Polymorphism, Nanostructures, and Barrier Properties of Ceramide-Based Lipid Films
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36643519
PubMed Central
PMC9835644
DOI
10.1021/acsomega.2c04924
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Ceramides belong to sphingolipids, an important group of cellular and extracellular lipids. Their physiological functions range from cell signaling to participation in the formation of barriers against water evaporation. In the skin, they are essential for the permeability barrier, together with free fatty acids and cholesterol. We examined the periodical structure and permeability of lipid films composed of ceramides (Cer; namely, N-lignoceroyl 6-hydroxysphingosine, CerNH24, and N-lignoceroyl sphingosine, CerNS24), lignoceric acid (LIG; 24:0), and cholesterol (Chol). X-ray diffraction experiments showed that the CerNH24-based samples form either a short lamellar phase (SLP, d ∼ 5.4 nm) or a medium lamellar phase (MLP, d = 10.63-10.78 nm) depending on the annealing conditions. The proposed molecular arrangement of the MLP based on extended Cer molecules also agreed with the relative neutron scattering length density profiles obtained from the neutron diffraction data. The presence of MLP increased the lipid film permeability to the lipophilic model permeant (indomethacin) relative to the CerNS24-based control samples and the samples that had the same lipid composition but formed an SLP. Thus, the arrangement of lipids in various nanostructures is responsive to external conditions during sample preparation. This polymorphic behavior directly affects the barrier properties, which could also be (patho)physiologically relevant.
Faculty of Pharmacy Comenius University Bratislava Odbojárov 10 832 32Bratislava Slovakia
Heinz Maier Leibnitz Zentrum Technische Universität München Lichtenbergstr 1 85748Garching Germany
Zobrazit více v PubMed
Koch K.; Barthlott W. Plant Epicuticular Waxes: Chemistry, Form, Self-Assembly and Function. Nat. Prod. Commun. 2006, 1, 1934578X0600101123.10.1177/1934578x0600101123. DOI
McCulley J. P.; Shine W. E. The Lipid Layer: The Outer Surface of the Ocular Surface Tear Film. Biosci. Rep. 2001, 21, 407–418. 10.1023/a:1017987608937. PubMed DOI
Chen J.; Nichols K. K. Comprehensive shotgun lipidomics of human meibomian gland secretions using MS/MSall with successive switching between acquisition polarity modes. J. Lipid Res. 2018, 59, 2223–2236. 10.1194/jlr.d088138. PubMed DOI PMC
Ginzel M. D.; Blomquist G. J.. Insect Hydrocarbons: Biochemistry and Chemical Ecology. In Extracellular Composite Matrices in Arthropods; Cohen E., Moussian B., Eds.; Springer International Publishing: Cham, 2016; pp 221–252.
Méndez S.; Martí M.; Barba C.; Parra J. L.; Coderch L. Thermotropic Behavior of Ceramides and Their Isolation from Wool. Langmuir 2007, 23, 1359–1364. 10.1021/la0621315. PubMed DOI
Cwiklik L. Tear film lipid layer: A molecular level view. Biochim. Biophys. Acta 2016, 1858, 2421–2430. 10.1016/j.bbamem.2016.02.020. PubMed DOI
Elias P. M. Epidermal Lipids, Membranes, and Keratinization. Int. J. Dermatol. 1981, 20, 1–19. 10.1111/j.1365-4362.1981.tb05278.x. PubMed DOI
Wertz P. W. Stratum corneum lipids and water. Exog. Dermatol. 2004, 3, 53–56. 10.1159/000086155. DOI
Kováčik A.; Opálka L.; Šilarová M.; Roh J.; Vávrová K. Synthesis of 6-hydroxyceramide using ruthenium-catalyzed hydrosilylation–protodesilylation. Unexpected formation of a long periodicity lamellar phase in skin lipid membranes. RSC Adv. 2016, 6, 73343–73350. 10.1039/C6RA16565F. DOI
