH
- membránové lipidy chemie metabolismus MeSH
- molekulární modely MeSH
- molekulární struktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- membránové lipidy MeSH
Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.
Charles University Faculty of Pharmacy in Hradec Králové Prague Czech Republic
Hradec Králové Czech Republic University of Chemistry and Technology Prague Prague Czech Republic
Zobrazit více v PubMed
Madison K. C. 2003. Barrier function of the skin: “la raison d’etre” of the epidermis. J. Invest. Dermatol. 121: 231–241. PubMed
Elias P. M. 1991. Epidermal barrier function: intercellular lamellar lipid structures, origin, composition and metabolism. J. Control. Release. 15: 199–208.
Masukawa Y., Narita H., Sato H., Naoe A., Kondo N., Sugai Y., Oba T., Homma R., Ishikawa J., Takagi Y., and Kitahara T.. 2009. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 50: 1708–1719. PubMed PMC
van Smeden J., Janssens M., Gooris G. S., and Bouwstra J. A.. 2014. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta Mol. Cell. Biol. 1841: 295–313. PubMed
van Smeden J, Boiten W. A., Hankemeier T., Rissmann R., Bouwstra J. A., and Vreeken R. J.. 2014. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta Mol. Cell. Biol. 1841: 70–79. PubMed
Ishikawa J., Narita H., Kondo N., Hotta M., Takagi Y., Masukawa Y., Kitahara T., Takema Y., Koyano S., Yamazaki S., and Hatamochi A.. 2010. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 130: 2511–2514. PubMed
Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Kezic S., Lavrijsen A. P., and Bouwstra J. A.. 2011. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 131: 2136–2138. PubMed
t’Kindt R., L. Jorge, E. Dumont, P. Couturon, F. David, P. Sandra, and K. Sandra. 2012. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 84: 403–411. PubMed
Farwanah H., Raith K., Neubert R. H., and Wohlrab J.. 2005. Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Arch. Dermatol. Res. 296: 514–521. PubMed
Macheleidt O., Kaiser H. W., and Sandhoff K.. 2002. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J. Invest. Dermatol. 119: 166–173. PubMed
Jungersted J., Scheer H., Mempel M., Baurecht H., Cifuentes L., Høgh J., Hellgren L. I., Jemec G. B., Agner T., and Weidinger S.. 2010. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 65: 911–918. PubMed
Yamamoto A., Serizawa S., Ito M., and Sato Y.. 1991. Stratum corneum lipid abnormalities in atopic dermatitis. Arch. Dermatol. Res. 283: 219–223. PubMed
Jennemann R., Rabionet M., Gorgas K., Epstein S., Dalpke A., Rothermel U., Bayerle A., van der Hoeven F., Imgrund S., Kirsch J., et al. . 2012. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21: 586–608. PubMed
Vasireddy V., Uchida Y., Salem N., Kim S. Y., Mandal M. N. A., Reddy G. B., Bodepudi R., Alderson N. L., Brown J.C., Hama H., et al. . 2007. Loss of functional ELOVL4 depletes very long-chain fatty acids (≥ C28) and the unique ω-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 16: 471–482. PubMed PMC
Bouwstra J. A., Gooris G. S., Vanderspek J. A., and Bras W.. 1991. Structural investigations of human stratum-corneum by small-angle X-ray-scattering. J. Invest. Dermatol. 97: 1005–1012. PubMed
McIntosh T. J., Stewart M. E., and Downing D. T.. 1996. X-ray diffraction analysis of isolated skin lipids: Reconstitution of intercellular lipid domains. Biochemistry. 35: 3649–3653. PubMed
Kessner D., Brezesinski G., Funari S. S., Dobner B., and Neubert R. H.. 2010. Impact of the long chain ω-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER [EOS] and CER [EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chem. Phys. Lipids. 163: 42–50. PubMed
de Sousa Neto D., Gooris G., and Bouwstra J.. 2011. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem. Phys. Lipids. 164: 184–195. PubMed
Mojumdar E. H., Gooris G. S., Barlow D. J., Lawrence M. J., Deme B., and Bouwstra J. A.. 2015. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys. J. 108: 2670–2679. PubMed PMC
Di Nardo A., Wertz P., Giannetti A., and Seidenari S.. 1998. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 78: 27–30. PubMed
Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Hankemeier T., Kezic S., Wolterbeek R., et al. . 2012. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 53: 2755–2766. PubMed PMC
