Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35143845
PubMed Central
PMC8953687
DOI
10.1016/j.jlr.2022.100177
PII: S0022-2275(22)00010-4
Knihovny.cz E-zdroje
- Klíčová slova
- ceramides, cholesterol, lipid packing, lipids, nanostructure, order parameter, permeability, skin, sterols,
- MeSH
- ceramidy chemie MeSH
- cholesterol chemie MeSH
- epidermis chemie MeSH
- estery cholesterolu * MeSH
- kůže chemie MeSH
- permeabilita MeSH
- steroly * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ceramidy MeSH
- cholesterol MeSH
- cholesteryl sulfate MeSH Prohlížeč
- estery cholesterolu * MeSH
- steroly * MeSH
Desulfation of cholesterol sulfate (CholS) to cholesterol (Chol) is an important event in epidermal homeostasis and necessary for stratum corneum (SC) barrier function. The CholS/Chol ratio decreases during SC maturation but remains high in pathological conditions, such as X-linked ichthyosis, characterized by dry and scaly skin. The aim of this study was to characterize the influence of the CholS/Chol molar ratio on the structure, dynamics, and permeability of SC lipid model mixtures. We synthesized deuterated CholS and investigated lipid models with specifically deuterated components using 2H solid-state NMR spectroscopy at temperatures from 25°C to 80°C. Although the rigid acyl chains in ceramides and fatty acids remained essentially rigid upon variation of the CholS/Chol ratio, both sterols were increasingly fluidized in lipid models containing higher CholS concentrations. We also show the X-ray repeat distance of the lipid lamellar phase (105 Å) and the orthorhombic chain packing of the ceramide's acyl chains and long free fatty acids did not change upon the variation of the CholS content. However, the Chol phase separation visible in models with high Chol concentration disappeared at the 50:50 CholS/Chol ratio. This increased fluidity resulted in higher permeabilities to model markers of these SC models. These results reveal that a high CholS/Chol ratio fluidizes the sterol fraction and increases the permeability of the SC lipid phase while maintaining the lamellar lipid arrangement with an asymmetric sterol distribution.
Institute of Macromolecular Chemistry Czech Academy of Science Prague Prague Czech Republic
Institute of Medical Physics and Biophysics University of Leipzig Leipzig Germany
Skin Barrier Research Group Faculty of Pharmacy Charles University Hradec Králové Czech Republic
Zobrazit více v PubMed
Bouwstra J.A., Ponec M. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta. 2006;1758:2080–2095. PubMed
Feingold K.R., Elias P.M. Role of lipids in the formation and maintenance of the cutaneous permeability barrier. Biochim. Biophys. Acta. 2014;1841:280–294. PubMed
van Smeden J., Janssens M., Gooris G.S., Bouwstra J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta. 2014;1841:295–313. PubMed
van Smeden J., Bouwstra J.A. Stratum corneum lipids: their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 2016;49:8–26. PubMed
Elias P.M., Crumrine D., Rassner U., Hachem J.P., Menon G.K., Man W., Choy M.H., Leypoldt L., Feingold K.R., Williams M.L. Basis for abnormal desquamation and permeability barrier dysfunction in RXLI. J. Invest. Dermatol. 2004;122:314–319. PubMed
Elias P.M., Williams M.L., Maloney M.E., Bonifas J.A., Brown B.E., Grayson S., Epstein E.H., Jr. Stratum corneum lipids in disorders of cornification. Steroid sulfatase and cholesterol sulfate in normal desquamation and the pathogenesis of recessive X-linked ichthyosis. J. Clin. Invest. 1984;74:1414–1421. PubMed PMC
Elias P.M., Williams M.L., Choi E.H., Feingold K.R. Role of cholesterol sulfate in epidermal structure and function: lessons from X-linked ichthyosis. Biochim. Biophys. Acta. 2014;1841:353–361. PubMed PMC
Bleau G., Roberts K.D., Chapdelaine A. Cholesterol sulfate. I. Occurrence and possible biological functions as an amphipathic lipid in the membrane of the human erythrocyte. Biochim. Biophys. Acta. 1974;352:1–9. PubMed
Engberg O., Kovacik A., Pullmannová P., Juhašcik M., Opálka L., H D., Vávrová K. The sphingosine and acyl chains of ceramide [NS] show very different structure and dynamics challenging our understanding of the skin barrier. Angew. Chem. Int. Ed. Engl. 2020;59:17383–17387. PubMed PMC
Paz Ramos A., Gooris G., Bouwstra J., Lafleur M. Evidence of hydrocarbon nanodrops in highly ordered stratum corneum model membranes. J. Lipid Res. 2018;59:137–143. PubMed PMC
Wang E., Klauda J.B. Molecular structure of the long periodicity phase in the stratum corneum. J. Am. Chem. Soc. 2019;141:16930–16943. PubMed
Bouwstra J.A., Gooris G.S., Dubbelaar F.E., Ponec M. Phase behavior of lipid mixtures based on human ceramides: coexistence of crystalline and liquid phases. J. Lipid Res. 2001;42:1759–1770. PubMed
Wiener M.C., White S.H. Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data III. Complete structure. Biophys. J. 1992;61:434–447. PubMed PMC
Huster D., Arnold K., Gawrisch K. Investigation of lipid organization in biological membranes by two-dimensional nuclear overhauser enhancement spectroscopy. J. Phys. Chem. B. 1999;103:243–251.
