Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models

. 2020 Feb ; 61 (2) : 219-228. [epub] 20191219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31857390
Odkazy

PubMed 31857390
PubMed Central PMC6997605
DOI 10.1194/jlr.ra119000420
PII: S0022-2275(20)43538-2
Knihovny.cz E-zdroje

Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.

Zobrazit více v PubMed

Madison K. C. 2003. Barrier function of the skin: “la raison d’etre” of the epidermis. J. Invest. Dermatol. 121: 231–241. PubMed

Elias P. M. 1991. Epidermal barrier function: intercellular lamellar lipid structures, origin, composition and metabolism. J. Control. Release. 15: 199–208.

Masukawa Y., Narita H., Sato H., Naoe A., Kondo N., Sugai Y., Oba T., Homma R., Ishikawa J., Takagi Y., and Kitahara T.. 2009. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 50: 1708–1719. PubMed PMC

van Smeden J., Janssens M., Gooris G. S., and Bouwstra J. A.. 2014. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta Mol. Cell. Biol. 1841: 295–313. PubMed

van Smeden J, Boiten W. A., Hankemeier T., Rissmann R., Bouwstra J. A., and Vreeken R. J.. 2014. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta Mol. Cell. Biol. 1841: 70–79. PubMed

Ishikawa J., Narita H., Kondo N., Hotta M., Takagi Y., Masukawa Y., Kitahara T., Takema Y., Koyano S., Yamazaki S., and Hatamochi A.. 2010. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 130: 2511–2514. PubMed

Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Kezic S., Lavrijsen A. P., and Bouwstra J. A.. 2011. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 131: 2136–2138. PubMed

t’Kindt R., L. Jorge, E. Dumont, P. Couturon, F. David, P. Sandra, and K. Sandra. 2012. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 84: 403–411. PubMed

Farwanah H., Raith K., Neubert R. H., and Wohlrab J.. 2005. Ceramide profiles of the uninvolved skin in atopic dermatitis and psoriasis are comparable to those of healthy skin. Arch. Dermatol. Res. 296: 514–521. PubMed

Macheleidt O., Kaiser H. W., and Sandhoff K.. 2002. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J. Invest. Dermatol. 119: 166–173. PubMed

Jungersted J., Scheer H., Mempel M., Baurecht H., Cifuentes L., Høgh J., Hellgren L. I., Jemec G. B., Agner T., and Weidinger S.. 2010. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 65: 911–918. PubMed

Yamamoto A., Serizawa S., Ito M., and Sato Y.. 1991. Stratum corneum lipid abnormalities in atopic dermatitis. Arch. Dermatol. Res. 283: 219–223. PubMed

Jennemann R., Rabionet M., Gorgas K., Epstein S., Dalpke A., Rothermel U., Bayerle A., van der Hoeven F., Imgrund S., Kirsch J., et al. . 2012. Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum. Mol. Genet. 21: 586–608. PubMed

Vasireddy V., Uchida Y., Salem N., Kim S. Y., Mandal M. N. A., Reddy G. B., Bodepudi R., Alderson N. L., Brown J.C., Hama H., et al. . 2007. Loss of functional ELOVL4 depletes very long-chain fatty acids (≥ C28) and the unique ω-O-acylceramides in skin leading to neonatal death. Hum. Mol. Genet. 16: 471–482. PubMed PMC

Bouwstra J. A., Gooris G. S., Vanderspek J. A., and Bras W.. 1991. Structural investigations of human stratum-corneum by small-angle X-ray-scattering. J. Invest. Dermatol. 97: 1005–1012. PubMed

McIntosh T. J., Stewart M. E., and Downing D. T.. 1996. X-ray diffraction analysis of isolated skin lipids: Reconstitution of intercellular lipid domains. Biochemistry. 35: 3649–3653. PubMed

Kessner D., Brezesinski G., Funari S. S., Dobner B., and Neubert R. H.. 2010. Impact of the long chain ω-acylceramides on the stratum corneum lipid nanostructure. Part 1: Thermotropic phase behaviour of CER [EOS] and CER [EOP] studied using X-ray powder diffraction and FT-Raman spectroscopy. Chem. Phys. Lipids. 163: 42–50. PubMed

de Sousa Neto D., Gooris G., and Bouwstra J.. 2011. Effect of the omega-acylceramides on the lipid organization of stratum corneum model membranes evaluated by X-ray diffraction and FTIR studies (Part I). Chem. Phys. Lipids. 164: 184–195. PubMed