Paige D., Morse-Fisher N., and Harper J.. 1994. Quantification of stratum corneum ceramides and lipid envelope ceramides in the hereditary ichthyoses. Br. J. Dermatol. 131: 23–27. PubMed
Motta S., Monti M., Sesana S., Caputo R., Carelli S., and Ghidoni R.. 1993. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta. 1182: 147–151. PubMed
van Smeden J., Janssens M., Boiten W. A., van Drongelen V., Furio L., Vreeken R. J., Hovnanian A., and Bouwstra J. A.. 2014. Intercellular skin barrier lipid composition and organization in Netherton syndrome patients. J. Invest. Dermatol. 134: 1238–1245. PubMed
Schreiner V., Gooris G. S., Pfeiffer S., Lanzendörfer G., Wenck H., Diembeck W., Proksch E., and Bouwstra J.. 2000. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Dermatol. 114: 654–660. PubMed
Matsumoto M., Umemoto N., Sugiura H., and Uehara M.. 1999. Difference in ceramide composition between “dry” and “normal” skin in patients with atopic dermatitis. Acta Derm. Venereol. 79: 246–247. PubMed
Bleck O., Abeck D., Ring J., Hoppe U., Vietzke J-P., Wolber R., Brandt O., and Schreiner V.. 1999. Two ceramide subfractions detectable in Cer (AS) position by HPTLC in skin surface lipids of non-lesional skin of atopic eczema. J. Invest. Dermatol. 113: 894–900. PubMed
Imokawa G., Abe A., Jin K., Higaki Y., Kawashima M., and Hidano A.. 1991. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J. Invest. Dermatol. 96: 523–526. PubMed
Mauldin E. A., Crumrine D., Casal M. L., Jeong S., Opálka L., Vavrova K., Uchida Y., Park K., Craiglow B., Choate K. A. et al. . 2018. Cellular and metabolic basis for the ichthyotic phenotype in NIPAL4 (ichthyin)-deficient canines. Am. J. Pathol. 188: 1419–1429. PubMed PMC
Opálka L., Kováčik A., Maixner J., and Vávrová K.. 2016. Omega-O-acylceramides in skin lipid membranes: effects of concentration, sphingoid base, and model complexity on microstructure and permeability. Langmuir. 32: 12894–12904. PubMed
de Jager M., Gooris G., Ponec M., and Bouwstra J.. 2004. Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J. Invest. Dermatol. 123: 911–916. PubMed
de Jager M. W., Gooris G. S., Ponec M., and Bouwstra J. A.. 2005. Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. J. Lipid Res. 46: 2649–2656. PubMed
Bouwstra J. A., Gooris G. S., Dubbelaar F. E. R., Weerheim A. M., Ijzerman A. P., and Ponec M.. 1998. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 39: 186–196. PubMed
Bouwstra J. A., Gooris G. S., Cheng K., Weerheim A., Bras W., and Ponec M.. 1996. Phase behavior of isolated skin lipids. J. Lipid Res. 37: 999–1011. PubMed
Bouwstra J. A., Cheng K., Gooris G., Weerheim A., and Ponec M.. 1996. The role of ceramides 1 and 2 in the stratum corneum lipid organisation. Biochim. Biophys. Acta. 1300: 177–186. PubMed
Opálka L., Kováčik A., Sochorová M., Roh J., Kuneš J., Lenčo J., and Vávrová K.. 2015. Scalable Synthesis of Human Ultralong Chain Ceramides. Org. Lett. 17: 5456–5459. PubMed
Kováčik A, Vogel A., Adler J., Pullmannová P., Vávrová K., and Huster D.. 2018. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2 H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta Biomembranes. 1860:1162–1170. PubMed
Groen D., Gooris G. S., and Bouwstra J. A.. 2010. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 26: 4168–4175. PubMed
Wertz P. W., Schwartzendruber D. C., Madison K. C., and Downing D. T.. 1987. Composition and morphology of epidermal cyst lipids. J. Invest. Dermatol. 89: 419–425. PubMed
Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., and Vávrová K.. 2013. Ceramides in the skin lipid membranes: length matters. Langmuir. 29: 15624–15633. PubMed
Pullmannová P, Staňková K., Pospíšilová M., Školová B., Zbytovská J., and Vávrová K.. 2014. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. Biochim. Biophys. Acta Biomembranes. 1838: 2115–2126. PubMed
Pullmannová P., Pavlíková L., Kováčik A., Sochorová M., Školová B., Slepička P., Maixner J., Zbytovská J., and Vávrová K.. 2017. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 224: 20–31. PubMed
Novotný J., Janůšová B., Novotný M., Hrabálek A., and Vávrová K.. 2009. Short-chain ceramides decrease skin barrier properties. Skin Pharmacol. Physiol. 22: 22–30. PubMed
Craven B. 1979. Pseudosymmetry in cholesterol monohydrate. Acta Crystallogr. B. 35: 1123–1128.