Opálka L.; Kováčik A.; Sochorová M.; Roh J.; Kuneš J.; Lenčo J.; Vávrová K. Scalable Synthesis of Human Ultralong Chain Ceramides. Org. Lett. 2015, 17, 5456–5459. 10.1021/acs.orglett.5b02816. PubMed DOI
Dahlén B.; Pascher I. Molecular arrangements in sphingolipids. Thermotropic phase behaviour of tetracosanoylphytosphingosine. Chem. Phys. Lipids 1979, 24, 119–133. 10.1016/0009-3084(79)90082-3. DOI
Futerman A. H.; Hannun Y. A. The complex life of simple sphingolipids. EMBO Rep. 2004, 5, 777–782. 10.1038/sj.embor.7400208. PubMed DOI PMC
Merrill A. H. De Novo Sphingolipid Biosynthesis: A Necessary, but Dangerous, Pathway. J. Biol. Chem. 2002, 277, 25843–25846. 10.1074/jbc.r200009200. PubMed DOI
Sandhoff R. Very long chain sphingolipids: Tissue expression, function and synthesis. FEBS Lett. 2010, 584, 1907–1913. 10.1016/j.febslet.2009.12.032. PubMed DOI
Hannun Y. A. Functions of Ceramide in Coordinating Cellular Responses to Stress. Science 1996, 274, 1855–1859. 10.1126/science.274.5294.1855. PubMed DOI
Hannun Y. A.; Obeid L. M. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. 10.1038/nrm2329. PubMed DOI
Burgert A.; Schlegel J.; Bécam J.; Doose P. S.; Bieberich E.; Schubert-Unkmeir A.; Sauer M. Characterization of plasma membrane ceramides by super-resolution microscopy. Angew. Chem., Int. Ed. Engl. 2017, 56, 6131–6135. 10.1002/anie.201700570. PubMed DOI PMC
Kraft M. L. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. Front. Cell Dev. Biol. 2017, 4, 154.10.3389/fcell.2016.00154. PubMed DOI PMC
Landmann L. The epidermal permeability barrier. Comparison between in vivo and in vitro lipid structures. Eur. J. Cell Biol. 1984, 33, 258–64. PubMed
de Jager M.; Groenink W.; van der Spek J.; Janmaat C.; Gooris G.; Ponec M.; Bouwstra J. Preparation and characterization of a stratum corneum substitute for in vitro percutaneous penetration studies. Biochim. Biophys. Acta 2006, 1758, 636–644. 10.1016/j.bbamem.2006.04.001. PubMed DOI
Goldsmith L. A.; Baden H. P. Uniquely Oriented Epidermal Lipid. Nature 1970, 225, 1052–1053. 10.1038/2251052a0. PubMed DOI
Bouwstra J. A.; Gooris G. S.; Cheng K.; Weerheim A.; Bras W.; Ponec M. Phase behavior of isolated skin lipids. J. Lipid Res. 1996, 37, 999–1011. 10.1016/s0022-2275(20)42010-3. PubMed DOI
Bouwstra J. A.; Gooris G. S.; van der Spek J. A.; Bras W. Structural Investigations of Human Stratum Corneum by Small-Angle X-Ray Scattering. J. Invest. Dermatol. 1991, 97, 1005–1012. 10.1111/1523-1747.ep12492217. PubMed DOI
McIntosh T. J.; Stewart M. E.; Downing D. T. X-ray Diffraction Analysis of Isolated Skin Lipids: Reconstitution of Intercellular Lipid Domains. Biochemistry 1996, 35, 3649–3653. 10.1021/bi952762q. PubMed DOI
Iwai I.; Han H.; Hollander L. d.; Svensson S.; Öfverstedt L.-G.; Anwar J.; Brewer J.; Bloksgaard M.; Laloeuf A.; Nosek D.; Masich S.; Bagatolli L. A.; Skoglund U.; Norlén L. The Human Skin Barrier Is Organized as Stacked Bilayers of Fully Extended Ceramides with Cholesterol Molecules Associated with the Ceramide Sphingoid Moiety. J. Invest. Dermatol. 2012, 132, 2215–2225. 10.1038/jid.2012.43. PubMed DOI
Mojumdar E. H.; Gooris G. S.; Groen D.; Barlow D. J.; Lawrence M. J.; Demé B.; Bouwstra J. A. Stratum corneum lipid matrix: Location of acyl ceramide and cholesterol in the unit cell of the long periodicity phase. Biochim. Biophys. Acta 2016, 1858, 1926–1934. 10.1016/j.bbamem.2016.05.006. PubMed DOI
