Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare lysosomal storage disorders caused by deficient acid ceramidase (ACDase) activity. Although both conditions are caused by mutations in the ASAH1 gene, clinical presentations differ considerably. FD patients usually die in childhood, while SMA-PME patients can live until adulthood. There is no treatment for FD or SMA-PME. Hematopoietic stem cell transplantation (HSCT) and gene therapy strategies for the treatment of ACDase deficiency are being investigated. We have previously generated and characterized mouse models of both FD and SMA-PME that recapitulate the symptoms described in patients. Here, we show that HSCT improves lifespan, behavior, hematopoietic system anomalies, and plasma cytokine levels and significantly reduces histiocytic infiltration and ceramide accumulation throughout the tissues investigated, including the CNS, in both models of ACDase-deficient mice. HSCT was also successful in preventing lesion development and significant demyelination of the spinal cord seen in SMA-PME mice. Importantly, we note that only early and generally pre-symptomatic treatment was effective, and kidney impairment was not improved in either model.
- MeSH
- ceramidy metabolismus MeSH
- Farberova nemoc * terapie genetika MeSH
- kyselá ceramidasa * genetika metabolismus MeSH
- lidé MeSH
- mícha metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- myoklonické epilepsie progresivní genetika terapie metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- transplantace hematopoetických kmenových buněk * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The negative impact of cigarette smoking on the skin includes accelerated aging, pigmentation disorders, and impaired wound healing, but its effect on the skin barrier is not completely understood. Here, we studied the changes in selected epidermal proteins and lipids between smokers (45-66 years, smoking > 10 years, > 10 cigarettes per day) and non-smokers. Volar forearm epidermal and stratum corneum samples, obtained by suction blister and tape stripping, respectively, showed increased thickness in smokers. In the epidermis of smokers, we observed a significant upregulation of filaggrin, loricrin, and a trend of increased involucrin but no differences were found in the case of transglutaminase 1 and kallikrein-related peptidase 7, on the gene and protein levels. No significant changes were observed in the major skin barrier lipids, except for increased cholesterol sulfate in smokers. Liquid chromatography coupled with mass spectrometry revealed shorter acyl chains in ceramides, and an increased proportion of sphingosine and 6-hydroxysphingosine ceramides (with C4 trans-double bond) over dihydrosphingosine and phytosphingosine ceramides in smokers, suggesting altered desaturase 1 activity. Smokers had more ordered lipid chains found by infrared spectroscopy. In conclusion, cigarette smoking perturbs the homeostasis of the barrier proteins and lipids even at a site not directly exposed to smoke.
Acid ceramidase catalyzes the degradation of ceramide into sphingosine and a free fatty acid. Acid ceramidase deficiency results in lipid accumulation in many tissues and leads to the development of Farber disease (FD). Typical manifestations of classical FD include formation of subcutaneous nodules and joint contractures as well as the development of a hoarse voice. Healthy skin depends on a unique lipid profile to form a barrier that confers protection from pathogens, prevents excessive water loss, and mediates cell-cell communication. Ceramides comprise ~50% of total epidermis lipids and regulate cutaneous homeostasis and inflammation. Abnormal skin development including visual skin lesions has been reported in FD patients, but a detailed study of FD skin has not been performed. We conducted a pathophysiological study of the skin in our mouse model of FD. We observed altered lipid composition in FD skin dominated by accumulation of all studied ceramide species and buildup of abnormal storage structures affecting mainly the dermis. A deficiency of acid ceramidase activity also led to the activation of inflammatory IL-6/JAK/signal transducer and activator of transcription 3 and noncanonical NF-κB signaling pathways. Last, we report reduced proliferation of FD mouse fibroblasts and adipose-derived stem/stromal cells (ASC) along with impaired differentiation of ASCs into mature adipocytes.
- MeSH
- adipogeneze MeSH
- ceramidy metabolismus MeSH
- Farberova nemoc * MeSH
- kyselá ceramidasa genetika MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- zánět MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Functional skin barrier requires sphingolipid homeostasis; 3-ketodihydrosphingosine reductase or KDSR is a key enzyme of sphingolipid anabolism catalyzing the reduction of 3-ketodihydrosphingosine to sphinganine. Biallelic mutations in the KDSR gene may cause erythrokeratoderma variabilis et progressive-4, later specified as PERIOPTER syndrome, emphasizing a characteristic periorifical and ptychotropic erythrokeratoderma. We report another patient with compound heterozygous mutations in KDSR, born with generalized harlequin ichthyosis, which progressed into palmoplantar keratoderma. To determine whether patient-associated KDSR mutations lead to KDSR substrate accumulation and/or unrecognized sphingolipid downstream products in stratum corneum (SC), we analyzed lipids of this and previously published patients with non-identical biallelic mutations in KDSR. In SC of both patients, we identified 'hitherto' unobserved skin ceramides with an unusual keto-type sphingoid base in lesional and non-lesional areas, which accounted for up to 10% of the measured ceramide species. Furthermore, an overall shorter mean chain length of free and bound sphingoid bases was observed-shorter mean chain length of free sphingoid bases was also observed in lesional psoriasis vulgaris SC, but not generally in lesional atopic dermatitis SC. Formation of keto-type ceramides is probably due to a bottle neck in metabolic flux through KDSR and a bypass by ceramide synthases, which highlights the importance of tight intermediate regulation during sphingolipid anabolism and reveals substrate deprivation as potential therapy.