Mojumdar E. H., Gooris G. S., and Bouwstra J.. 2015. Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization. Soft Matter. 11: 4326–4336. PubMed
Pullmannová P., Ermakova E., Kovacik A., Opalka L., Maixner J., Zbytovska J., Kučerka N., and Vávrová K. 2019. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 60: 963–971. PubMed PMC
White S. H., Mirejovsky D., and King G. I.. 1988. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum-corneum - an X-ray-diffraction study. Biochemistry. 27: 3725–3732. PubMed
Bouwstra J., Gooris G., Bras W., and Downing D.. 1995. Lipid organization in pig stratum corneum. J. Lipid Res. 36: 685–695. PubMed
Bouwstra J., Dubbelaar F., Gooris G., and Ponec M.. 2000. The lipid organisation in the skin barrier. Acta Derm. Venereol. 208: 23–30. PubMed
Boncheva M, Damien F., and Normand V.. 2008. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta Biomembranes. 1778: 1344–1355. PubMed
Van Duzee B. F. 1975. Thermal analysis of human stratum corneum. J. Invest. Dermatol. 65: 404–408. PubMed
Golden G. M., Guzek D. B., Harris R. R., McKie J. E., and Potts R. O.. 1986. Lipid thermotropic transitions in human stratum corneum. J. Invest. Dermatol. 86: 255–259. PubMed
Gay C. L., Guy R. H., Golden G. M., Mak V. H., and Francoeur M. L.. 1994. Characterization of low-temperature (ie,< 65 C) lipid transitions in human stratum corneum. J. Invest. Dermatol. 103: 233–239. PubMed
Ongpipattanakul B., Francoeur M. L., and Potts R. O.. 1994. Polymorphism in stratum corneum lipids. BBA-Biomembranes. 1190: 115–122. PubMed
Bouwstra J. A., de Graaff A., Gooris G. S., Nijsse J., Wiechers J. W., and van Aelst A. C.. 2003. Water distribution and related morphology in human stratum corneum at different hydration levels. J. Invest. Dermatol. 120: 750–758. PubMed
Bouwstra J., Gooris G., Salomons-de Vries M., Van der Spek J., and Bras W.. 1992. Structure of human stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction study. Int. J. Pharm. 84: 205–216.
Bouwstra J. Gooris G., Brussee J. Salomons-de Vries M. A., and Bras W.. 1992. The influence of alkyl-azones on the ordering of the lamellae in human stratum corneum. Int. J. Pharm. 79: 141–148.
Sochorová M., Staňková K., Pullmannová P., Kováčik A., Zbytovská J., and Vávrová K.. 2017. Permeability barrier and microstructure of skin lipid membrane models of impaired glucosylceramide processing. Sci. Rep. 7: 6470. PubMed PMC
Crumrine D., Khnykin D., Krieg P., Man M-Q., Celli A., Mauro T. M., Wakefield J. S., Menon G., Mauldin E., Miner J. H., et al. . 2019. Mutations in recessive congenital ichthyoses illuminate the origin and functions of the corneocyte lipid envelope. J. Invest. Dermatol. 139: 760–768. PubMed PMC
Angelova-Fischer I., Mannheimer A. C., Hinder A., Ruether A., Franke A., Neubert R. H., Fischer T. W., and Zillikens D.. 2011. Distinct barrier integrity phenotypes in filaggrin-related atopic eczema following sequential tape stripping and lipid profiling. Exp. Dermatol. 20: 351–356. PubMed
Matsumoto M., Sugiura H., and Uehara M.. 2000. Skin barrier function in patients with completely healed atopic dermatitis. J. Dermatol. Sci. 23: 178–182. PubMed
Yoshiike T., Aikawa Y., Sindhvananda J., Suto H., Nishimura K., Kawamoto T., et al. . 1993. Skin barrier defect in atopic dermatitis: increased permeability of the stratum corneum using dimethyl sulfoxide and theophylline. J. Dermatol. Sci. 5: 92–96. PubMed
Halling-Overgaard A. S., Kezic S., Jakasa I., Engebretsen K., Maibach H., and Thyssen J.. 2017. Skin absorption through atopic dermatitis skin: a systematic review. Br. J. Dermatol. 177: 84–106. PubMed
van Smeden J., Janssens M., Kaye E. C. J., Caspers P. J., Lavrijsen A. P., Vreeken R. J., et al. . 2014. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp. Dermatol. 23: 45–52. PubMed
Kovacik A., Pullmannová P., Maixner J., and Vavrova K.. 2018. Effects of ceramide and dihydroceramide stereochemistry at C-3 on the phase behavior and permeability of skin lipid membranes. Langmuir. 34: 521–529. PubMed
Kessner D., Kiselev M., Dante S., Hauß T., Lersch P., Wartewig S., and Neubert R. H.. 2008. Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. Eur. Biophys. J. 37: 989–999. PubMed
Mitragotri S. 2003. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J. Control. Release. 86: 69–92. PubMed
Kiselev M., Ermakova E., Gruzinov A. Y., and Zabelin A.. 2014. Formation of the long-periodicity phase in model membranes of the outermost layer of skin (Stratum corneum). Crystallogr. Rep. 59: 112–116.
Schröter A., Kessner D., Kiselev M. A., Hauß T., Dante S., and Neubert R. H.. 2009. Basic nanostructure of stratum corneum lipid matrices based on ceramides [EOS] and [AP]: a neutron diffraction study. Biophys. J. 97: 1104–1114. PubMed PMC
Rerek M. E., Chen H-C., Markovic B., Van Wyck D., Garidel P., Mendelsohn R., and Moore D. J.. 2001. Phytosphingosine and sphingosine ceramide headgroup hydrogen bonding: structural insights through thermotropic hydrogen/deuterium exchange. J. Phys. Chem. B. 105: 9355–9362.
Rerek M. E., Van Wyck D., Mendelsohn R., and Moore D. J.. 2005. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids. 134: 51–58. PubMed
Lysosphingolipids in ceramide-deficient skin lipid models