Lysosphingolipids in ceramide-deficient skin lipid models
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39653083
PubMed Central
PMC11743119
DOI
10.1016/j.jlr.2024.100722
PII: S0022-2275(24)00227-X
Knihovny.cz E-zdroje
- Klíčová slova
- ceramide, fatty acid, glucosylsphingosine, lipid model, lysolipid, permeability, skin barrier, sphingosine-phosphorylcholine,
- MeSH
- ceramidy * metabolismus nedostatek MeSH
- fosforylcholin analogy a deriváty MeSH
- kůže * metabolismus účinky léků MeSH
- kyseliny mastné neesterifikované metabolismus MeSH
- lidé MeSH
- lysofosfolipidy * metabolismus MeSH
- permeabilita MeSH
- sfingolipidy * metabolismus MeSH
- sfingosin analogy a deriváty metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- ceramidy * MeSH
- fosforylcholin MeSH
- kyseliny mastné neesterifikované MeSH
- lysofosfolipidy * MeSH
- sfingolipidy * MeSH
- sfingosin MeSH
- sphingosine phosphorylcholine MeSH Prohlížeč
Ceramides are key components of the skin's permeability barrier. In atopic dermatitis, pathological hydrolysis of ceramide precursors - glucosylceramides and sphingomyelin - into lysosphingolipids, specifically glucosylsphingosine (GS) and sphingosine-phosphorylcholine (SPC), and free fatty acids (FFAs) has been proposed to contribute to impaired skin barrier function. This study investigated whether replacing ceramides with lysosphingolipids and FFAs in skin lipid barrier models would exacerbate barrier dysfunction. When applied topically to human stratum corneum sheets, SPC and GS increased water loss, decreased electrical impedance, and slightly disordered lipid chains. In lipid models containing isolated human stratum corneum ceramides, reducing ceramides by ≥ 30% significantly increased permeability to four markers, likely due to loss of long-periodicity phase (LPP) lamellae and phase separation within the lipid matrix, as revealed by X-ray diffraction and infrared spectroscopy. However, when the missing ceramides were replaced by lysosphingolipids and FFAs, no further increase in permeability was observed. Conversely, these molecules partially mitigated the negative effects of ceramide deficiency, particularly with 5%-10% SPC, which reduced permeability even compared to control with "healthy" lipid composition. These findings suggest that while ceramide deficiency is a key factor in skin barrier dysfunction, the presence of lysosphingolipids and FFAs does not aggravate lipid structural or functional damage, but may provide partial compensation, raising further questions about the behavior of lyso(sphingo)lipids in rigid multilamellar lipid environments, such as the stratum corneum, that warrant further investigation.
Zobrazit více v PubMed
Elias P.M. Epidermal lipids, membranes, and keratinization. Int. J. Dermatol. 1981;20:1–19. PubMed
Menon G.K., Cleary G.W., Lane M.E. The structure and function of the stratum corneum. Int. J. Pharm. 2012;435:3–9. PubMed
Nishifuji K., Yoon J.S. The stratum corneum: the rampart of the mammalian body. Vet. Dermatol. 2013;24:60-+. PubMed
Wertz P.W. Lipids and the permeability and antimicrobial barriers of the skin. J. Lipids. 2018;2018:1–7. PubMed PMC
Vávrová K., Kováčik A., Opálka L. Ceramides in the skin barrier. Eur. Pharm. J. 2017;64:28–35.
Castro B.M., Prieto M., Silva L.C. Ceramide: a simple sphingolipid with unique biophysical properties. Prog. Lipid Res. 2014;54:53–67. PubMed
Kihara A. Synthesis and degradation pathways, functions, and pathology of ceramides and epidermal acylceramides. Prog. Lipid Res. 2016;63:50–69. PubMed
Hamanaka S., Nakazawa S., Yamanaka M., Uchida Y., Otsuka F. Glucosylceramide accumulates preferentially in lamellar bodies in differentiated keratinocytes. Br. J Dermatol. 2005;152:426–434. PubMed
Rabionet M., Gorgas K., Sandhoff R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta. 2014;1841:422–434. PubMed
Schmuth M., Man M.Q., Weber F., Gao W., Feingold K.R., Fritsch P., et al. Permeability barrier disorder in Niemann-Pick disease: sphingomyelin-ceramide processing required for normal barrier homeostasis. J. Invest. Dermatol. 2000;115:459–466. PubMed
Proksch E., Brandner J.M., Jensen J.M. The skin: an indispensable barrier. Exp. Dermatol. 2008;17:1063–1072. PubMed
Higuchi K., Hara J., Okamoto R., Kawashima M., Imokawa G. The skin of atopic dermatitis patients contains a novel enzyme, glucosylceramide sphingomyelin deacylase, which cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. Biochem. J. 2000;350(Pt 3):747–756. PubMed PMC
Teranishi Y., Kuwahara H., Ueda M., Takemura T., Kusumoto M., Nakamura K., et al. Sphingomyelin deacylase, the enzyme involved in the pathogenesis of atopic dermatitis, is identical to the β-subunit of acid ceramidase. Int. J. Mol. Sci. 2020;21:8789. PubMed PMC