Swartzendruber D. C.; Wertz P. W.; Kitko D. J.; Madison K. C.; Downing D. T. Molecular models of the Intercellular Lipid Lamellae in Mammalian Stratum Corneum. J. Invest. Dermatol. 1989, 92, 251–257. 10.1111/1523-1747.ep12276794. PubMed DOI
White S. H.; Mirejovsky D.; King G. I. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An x-ray diffraction study. Biochemistry 1988, 27, 3725–3732. 10.1021/bi00410a031. PubMed DOI
Hou S. Y. E.; Mitra A. K.; White S. H.; Menon G. K.; Ghadially R.; Elias P. M. Membrane Structures in Normal and Essential Fatty Acid-Deficient Stratum Corneum: Characterization by Ruthenium Tetroxide Staining and X-Ray Diffraction. J. Invest. Dermatol. 1991, 96, 215–223. 10.1111/1523-1747.ep12461361. PubMed DOI
Bouwstra J. A.; Gooris G. S.; Vries M. A. S.; van der Spek J. A.; Bras W. Structure of human stratum corneum as a function of temperature and hydration: A wide-angle X-ray diffraction study. Int. J. Pharm. 1992, 84, 205–216. 10.1016/0378-5173(92)90158-x. DOI
Garson J. C.; Doucet J.; Lévêque J. L.; Tsoucaris G. Oriented structure in human stratum corneum revealed by X-ray diffraction. J. Invest. Dermatol. 1991, 96, 43–49. 10.1111/1523-1747.ep12514716. PubMed DOI
Bouwstra J. A.; Gooris G. S.; Dubbelaar F. E. R.; Weerheim A. M.; IJzerman A. P.; Ponec M. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 1998, 39, 186–196. 10.1016/s0022-2275(20)34214-0. PubMed DOI
Schreiner V.; Pfeiffer G. S.; Lanzendörfer S.; Wenck G.; Diembeck H.; Gooris W.; Proksch E.; Bouwstra J. Barrier Characteristics of Different Human Skin Types Investigated with X-Ray Diffraction, Lipid Analysis, and Electron Microscopy Imaging. J. Invest. Dermatol. 2000, 114, 654–660. 10.1046/j.1523-1747.2000.00941.x. PubMed DOI
Janssens M.; van Smeden J.; Gooris G. S.; Bras W.; Portale G.; Caspers P. J.; Vreeken R. J.; Kezic S.; Lavrijsen A. P. M.; Bouwstra J. A. Lamellar Lipid Organization and Ceramide Composition in the Stratum Corneum of Patients with Atopic Eczema. J. Invest. Dermatol. 2011, 131, 2136–2138. 10.1038/jid.2011.175. PubMed DOI
Kiselev M. A.; Ryabova N. Y.; Balagurov A. M.; Dante S.; Hauss T.; Zbytovska J.; Wartewig S.; Neubert R. H. H. New insights into the structure and hydration of a stratum corneum lipid model membrane by neutron diffraction. Eur. Biophys. J. 2005, 34, 1030–1040. 10.1007/s00249-005-0488-6. PubMed DOI
Schröter A.; Kessner D.; Kiselev M. A.; Hauß T.; Dante S.; Neubert R. H. H. Basic Nanostructure of Stratum Corneum Lipid Matrices Based on Ceramides [EOS] and [AP]: A Neutron Diffraction Study. Biophys. J. 2009, 97, 1104–1114. 10.1016/j.bpj.2009.05.041. PubMed DOI PMC
Groen D.; Gooris G. S.; Barlow D. J.; Lawrence M. J.; van Mechelen J. B.; Demé B.; Bouwstra J. A. Disposition of Ceramide in Model Lipid Membranes Determined by Neutron Diffraction. Biophys. J. 2011, 100, 1481–1489. 10.1016/j.bpj.2011.02.001. PubMed DOI PMC
Mojumdar E. H.; Gooris G. S.; Barlow D. J.; Lawrence M. J.; Deme B.; Bouwstra J. A. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys. J. 2015, 108, 2670–2679. 10.1016/j.bpj.2015.04.030. PubMed DOI PMC
Pullmannová P.; Ermakova E.; Kováčik A.; Opálka L.; Maixner J.; Zbytovská J.; Kučerka N.; Vávrová K. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 2019, 60, 963–971. 10.1194/jlr.M090977. PubMed DOI PMC
Parrott D. T.; Turner J. E. Mesophase formation by ceramides and cholesterol: a model for stratum corneum lipid packing?. Biochim. Biophys. Acta 1993, 1147, 273–276. 10.1016/0005-2736(93)90013-p. PubMed DOI