- MeSH
- atopická dermatitida * MeSH
- ceramidy metabolismus MeSH
- epidermis metabolismus MeSH
- ichtyóza * MeSH
- lidé MeSH
- mutace MeSH
- oxidoreduktasy metabolismus MeSH
- palmoplantární hyperkeratóza * genetika MeSH
- sfingolipidy genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND/AIM: A series of experiments on HeLa cells were conducted to provide new information concerning the anti-cancer properties of jaspine B hydrochloride (JBH). MATERIALS AND METHODS: HeLa cells treated with 0.5 μmol/l JBH for 24, 48, and 72 h underwent flow cytometric analysis of the cell cycle, and measurement of phosphatidylserine externalization, mitochondrial membrane potential (MMP), casp-3 activation, cleavage of PARP, ceramide levels, aSMase activity, and Bcl-2 release. nSMase activity was measured by a colorimetric assay. Gene expression was determined by qRT-PCR. Immunocytochemistry was performed to detect p21 and p27 expression. RESULTS: JBH-induced apoptosis in HeLa cells associated with externalization of phosphatidylserine, reduced MMP, activation of casp-3, and cleavage of PARP as well as up-regulation of TNF-α, FasL, and casp-8. Significant increase in nSMase activity, ceramide levels, Bcl-2 release (predominantly in the inactive form), and pro-apoptotic nuclear localization of p21 and p27 were also detected. CONCLUSION: JBH-induced apoptosis in HeLa cells is associated with disrupted sphingolipid homeostasis resulting in increased ceramide levels.
The Acyl-CoA-binding domain-containing protein (ACBD3) plays multiple roles across the cell. Although generally associated with the Golgi apparatus, it operates also in mitochondria. In steroidogenic cells, ACBD3 is an important part of a multiprotein complex transporting cholesterol into mitochondria. Balance in mitochondrial cholesterol is essential for proper mitochondrial protein biosynthesis, among others. We generated ACBD3 knock-out (ACBD3-KO) HEK293 and HeLa cells and characterized the impact of protein absence on mitochondria, Golgi, and lipid profile. In ACBD3-KO cells, cholesterol level and mitochondrial structure and functions are not altered, demonstrating that an alternative pathway of cholesterol transport into mitochondria exists. However, ACBD3-KO cells exhibit enlarged Golgi area with absence of stacks and ribbon-like formation, confirming the importance of ACBD3 in Golgi stacking. The glycosylation of the LAMP2 glycoprotein was not affected by the altered Golgi structure. Moreover, decreased sphingomyelins together with normal ceramides and sphingomyelin synthase activity reveal the importance of ACBD3 in ceramide transport from ER to Golgi.
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- biologický transport fyziologie MeSH
- ceramidy metabolismus MeSH
- cholesterol metabolismus MeSH
- glykosylace MeSH
- Golgiho aparát metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- lidé MeSH
- membránové proteiny metabolismus MeSH
- membránový protein 2 asociovaný s lyzozomy metabolismus MeSH
- mitochondrie metabolismus MeSH
- signální transdukce fyziologie MeSH
- transferasy pro jiné substituované fosfátové skupiny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Lipid membrane remodeling belongs to the most fundamental processes in the body. The skin barrier lipids, which are ceramide dominant and highly rigid, must attain an unusual multilamellar nanostructure with long periodicity to restrict water loss and prevent the entry of potentially harmful environmental factors. Our data suggest that the skin acid mantle, apart from regulating enzyme activities and keeping away pathogens, may also be a prerequisite for the multilamellar assembly of the skin barrier lipids. Atomic force microscopy on monolayers composed of synthetic or human stratum corneum lipids showed multilayer formation (approximately 10-nm step height) in an acidic but not in a neutral environment. X-ray diffraction, Fourier transform infrared spectroscopy, and permeability studies showed markedly altered lipid nanostructure and increased water loss at neutral pH compared with that at acidic pH. These findings are consistent with the data on the altered organization of skin lipids and increased transepidermal water loss under conditions such as inadequate skin acidification, for example, in neonates, the elderly, and patients with atopic dermatitis.