Mojumdar E.H., Gooris G.S., Barlow D.J., Lawrence M.J., Deme B., Bouwstra J.A. Skin lipids: localization of ceramide and fatty acid in the unit cell of the long periodicity phase. Biophys. J. 2015;108:2670–2679. PubMed PMC
Israelachvili J.N. Academic Press; London: 1992. Intermolecular and Surface Forces.
Huster D., Jin A.J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys. J. 1997;73:855–864. PubMed PMC
Bouwstra J.A., Gooris G.S., Dubbelaar F.E., Ponec M. Cholesterol sulfate and calcium affect stratum corneum lipid organization over a wide temperature range. J. Lipid Res. 1999;40:2303–2312. PubMed
Bouwstra J.A., Gooris G.S., Dubbelaar F.E., Weerheim A.M., Ponec M. pH, cholesterol sulfate, and fatty acids affect the stratum corneum lipid organization. J. Investig. Dermatol. Symp. Proc. 1998;3:69–74. PubMed
Pullmannova P., Ermakova E., Kovacik A., Opalka L., Maixner J., Zbytovska J., Kucerka N., Vavrova K. Long and very long lamellar phases in model stratum corneum lipid membranes. J. Lipid Res. 2019;60:963–971. PubMed PMC
Bastiat G., Lafleur M. Phase behavior of palmitic acid/cholesterol/cholesterol sulfate mixtures and properties of the derived liposomes. J. Phys. Chem. B. 2007;111:10929–10937. PubMed
Groen D., Gooris G.S., Bouwstra J.A. Model membranes prepared with ceramide EOS, cholesterol and free fatty acids form a unique lamellar phase. Langmuir. 2010;26:4168–4175. PubMed
Williams M.L., Elias P.M. Stratum corneum lipids in disorders of cornification: increased cholesterol sulfate content of stratum corneum in recessive x-linked ichthyosis. J. Clin. Invest. 1981;68:1404–1410. PubMed PMC
McIntosh T.J. Organization of skin stratum corneum extracellular lamellae: diffraction evidence for asymmetric distribution of cholesterol. Biophys. J. 2003;85:1675–1681. PubMed PMC
Kovacik A., Vogel A., Adler J., Pullmannova P., Vavrova K., Huster D. Probing the role of ceramide hydroxylation in skin barrier lipid models by 2H solid-state NMR spectroscopy and X-ray powder diffraction. Biochim. Biophys. Acta. 2018;1860:1162–1170. PubMed
van Smeden J., Boiten W.A., Hankemeier T., Rissmann R., Bouwstra J.A., Vreeken R.J. Combined LC/MS-platform for analysis of all major stratum corneum lipids, and the profiling of skin substitutes. Biochim. Biophys. Acta. 2014;1841:70–79. PubMed
Davis J.H., Jeffrey K.R., Bloom M., Valic M.I., Higgs T.P. Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains. Chem. Phys. Lett. 1976;42:390–394.