Mojumdar E. H., Gooris G. S., Barlow D. J., Lawrence M. J., Deme B., and Bouwstra J. A.. 2015. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys. J. 108: 2670–2679. PubMed PMC

Di Nardo A., Wertz P., Giannetti A., and Seidenari S.. 1998. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 78: 27–30. PubMed

Janssens M., van Smeden J., Gooris G. S., Bras W., Portale G., Caspers P. J., Vreeken R. J., Hankemeier T., Kezic S., Wolterbeek R., et al. . 2012. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 53: 2755–2766. PubMed PMC

Paige D., Morse-Fisher N., and Harper J.. 1994. Quantification of stratum corneum ceramides and lipid envelope ceramides in the hereditary ichthyoses. Br. J. Dermatol. 131: 23–27. PubMed

Motta S., Monti M., Sesana S., Caputo R., Carelli S., and Ghidoni R.. 1993. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta. 1182: 147–151. PubMed

van Smeden J., Janssens M., Boiten W. A., van Drongelen V., Furio L., Vreeken R. J., Hovnanian A., and Bouwstra J. A.. 2014. Intercellular skin barrier lipid composition and organization in Netherton syndrome patients. J. Invest. Dermatol. 134: 1238–1245. PubMed

Schreiner V., Gooris G. S., Pfeiffer S., Lanzendörfer G., Wenck H., Diembeck W., Proksch E., and Bouwstra J.. 2000. Barrier characteristics of different human skin types investigated with X-ray diffraction, lipid analysis, and electron microscopy imaging. J. Invest. Dermatol. 114: 654–660. PubMed

Matsumoto M., Umemoto N., Sugiura H., and Uehara M.. 1999. Difference in ceramide composition between “dry” and “normal” skin in patients with atopic dermatitis. Acta Derm. Venereol. 79: 246–247. PubMed

Bleck O., Abeck D., Ring J., Hoppe U., Vietzke J-P., Wolber R., Brandt O., and Schreiner V.. 1999. Two ceramide subfractions detectable in Cer (AS) position by HPTLC in skin surface lipids of non-lesional skin of atopic eczema. J. Invest. Dermatol. 113: 894–900. PubMed

Imokawa G., Abe A., Jin K., Higaki Y., Kawashima M., and Hidano A.. 1991. Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J. Invest. Dermatol. 96: 523–526. PubMed

Mauldin E. A., Crumrine D., Casal M. L., Jeong S., Opálka L., Vavrova K., Uchida Y., Park K., Craiglow B., Choate K. A. et al. . 2018. Cellular and metabolic basis for the ichthyotic phenotype in NIPAL4 (ichthyin)-deficient canines. Am. J. Pathol. 188: 1419–1429. PubMed PMC

Opálka L., Kováčik A., Maixner J., and Vávrová K.. 2016. Omega-O-acylceramides in skin lipid membranes: effects of concentration, sphingoid base, and model complexity on microstructure and permeability. Langmuir. 32: 12894–12904. PubMed

de Jager M., Gooris G., Ponec M., and Bouwstra J.. 2004. Acylceramide head group architecture affects lipid organization in synthetic ceramide mixtures. J. Invest. Dermatol. 123: 911–916. PubMed

de Jager M. W., Gooris G. S., Ponec M., and Bouwstra J. A.. 2005. Lipid mixtures prepared with well-defined synthetic ceramides closely mimic the unique stratum corneum lipid phase behavior. J. Lipid Res. 46: 2649–2656. PubMed

Bouwstra J. A., Gooris G. S., Dubbelaar F. E. R., Weerheim A. M., Ijzerman A. P., and Ponec M.. 1998. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 39: 186–196. PubMed

Bouwstra J. A., Gooris G. S., Cheng K., Weerheim A., Bras W., and Ponec M.. 1996. Phase behavior of isolated skin lipids. J. Lipid Res. 37: 999–1011. PubMed