Okamoto R., Arikawa J., Ishibashi M., Kawashima M., Takagi Y., Imokawa G. Sphingosylphosphorylcholine is upregulated in the stratum corneum of patients with atopic dermatitis. J. Lipid Res. 2003;44:93–102. PubMed
Murata Y., Ogata J., Higaki Y., Kawashima M., Yada Y., Higuchi K., et al. Abnormal expression of sphingomyelin acylase in atopic dermatitis: an etiologic factor for ceramide deficiency? J. Invest. Dermatol. 1996;106:1242–1249. PubMed
Imokawa G. Cutting edge of the pathogenesis of atopic dermatitis: sphingomyelin deacylase, the enzyme involved in its ceramide deficiency, plays a pivotal role. Int. J. Mol. Sci. 2021;22:1613. PubMed PMC
Kleuser B., Japtok L. Sphingolipids and inflammatory diseases of the skin. Handb. Exp. Pharmacol. 2013;216:355–372. PubMed
Yue H.W., Jing Q.C., Liu P.P., Liu J., Li W.J., Zhao J. Sphingosylphosphorylcholine in cancer progress. Int. J. Clin. Exp. Med. 2015;8:11913–11921. PubMed PMC
Park M.K., Lee C.H. Role of sphingosylphosphorylcholine in tumor and tumor microenvironment. Cancers (Basel) 2019;11:1696. PubMed PMC
Ge D., Yue H.W., Liu H.H., Zhao J. Emerging roles of sphingosylphosphorylcholine in modulating cardiovascular functions and diseases. Acta Pharmacol. Sin. 2018;39:1830–1836. PubMed PMC
Orvisky E., Sidransky E., McKinney C.E., Lamarca M.E., Samimi R., Krasnewich D., et al. Glucosylsphingosine accumulation in mice and patients with type 2 Gaucher disease begins early in gestation. Pediatr. Res. 2000;48:233–237. PubMed
Arouri A., Mouritsen O.G. Membrane-perturbing effect of fatty acids and lysolipids. Prog. Lipid Res. 2013;52:130–140. PubMed
Mouritsen O.G. Lipids, curvature, and nano-medicine. Eur. J. Lipid Sci. Technol. 2011;113:1174–1187. PubMed PMC
Fuller N., Rand R.P. The influence of lysolipids on the spontaneous curvature and bending elasticity of phospholipid membranes. Biophys. J. 2001;81:243–254. PubMed PMC
Mills J.K., Needham D. Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition. Biochim. Biophys. Acta. 2005;1716:77–96. PubMed
Forbes N., Shin J.E., Ogunyankin M., Zasadzinski J.A. Inside-outside self-assembly of light-activated fast-release liposomes. Phys. Chem. Chem. Phys. 2015;17:15569–15578. PubMed PMC
Jespersen H., Andersen J.H., Ditzel H.J., Mouritsen O.G. Lipids, curvature stress, and the action of lipid prodrugs: free fatty acids and lysolipid enhancement of drug transport across liposomal membranes. Biochimie. 2012;94:2–10. PubMed
Ishikawa J., Narita H., Kondo N., Hotta M., Takagi Y., Masukawa Y., et al. Changes in the ceramide profile of atopic dermatitis patients. J. Invest. Dermatol. 2010;130:2511–2514. PubMed
Opalka L., Kovacik A., Sochorova M., Roh J., Kunes J., Lenco J., et al. Scalable synthesis of human ultralong chain ceramides. Org. Lett. 2015;17:5456–5459. PubMed
Kligman A.M., Christophers E. Preparation of isolated sheets of human stratum corneum. Arch. Dermatol. 1963;88:702–705. PubMed
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959;37:911–917. PubMed
Pullmannova P., Stankova K., Pospisilova M., Skolova B., Zbytovska J., Vavrova K. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. Biochim. Biophys. Acta. 2014;1838:2115–2126. PubMed
Vavrova K., Henkes D., Struver K., Sochorova M., Skolova B., Witting M.Y., et al. Filaggrin deficiency leads to impaired lipid profile and altered acidification pathways in a 3D skin construct. J. Invest. Dermatol. 2014;134:746–753. PubMed
Wallmeyer L., Lehnen D., Eger N., Sochorova M., Opalka L., Kovacik A., et al. Stimulation of PPARalpha normalizes the skin lipid ratio and improves the skin barrier of normal and filaggrin deficient reconstructed skin. J. Dermatol. Sci. 2015;80:102–110. PubMed
Groen D., Gooris G.S., Bouwstra J.A. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 2010;26:4168–4175. PubMed
Wertz P.W., Swartzendruber D.C., Madison K.C., Downing D.T. Composition and morphology of epidermal cyst lipids. J. Invest. Dermatol. 1987;89:419–425. PubMed
Pullmannova P., Pavlikova L., Kovacik A., Sochorova M., Skolova B., Slepicka P., et al. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. PubMed
Skolova B., Kovacik A., Tesar O., Opalka L., Vavrova K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. Biochim. Biophys. Acta Biomembr. 2017;1859:824–834. PubMed
Kao J.S., Fluhr J.W., Man M.Q., Fowler A.J., Hachem J.P., Crumrine D., et al. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Invest. Dermatol. 2003;120:456–464. PubMed
Aberg K.M., Radek K.A., Choi E.H., Kim D.K., Demerjian M., Hupe M., et al. Psychological stress downregulates epidermal antimicrobial peptide expression and increases severity of cutaneous infections in mice. J. Clin. Invest. 2007;117:3339–3349. PubMed PMC
Mao-Qiang M., Feingold K.R., Wang F., Thornfeldt C.R., Elias P.M. A natural lipid mixture improves barrier function and hydration in human and murine skin. J. Soc. Cosmet. Chem. 1996;47:157–166.