Brief E., Kwak S., Cheng J.T., Kitson N., Thewalt J., Lafleur M. Phase behavior of an equimolar mixture of N-palmitoyl-D-erythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. Langmuir. 2009;25:7523–7532. PubMed
Huster D., Arnold K., Gawrisch K. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid membranes. Biochemistry. 1998;37:17299–17308. PubMed
Stahlberg S., Skolova B., Madhu P.K., Vogel A., Vavrova K., Huster D. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by 2H solid-state NMR spectroscopy. Langmuir. 2015;31:4906–4915. PubMed
Kitson N., Thewalt J., Lafleur M., Bloom M. A model membrane approach to the epidermal permeability barrier. Biochemistry. 1994;33:6707–6715. PubMed
Skolova B., Kovacik A., Tesar O., Opalka L., Vavrova K. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. Biochim. Biophys. Acta. 2017;1859:824–834. PubMed
Pullmannova P., Pavlikova L., Kovacik A., Sochorova M., Skolova B., Slepicka P., Maixner J., Zbytovska J., Vavrova K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. PubMed
Sochorova M., Audrlicka P., Cervena M., Kovacik A., Kopecna M., Opalka L., Pullmannova P., Vavrova K. Permeability and microstructure of cholesterol-depleted skin lipid membranes and human stratum corneum. J. Colloid Interf. Sci. 2019;535:227–238. PubMed
Beshah K., Olejniczak E.T., Griffin R.G. Deuterium NMR study of methyl group dynamics in L-alanine. J. Chem. Phys. 1987;86:4730–4736.
Polozov I.V., Gawrisch K. Characterization of the liquid-ordered state by proton MAS NMR. Biophys. J. 2006;90:2051–2061. PubMed PMC
Bunge A., Müller P., Stöckl M., Herrmann A., Huster D. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Biophys. J. 2008;94:2680–2690. PubMed PMC
Bartels T., Lankalapalli R.S., Bittman R., Beyer K., Brown M.F. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J. Am. Chem. Soc. 2008;130:14521–14532. PubMed PMC
Veatch S.L., Soubias O., Keller S.L., Gawrisch K. Critical fluctuations in domain-forming lipid mixtures. Proc. Natl. Acad. Sci. U. S. A. 2007;104:17650–17655. PubMed PMC
Hutchison J.M., Shih K.C., Scheidt H.A., Fantin S.M., Parson K.F., Pantelopulos G.A., Harrington H.R., Mittendorf K.F., Qian S., Stein R.A., Collier S.E., Chambers M.G., Katsaras J., Voehler M.W., Ruotolo B.T., et al. Bicelles rich in both sphingolipids and cholesterol and their use in studies of membrane proteins. J. Am. Chem. Soc. 2020;142:12715–12729. PubMed PMC
Dufourc E.J., Parish E.J., Chitrakorn S., Smith C.P. Structural and dynamical details of cholesterol-lipid interaction as revealed by deuterium NMR. Biochemistry. 1984;23:6062–6071.
Taylor M.G., Akiyama T., Smith I.C.P. The molecular dynamics of cholesterol in bilayer membranes: a deuterium NMR study. Chem. Phys. Lipids. 1981;29:327–339.
Marsh D. Lateral order in gel, subgel and crystalline phases of lipid membranes: wide-angle X-ray scattering. Chem. Phys. Lipids. 2012;165:59–76. PubMed
Bouwstra J.A., Honeywell-Nguyen P.L., Gooris G.S., Ponec M. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 2003;42:1–36. PubMed
Grubauer G., Elias P.M., Feingold K.R. Transepidermal water loss: the signal for recovery of barrier structure and function. J. Lipid Res. 1989;30:323–333. PubMed
Netzlaff F., Kostka K.H., Lehr C.M., Schaefer U.F. TEWL measurements as a routine method for evaluating the integrity of epidermis sheets in static Franz type diffusion cells in vitro. Limitations shown by transport data testing. Eur. J. Pharm. Biopharm. 2006;63:44–50. PubMed
Zettersten E., Man M.Q., Sato J., Denda M., Farrell A., Ghadially R., Williams M.L., Feingold K.R., Elias P.M. Recessive x-linked ichthyosis: role of cholesterol-sulfate accumulation in the barrier abnormality. J. Invest. Dermatol. 1998;111:784–790. PubMed
Lavrijsen A.P., Oestmann E., Hermans J., Bodde H.E., Vermeer B.J., Ponec M. Barrier function parameters in various keratinization disorders: transepidermal water loss and vascular response to hexyl nicotinate. Br. J. Dermatol. 1993;129:547–553. PubMed
Rand R.P., Parsegian V.A. Hydration forces between phospholipid bilayers. Biochim. Biophys. Acta. 1989;988:351–376.