Bouwstra J. A., Cheng K., Gooris G., Weerheim A., and Ponec M.. 1996. The role of ceramides 1 and 2 in the stratum corneum lipid organisation. Biochim. Biophys. Acta. 1300: 177–186. PubMed

Opálka L., Kováčik A., Sochorová M., Roh J., Kuneš J., Lenčo J., and Vávrová K.. 2015. Scalable Synthesis of Human Ultralong Chain Ceramides. Org. Lett. 17: 5456–5459. PubMed

Kováčik A, Vogel A., Adler J., Pullmannová P., Vávrová K., and Huster D.. 2018. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2 H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta Biomembranes. 1860:1162–1170. PubMed

Groen D., Gooris G. S., and Bouwstra J. A.. 2010. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 26: 4168–4175. PubMed

Wertz P. W., Schwartzendruber D. C., Madison K. C., and Downing D. T.. 1987. Composition and morphology of epidermal cyst lipids. J. Invest. Dermatol. 89: 419–425. PubMed

Školová B., Janůšová B., Zbytovská J., Gooris G., Bouwstra J., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., and Vávrová K.. 2013. Ceramides in the skin lipid membranes: length matters. Langmuir. 29: 15624–15633. PubMed

Pullmannová P, Staňková K., Pospíšilová M., Školová B., Zbytovská J., and Vávrová K.. 2014. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. Biochim. Biophys. Acta Biomembranes. 1838: 2115–2126. PubMed

Pullmannová P., Pavlíková L., Kováčik A., Sochorová M., Školová B., Slepička P., Maixner J., Zbytovská J., and Vávrová K.. 2017. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 224: 20–31. PubMed

Novotný J., Janůšová B., Novotný M., Hrabálek A., and Vávrová K.. 2009. Short-chain ceramides decrease skin barrier properties. Skin Pharmacol. Physiol. 22: 22–30. PubMed

Craven B. 1979. Pseudosymmetry in cholesterol monohydrate. Acta Crystallogr. B. 35: 1123–1128.

Mojumdar E. H., Gooris G. S., and Bouwstra J.. 2015. Phase behavior of skin lipid mixtures: the effect of cholesterol on lipid organization. Soft Matter. 11: 4326–4336. PubMed

Pullmannová P., Ermakova E., Kovacik A., Opalka L., Maixner J., Zbytovska J., Kučerka N., and Vávrová K. 2019. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 60: 963–971. PubMed PMC

White S. H., Mirejovsky D., and King G. I.. 1988. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum-corneum - an X-ray-diffraction study. Biochemistry. 27: 3725–3732. PubMed

Bouwstra J., Gooris G., Bras W., and Downing D.. 1995. Lipid organization in pig stratum corneum. J. Lipid Res. 36: 685–695. PubMed

Bouwstra J., Dubbelaar F., Gooris G., and Ponec M.. 2000. The lipid organisation in the skin barrier. Acta Derm. Venereol. 208: 23–30. PubMed

Boncheva M, Damien F., and Normand V.. 2008. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta Biomembranes. 1778: 1344–1355. PubMed

Van Duzee B. F. 1975. Thermal analysis of human stratum corneum. J. Invest. Dermatol. 65: 404–408. PubMed

Golden G. M., Guzek D. B., Harris R. R., McKie J. E., and Potts R. O.. 1986. Lipid thermotropic transitions in human stratum corneum. J. Invest. Dermatol. 86: 255–259. PubMed

Gay C. L., Guy R. H., Golden G. M., Mak V. H., and Francoeur M. L.. 1994. Characterization of low-temperature (ie,< 65 C) lipid transitions in human stratum corneum. J. Invest. Dermatol. 103: 233–239. PubMed

Ongpipattanakul B., Francoeur M. L., and Potts R. O.. 1994. Polymorphism in stratum corneum lipids. BBA-Biomembranes. 1190: 115–122. PubMed

Bouwstra J. A., de Graaff A., Gooris G. S., Nijsse J., Wiechers J. W., and van Aelst A. C.. 2003. Water distribution and related morphology in human stratum corneum at different hydration levels. J. Invest. Dermatol. 120: 750–758. PubMed

Bouwstra J., Gooris G., Salomons-de Vries M., Van der Spek J., and Bras W.. 1992. Structure of human stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction study. Int. J. Pharm. 84: 205–216.

