The effect of long-term cigarette smoking on selected skin barrier proteins and lipids
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37463939
PubMed Central
PMC10354193
DOI
10.1038/s41598-023-38178-7
PII: 10.1038/s41598-023-38178-7
Knihovny.cz E-zdroje
- MeSH
- ceramidy metabolismus MeSH
- epidermis metabolismus MeSH
- kouření cigaret * škodlivé účinky MeSH
- kůže metabolismus MeSH
- membránové proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- membránové proteiny MeSH
The negative impact of cigarette smoking on the skin includes accelerated aging, pigmentation disorders, and impaired wound healing, but its effect on the skin barrier is not completely understood. Here, we studied the changes in selected epidermal proteins and lipids between smokers (45-66 years, smoking > 10 years, > 10 cigarettes per day) and non-smokers. Volar forearm epidermal and stratum corneum samples, obtained by suction blister and tape stripping, respectively, showed increased thickness in smokers. In the epidermis of smokers, we observed a significant upregulation of filaggrin, loricrin, and a trend of increased involucrin but no differences were found in the case of transglutaminase 1 and kallikrein-related peptidase 7, on the gene and protein levels. No significant changes were observed in the major skin barrier lipids, except for increased cholesterol sulfate in smokers. Liquid chromatography coupled with mass spectrometry revealed shorter acyl chains in ceramides, and an increased proportion of sphingosine and 6-hydroxysphingosine ceramides (with C4 trans-double bond) over dihydrosphingosine and phytosphingosine ceramides in smokers, suggesting altered desaturase 1 activity. Smokers had more ordered lipid chains found by infrared spectroscopy. In conclusion, cigarette smoking perturbs the homeostasis of the barrier proteins and lipids even at a site not directly exposed to smoke.
Contipro a s Dolní Dobrouč 401 561 02 Dolní Dobrouč Czech Republic
Skin Barrier Research Group Faculty of Pharmacy Charles University Hradec Králové Czech Republic
Zobrazit více v PubMed
Prieux R, Eeman M, Rothen-Rutishauser B, Valacchi G. Mimicking cigarette smoke exposure to assess cutaneous toxicity. Toxicol. In Vitro. 2020;62:104664. doi: 10.1016/j.tiv.2019.104664. PubMed DOI
Freiman A, Bird G, Metelitsa AI, Barankin B, Lauzon GJ. Cutaneous effects of smoking. J. Cutan. Med. Surg. 2004;8:415–423. doi: 10.1007/s10227-005-0020-8. PubMed DOI
Antonov D, Schliemann S, Elsner P. Methods for the assessment of barrier function. Curr Probl Dermatol. 2016;49:61–70. doi: 10.1159/000441546. PubMed DOI
Muizzuddin N, Marenus K, Vallon P, Maes D. Effect of cigarette smoke on skin. J. Soc. Cosmet. Chem. 1997;48:235.
Pavlou P, Rallis M, Deliconstantinos G, Papaioannou G, Grando S. In-vivo data on the influence of tobacco smoke and UV light on murine skin. Toxicol. Ind. Health. 2009;25:231–239. doi: 10.1177/0748233709103209. PubMed DOI
Percoco G, et al. Impact of cigarette smoke on physical-chemical and molecular proprieties of human skin in an ex vivo model. Exp. Dermatol. 2021;30:1610–1618. doi: 10.1111/exd.14192. PubMed DOI
Xin S, et al. Heavy cigarette smokers in a Chinese population display a compromised permeability barrier. Biomed. Res. Int. 2016;2016:9704598. doi: 10.1155/2016/9704598. PubMed DOI PMC
Majewski S, et al. Skin condition and its relationship to systemic inflammation in chronic obstructive pulmonary disease. Int. J. Chronic Obstr. Pulm. Dis. 2017;12:2407–2415. doi: 10.2147/COPD.S141805. PubMed DOI PMC
Kantor R, Kim A, Thyssen JP, Silverberg JI. Association of atopic dermatitis with smoking: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 2016;75:1119–1125.e1. doi: 10.1016/j.jaad.2016.07.017. PubMed DOI PMC
Richer V, et al. Psoriasis and smoking: A systematic literature review and meta-analysis with qualitative analysis of effect of smoking on psoriasis severity. J. Cutan. Med. Surg. 2016;20:221–227. doi: 10.1177/1203475415616073. PubMed DOI
Candi E, Schmidt R, Melino G. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005;6:328–340. doi: 10.1038/nrm1619. PubMed DOI
Voegeli R, Rawlings AV. Desquamation: It is almost all about proteases. In: Lodén M, Maibach HI, editors. Treatment of Dry Skin Syndrome: The Art and Science of Moisturizers. Springer; 2012. pp. 149–178.
Svoboda M, et al. Comparison of suction blistering and tape stripping for analysis of epidermal genes, proteins and lipids. Arch. Dermatol. Res. 2017;309:757–765. doi: 10.1007/s00403-017-1776-6. PubMed DOI
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Pullmannová P, et al. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 2019;60:963–971. doi: 10.1194/jlr.M090977. PubMed DOI PMC
Motta S, et al. Ceramide composition of the psoriatic scale. Biochim. Biophys. Acta. 1993;1182:147–151. doi: 10.1016/0925-4439(93)90135-N. PubMed DOI
Suzuki M, Ohno Y, Kihara A. Whole picture of human stratum corneum ceramides, including the chain-length diversity of long-chain bases. J. Lipid Res. 2022;63:100235. doi: 10.1016/j.jlr.2022.100235. PubMed DOI PMC
Boncheva M, Damien F, Normand V. Molecular organization of the lipid matrix in intact Stratum corneum using ATR-FTIR spectroscopy. Biochim. Biophys. Acta (BBA) Biomembr. 2008;1778:1344–1355. doi: 10.1016/j.bbamem.2008.01.022. PubMed DOI
Renò F, Rocchetti V, Migliario M, Rizzi M, Cannas M. Chronic exposure to cigarette smoke increases matrix metalloproteinases and Filaggrin mRNA expression in oral keratinocytes: Role of nicotine stimulation. Oral Oncol. 2011;47:827–830. doi: 10.1016/j.oraloncology.2011.06.006. PubMed DOI
Rajagopalan P, et al. How does chronic cigarette smoke exposure affect human skin? A global proteomics study in primary human keratinocytes. OMICS. 2016;20:615–626. doi: 10.1089/omi.2016.0123. PubMed DOI
Hubaux, R., Weisgerber, F. & Salmon, M. In vitro assays to study the effects of air pollutants on skin: Exposure to urban dust and cigarette smoke extract. IFSCC 2015 (2015).