Bouwstra J.A., Gooris G.S., van der Spek J.A., Lavrijsen S., Bras W. The lipid and protein structure of mouse stratum corneum: a wide and small angle diffraction study. Biochim. Biophys. Acta. 1994;1212:183–192. PubMed
McIntosh T.J., Stewart M.E., Downing D.T. X-ray diffraction analysis of isolated skin lipids: reconstitution of intercellular lipid domains. Biochemistry. 1996;35:3649–3653. PubMed
Swartzendruber D.C., Wertz P.W., Kitko D.J., Madison K.C., Downing D.T. Molecular models of the intercellular lipid lamellae in mammalian stratum corneum. J. Invest. Dermatol. 1989;92:251–257. PubMed
Bouwstra J.A., Gooris G.S., van der Spek J.A., Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 1991;97:1005–1012. PubMed
Hill J.R., Wertz P.W. Molecular models of the intercellular lipid lamellae from epidermal stratum corneum. Biochim. Biophys. Acta. 2003;1616:121–126. PubMed
Bouwstra J.A., Gooris G.S., Salomons-d Vries M.A., van der Spek J.A., Bras W. Structure of human stratum corneum as a function of temperature and hydration: a wide-angle X-ray diffraction. Int. J. Pharm. 1992;84:205–216.
Hou S.Y., Mitra A.K., White S.H., Menon G.K., Ghadially R., Elias P.M. Membrane structures in normal and essential fatty acid-deficient stratum corneum: characterization by ruthenium tetroxide staining and x-ray diffraction. J. Invest. Dermatol. 1991;96:215–223. PubMed
Iwai I., Han H., den H.L., Svensson S., Ofverstedt L.G., Anwar J., Brewer J., Bloksgaard M., Laloeuf A., Nosek D., Masich S., Bagatolli L.A., Skoglund U., Norlen L. The human skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215–2225. PubMed
Narangifard A., Wennberg C.L., den Hollander L., Iwai I., Han H., Lundborg M., Masich S., Lindahl E., Daneholt B., Norlen L. Molecular reorganization during the formation of the human skin barrier studied in situ. J. Invest. Dermatol. 2021;141:1243–1253.e6. PubMed
Scheidt H.A., Meyer T., Nikolaus J., Baek D.J., Haralampiev I., Thomas L., Bittman R., Herrmann A., Müller P., Huster D. Cholesterol's aliphatic side chain structure modulates membrane properties. Angew. Chem. Int. Ed. Engl. 2013;52:12848–12851. PubMed PMC
Almeida P.F., Pokorny A., Hinderliter A. Thermodynamics of membrane domains. Biochim. Biophys. Acta. 2005;1720:1–13. PubMed
Davies M.A., Schuster H.F., Brauner J.W., Mendelsohn R. Effects of cholesterol on conformational disorder in dipalmitoylphosphatidylcholine bilayers. A quantitative IR study on the depth dependence. Biochemistry. 1990;29:4368–4373. PubMed
Huang C.H. A structural model for the cholesterol-phosphatidylcholine complexes in bilayer membranes. Lipids. 1977;12:348–356. PubMed
Skolova B., Hudska K., Pullmannova P., Kovacik A., Palat K., Roh J., Fleddermann J., Hrabalek A., Estrela-Lopis I., Vavrova K. Different phase behavior and packing of ceramides with long (C16) and very long (C24) acyls in model membranes: infrared spectroscopy using deuterated lipids. J. Phys. Chem. B. 2014;118:10460–10470. PubMed
Beddoes C.M., Gooris G.S., Bouwstra J.A. Preferential arrangement of lipids in the long-periodicity phase of a stratum corneum matrix model. J. Lipid Res. 2018;59:2329–2338. PubMed PMC
Novackova A., Sagrafena I., Pullmannova P., Paraskevopoulos G., Dwivedi A., Mazumder A., Ruzickova K., Slepicka P., Zbytovska J., Vavrova K. Acidic pH is required for the multilamellar assembly of skin barrier lipids in vitro. J. Invest. Dermatol. 2021;141:1915–1921.e4. PubMed
Davis J.H. Deuterium magnetic resonance study of the gel and liquid crystalline phases of dipalmitoyl phosphocholine. Biophys. J. 1979;27:339–358. PubMed PMC
Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q. Rev. Biophys. 1977;10:353–418. PubMed
Groen D., Poole D.S., Gooris G.S., Bouwstra J.A. Investigating the barrier function of skin lipid models with varying compositions. Eur. J. Pharm. Biopharm. 2011;79:334–342. PubMed