Ishibashi M., Arikawa J., Okamoto R., Kawashima M., Takagi Y., Ohguchi K., et al. Abnormal expression of the novel epidermal enzyme, glucosylceramide deacylase, and the accumulation of its enzymatic reaction product, glucosylsphingosine, in the skin of patients with atopic dermatitis. Lab. Invest. 2003;83:397–408. PubMed
Imokawa G. A possible mechanism underlying the ceramide deficiency in atopic dermatitis: expression of a deacylase enzyme that cleaves the N-acyl linkage of sphingomyelin and glucosylceramide. J. Dermatol. Sci. 2009;55:1–9. PubMed
Jungersted J.M., Scheer H., Mempel M., Baurecht H., Cifuentes L., Hogh J.K., et al. Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy. 2010;65:911–918. PubMed
Di Nardo A., Wertz P., Giannetti A., Seidenari S. Ceramide and cholesterol composition of the skin of patients with atopic dermatitis. Acta Derm. Venereol. 1998;78:27–30. PubMed
Janssens M., van Smeden J., Gooris G.S., Bras W., Portale G., Caspers P.J., et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 2012;53:2755–2766. PubMed PMC
Halling-Overgaard A.S., Kezic S., Jakasa I., Engebretsen K., Maibach H., Thyssen J. Skin absorption through atopic dermatitis skin: a systematic review. Br. J Dermatol. 2017;177:84–106. PubMed
Janssens M., van Smeden J., Gooris G.S., Bras W., Portale G., Caspers P.J., et al. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 2011;131:2136–2138. PubMed
van Smeden J., Janssens M., Kaye E.C., Caspers P.J., Lavrijsen A.P., Vreeken R.J., et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp. Dermatol. 2014;23:45–52. PubMed
Sochorova M., Stankova K., Pullmannova P., Kovacik A., Zbytovska J., Vavrova K. Permeability barrier and microstructure of skin lipid membrane models of impaired glucosylceramide processing. Sci. Rep. 2017;7:6470. PubMed PMC
Bouwstra J.A., Gooris G.S., Dubbelaar F.E., Weerheim A.M., Ijzerman A.P., Ponec M. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 1998;39:186–196. PubMed
Uche L.E., Gooris G.S., Bouwstra J.A., Beddoes C.M. Barrier capability of skin lipid models: effect of ceramides and free fatty acid composition. Langmuir. 2019;35:15376–15388. PubMed
Opalka L., Meyer J.M., Ondrejcekova V., Svatosova L., Radner F.P.W., Vavrova K. omega-O-Acylceramides but not omega-hydroxy ceramides are required for healthy lamellar phase architecture of skin barrier lipids. J. Lipid Res. 2022;63 PubMed PMC
Opalka L., Kovacik A., Pullmannova P., Maixner J., Vavrova K. Effects of omega-O-acylceramide structures and concentrations in healthy and diseased skin barrier lipid membrane models. J. Lipid Res. 2020;61:219–228. PubMed PMC
Bouwstra J.A., Nadaban A., Bras W., McCabe C., Bunge A., Gooris G.S. The skin barrier: an extraordinary interface with an exceptional lipid organization. Prog. Lipid Res. 2023;92 PubMed PMC
Skolova B., Hudska K., Pullmannova P., Kovacik A., Palat K., Roh J., et al. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460–10470. PubMed
Iwai I., Han H., den Hollander L., Svensson S., Ofverstedt L.G., Anwar J., et al. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215–2225. PubMed
Inoue K., Kitagawa T. Effect of exogenous lysolecithin on liposomal membranes. Its relation to membrane fluidity. Biochim. Biophys. Acta. 1974;363:361–372. PubMed
Van Echteld C.J., De Kruijff B., Mandersloot J.G., De Gier J. Effects of lysophosphatidylcholines on phosphatidylcholine and phosphatidylcholine/cholesterol liposome systems as revealed by 31P-NMR, electron microscopy and permeability studies. Biochim. Biophys. Acta. 1981;649:211–220. PubMed