Lecas S, et al. In vitro model adapted to the study of skin ageing induced by air pollution. Toxicol. Lett. 2016;259:60–68. doi: 10.1016/j.toxlet.2016.07.026. PubMed DOI
Yazdanparast T, et al. Cigarettes smoking and skin: A comparison study of the biophysical properties of skin in smokers and non-smokers. Tanaffos. 2019;18:163–168. PubMed PMC
Sandby-Møller J, Poulsen T, Wulf HC. Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits. Acta Derm. Venereol. 2003;83:410–413. doi: 10.1080/00015550310015419. PubMed DOI
Furue M, et al. Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J. Dermatol. Sci. 2015;80:83–88. doi: 10.1016/j.jdermsci.2015.07.011. PubMed DOI
Esser C, Bargen I, Weighardt H, Haarmann-Stemmann T, Krutmann J. Functions of the aryl hydrocarbon receptor in the skin. Semin. Immunopathol. 2013;35:677–691. doi: 10.1007/s00281-013-0394-4. PubMed DOI
van den Bogaard EH, Perdew GH. The enigma of aryl hydrocarbon receptor activation in skin: Interplay between ligands, metabolism and bioavailability. J. Invest. Dermatol. 2021;141:1385–1388. doi: 10.1016/j.jid.2020.12.013. PubMed DOI PMC
Grando SA, et al. Activation of keratinocyte nicotinic cholinergic receptors stimulates calcium influx and enhances cell differentiation. J. Investig. Dermatol. 1996;107:412–418. doi: 10.1111/1523-1747.ep12363399. PubMed DOI
Eltony SA, Ali SS. Histological study on the effect of nicotine on adult male guinea pig thin skin. Anat. Cell Biol. 2017;50:187. doi: 10.5115/acb.2017.50.3.187. PubMed DOI PMC
Elias PM, Williams ML, Choi E-H, Feingold KR. Role of cholesterol sulfate in epidermal structure and function: Lessons from X-linked ichthyosis. Biochim. Biophys. Acta. 2014;1841:353–361. doi: 10.1016/j.bbalip.2013.11.009. PubMed DOI PMC
Hanyu O, et al. Cholesterol sulfate induces expression of the skin barrier protein filaggrin in normal human epidermal keratinocytes through induction of RORα. Biochem. Biophys. Res. Commun. 2012;428:99–104. doi: 10.1016/j.bbrc.2012.10.013. PubMed DOI
Skolová B, et al. The role of the trans double bond in skin barrier sphingolipids: permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. Langmuir. 2014;30:5527–5535. doi: 10.1021/la500622f. PubMed DOI
van Smeden J, et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp. Dermatol. 2014;23:45–52. doi: 10.1111/exd.12293. PubMed DOI
Barresi R, et al. ARTICLE: Alteration to the skin barrier integrity following broad-spectrum UV exposure in an ex vivo tissue model. J. Drugs Dermatol. 2021;20:23s–28s. doi: 10.36849/JDD.589D. PubMed DOI
Janssens M, et al. Lamellar lipid organization and ceramide composition in the stratum corneum of patients with atopic eczema. J. Invest. Dermatol. 2011;131:2136–2138. doi: 10.1038/jid.2011.175. PubMed DOI
Brockman H, et al. The 4,5-double bond of ceramide regulates its dipole potential, elastic properties, and packing behavior. Biophys. J . 2004;87:1722–1731. doi: 10.1529/biophysj.104.044529. PubMed DOI PMC
Ternes P, Franke S, Zähringer U, Sperling P, Heinz E. Identification and characterization of a sphingolipid delta 4-desaturase family. J. Biol. Chem. 2002;277:25514. doi: 10.1074/jbc.M202947200. PubMed DOI
Školová B, et al. The role of the trans double bond in skin barrier sphingolipids: Permeability and infrared spectroscopic study of model ceramide and dihydroceramide membranes. Langmuir. 2014;30:5527–5535. doi: 10.1021/la500622f. PubMed DOI
Vyumvuhore R, et al. Effects of atmospheric relative humidity on stratum corneum structure at the molecular level: Ex vivo Raman spectroscopy analysis. Analyst. 2013;138:4103–4111. doi: 10.1039/c3an00716b. PubMed DOI
Valacchi G, et al. Cutaneous responses to environmental stressors. Ann. N. Y. Acad. Sci. 2012;1271:75–81. doi: 10.1111/j.1749-6632.2012.06724.x. PubMed DOI PMC
Hergesell K, Valentová K, Velebný V, Vávrová K, Dolečková I. Common cosmetic compounds can reduce air pollution-induced oxidative stress and pro-inflammatory response in the skin. Skin Pharmacol. Physiol. 2022;35:156–165. doi: 10.1159/000522276. PubMed DOI