Bouwstra J. Gooris G., Brussee J. Salomons-de Vries M. A., and Bras W.. 1992. The influence of alkyl-azones on the ordering of the lamellae in human stratum corneum. Int. J. Pharm. 79: 141–148.

Sochorová M., Staňková K., Pullmannová P., Kováčik A., Zbytovská J., and Vávrová K.. 2017. Permeability barrier and microstructure of skin lipid membrane models of impaired glucosylceramide processing. Sci. Rep. 7: 6470. PubMed PMC

Crumrine D., Khnykin D., Krieg P., Man M-Q., Celli A., Mauro T. M., Wakefield J. S., Menon G., Mauldin E., Miner J. H., et al. . 2019. Mutations in recessive congenital ichthyoses illuminate the origin and functions of the corneocyte lipid envelope. J. Invest. Dermatol. 139: 760–768. PubMed PMC

Angelova-Fischer I., Mannheimer A. C., Hinder A., Ruether A., Franke A., Neubert R. H., Fischer T. W., and Zillikens D.. 2011. Distinct barrier integrity phenotypes in filaggrin-related atopic eczema following sequential tape stripping and lipid profiling. Exp. Dermatol. 20: 351–356. PubMed

Matsumoto M., Sugiura H., and Uehara M.. 2000. Skin barrier function in patients with completely healed atopic dermatitis. J. Dermatol. Sci. 23: 178–182. PubMed

Yoshiike T., Aikawa Y., Sindhvananda J., Suto H., Nishimura K., Kawamoto T., et al. . 1993. Skin barrier defect in atopic dermatitis: increased permeability of the stratum corneum using dimethyl sulfoxide and theophylline. J. Dermatol. Sci. 5: 92–96. PubMed

Halling-Overgaard A. S., Kezic S., Jakasa I., Engebretsen K., Maibach H., and Thyssen J.. 2017. Skin absorption through atopic dermatitis skin: a systematic review. Br. J. Dermatol. 177: 84–106. PubMed

van Smeden J., Janssens M., Kaye E. C. J., Caspers P. J., Lavrijsen A. P., Vreeken R. J., et al. . 2014. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp. Dermatol. 23: 45–52. PubMed

Kovacik A., Pullmannová P., Maixner J., and Vavrova K.. 2018. Effects of ceramide and dihydroceramide stereochemistry at C-3 on the phase behavior and permeability of skin lipid membranes. Langmuir. 34: 521–529. PubMed

Kessner D., Kiselev M., Dante S., Hauß T., Lersch P., Wartewig S., and Neubert R. H.. 2008. Arrangement of ceramide [EOS] in a stratum corneum lipid model matrix: new aspects revealed by neutron diffraction studies. Eur. Biophys. J. 37: 989–999. PubMed

Mitragotri S. 2003. Modeling skin permeability to hydrophilic and hydrophobic solutes based on four permeation pathways. J. Control. Release. 86: 69–92. PubMed

Kiselev M., Ermakova E., Gruzinov A. Y., and Zabelin A.. 2014. Formation of the long-periodicity phase in model membranes of the outermost layer of skin (Stratum corneum). Crystallogr. Rep. 59: 112–116.

Schröter A., Kessner D., Kiselev M. A., Hauß T., Dante S., and Neubert R. H.. 2009. Basic nanostructure of stratum corneum lipid matrices based on ceramides [EOS] and [AP]: a neutron diffraction study. Biophys. J. 97: 1104–1114. PubMed PMC

Rerek M. E., Chen H-C., Markovic B., Van Wyck D., Garidel P., Mendelsohn R., and Moore D. J.. 2001. Phytosphingosine and sphingosine ceramide headgroup hydrogen bonding: structural insights through thermotropic hydrogen/deuterium exchange. J. Phys. Chem. B. 105: 9355–9362.

Rerek M. E., Van Wyck D., Mendelsohn R., and Moore D. J.. 2005. FTIR spectroscopic studies of lipid dynamics in phytosphingosine ceramide models of the stratum corneum lipid matrix. Chem. Phys. Lipids. 134: 51–58. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...