de Jager M. W.; Gooris G. S.; Dolbnya I. P.; Bras W.; Ponec M.; Bouwstra J. A. The phase behaviour of skin lipid mixtures based on synthetic ceramides. Chem. Phys. Lipids 2003, 124, 123–134. 10.1016/s0009-3084(03)00050-1. PubMed DOI
Bouwstra J. A.; Honeywell-Nguyen P. L.; Gooris G. S.; Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003, 42, 1–36. 10.1016/s0163-7827(02)00028-0. PubMed DOI
Kováčik A.; Vogel A.; Adler J.; Pullmannová P.; Vávrová K.; Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta, Biomembr. 2018, 1860, 1162–1170. 10.1016/j.bbamem.2018.02.003. PubMed DOI
Kováčik A.; Pullmannová P.; Pavlíková L.; Maixner J.; Vávrová K. Behavior of 1-Deoxy-, 3-Deoxy- and N -Methyl-Ceramides in Skin Barrier Lipid Models. Sci. Rep. 2020, 10, 1–12. PubMed PMC
Kováčik A.; Šilarová M.; Pullmannová P.; Maixner J.; Vávrová K. Effects of 6-Hydroxyceramides on the Thermotropic Phase Behavior and Permeability of Model Skin Lipid Membranes. Langmuir 2017, 33, 2890–2899. 10.1021/acs.langmuir.7b00184. PubMed DOI
Školová B.; Janůšová B.; Zbytovská J.; Gooris G.; Bouwstra J.; Slepička P.; Berka P.; Roh J.; Palát K.; Hrabálek A.; Vávrová K. Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir 2013, 29, 15624–15633. 10.1021/la4037474. PubMed DOI
Georgii R.; Weber T.; Brandl G.; Skoulatos M.; Janoschek M.; Mühlbauer S.; Pfleiderer C.; Böni P. The multi-purpose three-axis spectrometer (TAS) MIRA at FRM II. Nucl. Instrum. Methods Phys. Res., Sect. A 2018, 881, 60–64. 10.1016/j.nima.2017.09.063. DOI
Kučerka N.; Nieh M.-P.; Pencer J.; Sachs J. N.; Katsaras J. What determines the thickness of a biological membrane. Gen. Physiol. Biophys. 2009, 28, 117–125. 10.4149/gpb_2009_02_117. PubMed DOI
Tristram-Nagle S.; Liu Y.; Legleiter J.; Nagle J. F. Structure of Gel Phase DMPC Determined by X-Ray Diffraction. Biophys. J. 2002, 83, 3324–3335. 10.1016/s0006-3495(02)75333-2. PubMed DOI PMC
Nagle J. F.; Akabori K.; Treece B. W.; Tristram-Nagle S. Determination of mosaicity in oriented stacks of lipid bilayers. Soft Matter 2016, 12, 1884–1891. 10.1039/c5sm02336j. PubMed DOI PMC
Franks N. P.; Lieb W. R. The structure of lipid bilayers and the effects of general anaesthetics: An X-ray and neutron diffraction study. J. Mol. Biol. 1979, 133, 469–500. 10.1016/0022-2836(79)90403-0. PubMed DOI
Ryabova N. Y.; Kiselev M. A.; Dante S.; Hauß T.; Balagurov A. M. Investigation of stratum corneum lipid model membranes with free fatty acid composition by neutron diffraction. Eur. Biophys. J. 2010, 39, 1167–1176. 10.1007/s00249-009-0569-z. PubMed DOI
Dante S.; Hauss T.; Dencher N. A. β-Amyloid 25 to 35 Is Intercalated in Anionic and Zwitterionic Lipid Membranes to Different Extents. Biophys. J. 2002, 83, 2610–2616. 10.1016/s0006-3495(02)75271-5. PubMed DOI PMC
Schmitt T.; Lange S.; Sonnenberger S.; Dobner B.; Demé B.; Langner A.; Neubert R. H. H. The long periodicity phase (LPP) controversy part I: The influence of a natural-like ratio of the CER[EOS] analogue [EOS]-br in a CER[NP]/[AP] based stratum corneum modelling system: A neutron diffraction study. Biochim. Biophys. Acta 2019, 1861, 306–315. 10.1016/j.bbamem.2018.06.008. PubMed DOI
Hrubovčák P.; Kondela T.; Ermakova E.; Kučerka N. Application of small-angle neutron diffraction to the localization of general anesthetics in model membranes. Eur. Biophys. J. 2019, 48, 447–455. PubMed
Kučerka N.; Hrubovčák P.; Dushanov E.; Kondela T.; Kholmurodov K. T.; Gallová J.; Balgavý P. Location of the general anesthetic n-decane in model membranes. J. Mol. Liq. 2019, 276, 624–629. 10.1016/j.molliq.2018.12.039. DOI
Samoylova N. Y.; Kiselev M. A.; Hauß T. Effect of DMSO, urea and ethanol on hydration of stratum corneum model membrane based on short-chain length ceramide [AP]. Chem. Phys. Lipids 2019, 221, 1–7. 10.1016/j.chemphyslip.2019.02.012. PubMed DOI
Kirschner D. A.; Sidman R. L. X-ray diffraction study of myelin structure in immature and mutant mice. Biochim. Biophys. Acta 1976, 448, 73–87. 10.1016/0005-2736(76)90077-8. PubMed DOI
Kučerka N.; Pencer J.; Sachs J. N.; Nagle J. F.; Katsaras J. Curvature Effect on the Structure of Phospholipid Bilayers. Langmuir 2007, 23, 1292.10.1021/la062455t. PubMed DOI PMC
Pullmannová P.; Staňková K.; Pospíšilová M.; Školová B.; Zbytovská J.; Vávrová K. Effects of sphingomyelin/ceramide ratio on the permeability and microstructure of model stratum corneum lipid membranes. Biochim. Biophys. Acta 2014, 1838, 2115–2126. 10.1016/j.bbamem.2014.05.001. PubMed DOI
Pullmannová P.; Pavlíková L.; Kováčik A.; Sochorová M.; Školová B.; Slepička P.; Maixner J.; Zbytovská J.; Vávrová K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017, 224, 20–31. 10.1016/j.bpc.2017.03.004. PubMed DOI
Schmitt T.; Gupta R.; Lange S.; Sonnenberger S.; Dobner B.; Hauß T.; Rai B.; Neubert R. H. H. Impact of the ceramide subspecies on the nanostructure of stratum corneum lipids using neutron scattering and molecular dynamics simulations. Part I: impact of CER[NS]. Chem. Phys. Lipids 2018, 214, 58–68. 10.1016/j.chemphyslip.2018.05.006. PubMed DOI
McIntosh T. J.; Waldbillig R. C.; Robertson J. D. The molecular organization of asymmetric lipid bilayers and lipid-peptide complexes. Biochim. Biophys. Acta 1977, 466, 209–230. 10.1016/0005-2736(77)90220-6. PubMed DOI
Worthington C. R.; Blaurock A. E. A Structural Analysis of Nerve Myelin. Biophys. J. 1969, 9, 970–990. 10.1016/s0006-3495(69)86431-3. PubMed DOI PMC
Ranck J. L.; Zaccaï G.; Luzzati V. The structure of a lipid-water lamellar phase containing two types of lipid monolayers. An X-ray and neutron scattering study. J. Appl. Crystallogr. 1980, 13, 505–512. 10.1107/s0021889880012678. DOI
Silva T.; Claro B.; Silva B. F. B.; Vale N.; Gomes P.; Gomes M. S.; Funari S. S.; Teixeira J.; Uhríková D.; Bastos M. Unravelling a Mechanism of Action for a Cecropin A-Melittin Hybrid Antimicrobial Peptide: The Induced Formation of Multilamellar Lipid Stacks. Langmuir 2018, 34, 2158–2170. 10.1021/acs.langmuir.7b03639. PubMed DOI
Kumar K.; Chavarha M.; Loney R. W.; Weiss T. M.; Rananavare S. B.; Hall S. B. The Lγ Phase of Pulmonary Surfactant. Langmuir 2018, 34, 6601–6611. 10.1021/acs.langmuir.8b00460. PubMed DOI PMC
Abrahamsson S.; von Sydow E. Variation of unit-cell dimensions of a crystal form of long normal chain carboxylic acids. Acta Crystallogr. 1954, 7, 591–592. 10.1107/s0365110x54001910. DOI
Marsh D. Lateral order in gel, subgel and crystalline phases of lipid membranes: Wide-angle X-ray scattering. Chem. Phys. Lipids 2012, 165, 59–76. 10.1016/j.chemphyslip.2011.11.001. PubMed DOI
Pascher I.; Sundell S. Molecular arrangements in sphingolipids: crystal structure of the ceramide N-(2d,3d-dihydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids 1992, 62, 79–86. 10.1016/0009-3084(92)90056-u. DOI
Dahlén B.; Pascher I. Molecular arrangements in sphingolipids. Crystal structure of N-tetracosanoylphytosphingosine. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1972, 28, 2396–2404.
Finegold L. X.Cholesterol in Membrane Models; Taylor & Francis, 1992.
Katsaras J.; Raghunathan V. A.; Dufourc E. J.; Dufourcq J. Evidence for a Two-Dimensional Molecular Lattice in Subgel Phase DPPC Bilayers. Biochemistry 1995, 34, 4684–4688. 10.1021/bi00014a023. PubMed DOI
McIntosh T. J. The effect of cholesterol on the structure of phosphatidylcholine bilayers. Biochim. Biophys. Acta 1978, 513, 43–58. 10.1016/0005-2736(78)90110-4. PubMed DOI
McIntosh T. J.; Waldbillig R. C.; Robertson J. D. Lipid bilayer ultrastructure: Electron density profiles and chain tilt angles as determined by X-ray diffraction. Biochim. Biophys. Acta 1976, 448, 15–33. 10.1016/0005-2736(76)90073-0. PubMed DOI
Khare R. S.; Worthington C. R. The structure of oriented sphingomyelin bilayers. Biochim. Biophys. Acta 1978, 514, 239–254. 10.1016/0005-2736(78)90295-x. PubMed DOI
Khare R. S.; Worthington C. R. An X-Ray Diffraction Study of Sphingomyelin-Cholesterol Interaction in Oriented Bilayers. Mol. Cryst. Liq. Cryst. 1977, 38, 195–206. 10.1080/15421407708084386. DOI
Ensikat H. J.; Boese M.; Mader W.; Barthlott W.; Koch K. Crystallinity of plant epicuticular waxes: electron and X-ray diffraction studies. Chem. Phys. Lipids 2006, 144, 45–59. 10.1016/j.chemphyslip.2006.06.016. PubMed DOI
Bouwstra J. A.; Thewalt J.; Gooris G. S.; Kitson N. A Model Membrane Approach to the Epidermal Permeability Barrier: An X-ray Diffraction Study. Biochemistry 1997, 36, 7717–7725. 10.1021/bi9628127. PubMed DOI
Worcester D. L.; Franks N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers II. Neutron diffraction. J. Mol. Biol. 1976, 100, 359–378. 10.1016/s0022-2836(76)80068-x. PubMed DOI
Ruettinger A.; Kiselev M. A.; Hauss T.; Dante S.; Balagurov A. M.; Neubert R. H. H. Fatty acid interdigitation in stratum corneum model membranes: a neutron diffraction study. Eur. Biophys. J. 2008, 37, 759–771. 10.1007/s00249-008-0258-3. PubMed DOI
Rerek M. E.; Markovic B.; Van Wyck D.; Garidel P.; Mendelsohn R.; Moore D. J. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B 2001, 105, 9355–9362. 10.1021/jp0118367. DOI
Garidel P. Structural organisation and phase behaviour of a stratum corneum lipid analogue: ceramide 3A. Phys. Chem. Chem. Phys. 2006, 8, 2265.10.1039/b517540b. PubMed DOI
Garidel P.; Fölting B.; Schaller I.; Kerth A. The microstructure of the stratum corneum lipid barrier: Mid-infrared spectroscopic studies of hydrated ceramide:palmitic acid:cholesterol model systems. Biophys. Chem. 2010, 150, 144–56. 10.1016/j.bpc.2010.03.008. PubMed DOI
Banc A.; Charbonneau C.; Dahesh M.; Appavou M.-S.; Fu Z.; Morel M.-H.; Ramos L. Small angle neutron scattering contrast variation reveals heterogeneities of interactions in protein gels. Soft Matter 2016, 12, 5340–5352. 10.1039/c6sm00710d. PubMed DOI
Hill J. R.; Wertz P. W. Molecular models of the intercellular lipid lamellae from epidermal stratum corneum. Biochim. Biophys. Acta 2003, 1616, 121–126. 10.1016/s0005-2736(03)00238-4. PubMed DOI
Narangifard A.; Wennberg C. L.; den Hollander L.; Iwai I.; Han H.; Lundborg M.; Masich S.; Lindahl E.; Daneholt B.; Norlén L. Molecular Reorganization during the Formation of the Human Skin Barrier Studied In Situ. J. Invest. Dermatol. 2021, 141, 1243–1253. 10.1016/j.jid.2020.07.040. PubMed DOI
Narangifard A.; den Hollander L.; Wennberg C. L.; Lundborg M.; Lindahl E.; Iwai I.; Han H.; Masich S.; Daneholt B.; Norlén L. Human skin barrier formation takes place via a cubic to lamellar lipid phase transition as analyzed by cryo-electron microscopy and EM-simulation. Exp. Cell Res. 2018, 366, 139–151. 10.1016/j.yexcr.2018.03.010. PubMed DOI
Lundborg M.; Narangifard A.; Wennberg C. L.; Lindahl E.; Daneholt B.; Norlén L. Human skin barrier structure and function analyzed by cryo-EM and molecular dynamics simulation. J. Struct. Biol. 2018, 203, 149–161. 10.1016/j.jsb.2018.04.005. PubMed DOI
Školová B.; Hudská K.; Pullmannová P.; Kováčik A.; Palát K.; Roh J.; Fleddermann J.; Estrela-Lopis I.; Vávrová K. Different Phase Behavior and Packing of Ceramides with Long (C16) and Very Long (C24) Acyls in Model Membranes: Infrared Spectroscopy Using Deuterated Lipids. J. Phys. Chem. B 2014, 118, 10460–10470. 10.1021/jp506407r. PubMed DOI
Engberg O.; Kováčik A.; Pullmannová P.; Juhaščik M.; Opálka L.; Huster D.; Vávrová K. The Sphingosine and Acyl Chains of Ceramide [NS] Show Very Different Structure and Dynamics That Challenge Our Understanding of the Skin Barrier. Angew. Chem., Int. Ed. 2020, 59, 17383–17387. 10.1002/anie.202003375. PubMed DOI PMC
Ranck J. L.; Zaccaï G.; Luzzati V. The structure of a lipid–water lamellar phase containing two types of lipid monolayers. An X-ray and neutron scattering study. J. Appl. Crystallogr. 1980, 13, 505–512. 10.1107/s0021889880012678. DOI
Avila R. L.; Inouye H.; Baek R. C.; Yin X.; Trapp B. D.; Feltri M. L.; Wrabetz L.; Kirschner D. A. Structure and stability of internodal myelin in mouse models of hereditary neuropathy. J. Neuropathol. Exp. Neurol. 2005, 64, 976–990. 10.1097/01.jnen.0000186925.95957.dc. PubMed DOI
Beddoes C. M.; Gooris G. S.; Bouwstra J. A. Preferential arrangement of lipids in the long-periodicity phase of a stratum corneum matrix model. J. Lipid Res. 2018, 59, 2329–2338. 10.1194/jlr.m087106. PubMed DOI PMC
Antunes E.; Cavaco-Paulo A. Stratum corneum lipid matrix with unusual packing: A molecular dynamics study. Colloids Surf., B 2020, 190, 110928.10.1016/j.colsurfb.2020.110928. PubMed DOI
Norlén L. Molecular skin barrier models and some central problems for the understanding of skin barrier structure and function. Skin Pharmacol. Appl. Skin Physiol. 2003, 16, 203–211. 10.1159/000070842. PubMed DOI