- MeSH
- atopická dermatitida patologie MeSH
- ceramidy chemie metabolismus MeSH
- cholesterol chemie metabolismus MeSH
- difrakce rentgenového záření MeSH
- epidermis chemie metabolismus patologie MeSH
- koncentrace vodíkových iontů MeSH
- kyseliny mastné neesterifikované chemie metabolismus MeSH
- lidé MeSH
- mastné kyseliny MeSH
- mikroskopie atomárních sil MeSH
- novorozenec MeSH
- permeabilita MeSH
- perspiratio insensibilis * MeSH
- senioři MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- věkové faktory MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Ceramides (Cers) with ultralong (∼32-carbon) chains and ω-esterified linoleic acid, composing a subclass called omega-O-acylceramides (acylCers), are indispensable components of the skin barrier. Normal barriers typically contain acylCer concentrations of ∼10 mol%; diminished concentrations, along with altered or missing long periodicity lamellar phase (LPP), and increased permeability accompany an array of skin disorders, including atopic dermatitis, psoriasis, and ichthyoses. We developed model membranes to investigate the effects of the acylCer structure and concentration on skin lipid organization and permeability. The model membrane systems contained six to nine Cer subclasses as well as fatty acids, cholesterol, and cholesterol sulfate; acylCer content-namely, acylCers containing sphingosine (Cer EOS), dihydrosphingosine (Cer EOdS), and phytosphingosine (Cer EOP) ranged from zero to 30 mol%. Systems with normal physiologic concentrations of acylCer mixture mimicked the permeability and nanostructure of human skin lipids (with regard to LPP, chain order, and lateral packing). The models also showed that the sphingoid base in acylCer significantly affects the membrane architecture and permeability and that Cer EOP, notably, is a weaker barrier component than Cer EOS and Cer EOdS. Membranes with diminished or missing acylCers displayed some of the hallmarks of diseased skin lipid barriers (i.e., lack of LPP, less ordered lipids, less orthorhombic chain packing, and increased permeability). These results could inform the rational design of new and improved strategies for the barrier-targeted treatment of skin diseases.
AIM: The aim of this review article is to summarize current knowledge about the role of cannabinoids and cannabinoid receptors in tumor disease modulation and to evaluate comprehensively the use of cannabinoids in cancer patients. METHOD: According to the PRISMA protocol, we have included data from a total of 105 articles. RESULTS: Cannabinoids affect cancer progression by three mechanisms. The most important mechanism is the stimulation of autophagy and affecting the signaling pathways leading to apoptosis. The most important mechanism of this process is the accumulation of ceramide. Cannabinoids also stimulate apoptosis by mechanisms independent of autophagy. Other mechanisms by which cannabinoids affect tumor growth are inhibition of tumor angiogenesis, invasiveness, metastasis, and the modulation of the anti-tumor immune response. CONCLUSION: In addition to the symptomatic therapy of cancer patients, the antitumor effects of cannabinoids (whether in monotherapy or in combination with other cancer therapies) have promising potential in the treatment of cancer patients. More clinical trials are needed to demonstrate the antitumor effect of cannabinoids (Tab. 1, Fig. 1, Ref. 167).
- MeSH
- antitumorózní látky farmakologie terapeutické užití MeSH
- apoptóza účinky léků MeSH
- autofagie účinky léků MeSH
- ceramidy metabolismus MeSH
- inhibitory angiogeneze farmakologie MeSH
- kanabinoidy * terapeutické užití MeSH
- lidé MeSH
- metastázy nádorů farmakoterapie MeSH
- nádory * farmakoterapie MeSH
- receptory kanabinoidní metabolismus MeSH
- Check Tag
- lidé MeSH
PURPOSE: Cystic fibrosis (CF) is a progressive disease which causes a continuous decline in lung capacity with age. Our study aimed to investigate the age-dependent deterioration in lung function and the effects of treatment with Fenretinide formulation (LAU-7b) in Cftr knockout (KO) mice. METHODS: Non-invasive whole-body plethysmography (WBP) was done to measure the baseline lung functions of KO and wild-type (WT) mice at the ages of 2 and 4 months. Mice were then treated for 21 days with PBS or 10 mg/kg/day LAU-7b initiated at 4 and 7 months. Standard airway resistance measurements, haematoxylin and eosin staining, and analysis of lipids, and markers of oxidation were performed. RESULTS: The 4- and 7-month-old KO mice had significantly higher lung enhanced pause (Penh) and resistance values than age-matched WT mice and 2-month-old KO mice. Likewise, analysis of ceramides showed that PBS-treated mice had higher levels of long-chain ceramides (LCCs; C14-C18) and lower levels of very-long-chain ceramides (VLCCs; C24-C26) compared to LAU-7b-treated mice. Cftr KO mice displayed markedly greater inflammatory cell infiltration and epithelial hyperplasia at the ages of 2, 4, and 7 months compared to WT. LAU-7b treatment significantly diminished this cellular infiltration and epithelial hyperplasia compared to PBS-treated mice. CONCLUSION: Our results demonstrate a progressive age-dependent decline in lung function in Cftr KO mice. Treatment with LAU-7b corrects the lipid imbalance observed in the aging KO and WT mice and, more importantly, inhibits the age-dependent deterioration in lung physiology and histopathology.
- MeSH
- ceramidy metabolismus MeSH
- cystická fibróza metabolismus patofyziologie MeSH
- mastné kyseliny metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši knockoutované MeSH
- myši MeSH
- pletysmografie MeSH
- plíce patofyziologie MeSH
- progrese nemoci MeSH
- rezistence dýchacích cest fyziologie MeSH
- stárnutí * MeSH
- věkové faktory MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH