Structure and function of skin barrier lipids: Effects of hydration and natural moisturizers in vitro
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39390747
PubMed Central
PMC11617626
DOI
10.1016/j.bpj.2024.10.006
PII: S0006-3495(24)00665-9
Knihovny.cz E-zdroje
- MeSH
- glycerol * chemie farmakologie MeSH
- kůže metabolismus MeSH
- kyselina urokanová chemie farmakologie metabolismus MeSH
- lidé MeSH
- lipidy chemie MeSH
- permeabilita MeSH
- voda * chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glycerol * MeSH
- kyselina urokanová MeSH
- lipidy MeSH
- voda * MeSH
Lipid membranes play a crucial role in regulating the body's water balance by adjusting their properties in response to hydration. The intercellular lipid matrix of the stratum corneum (SC), the outermost skin layer, serves as the body's primary defense against environmental factors. Osmolytes, including urocanic acid (UCA) and glycerol, are key components of the natural moisturizing factor that help the SC resist osmotic stress from dry environments. This study examines the effects of UCA and glycerol (each at 5 mol %) on isolated human SC lipids. For this, different techniques were employed, offering complementary information of the system's multiscale characteristics, including humidity-scanning quartz crystal microbalance with dissipation monitoring, infrared spectroscopy, x-ray diffraction, electrical impedance spectroscopy, and studies of water loss and permeability. Our results show that UCA increases water sorption and makes lipid films more liquid-like at high relative humidity, without significantly altering the lipid lamellar structure, chain order, or orthorhombic chain packing. Lipid films containing UCA exhibited higher water loss and significantly higher model drug permeability compared to lipid films without UCA. Further, incorporation of UCA resulted in kinetically faster changes in electrical properties upon contact with aqueous solution compared with control lipids. These observations suggest that UCA reduces lipid cohesion in regions other than the acyl chain-rich leaflets, which may impact SC desquamation. In contrast, glycerol did not influence the hydration or permeability of the SC lipid matrix. However, it increased the proportion of orthorhombic domains at high humidities and slowed the kinetics of the hydration process, as evidenced by slower changes in the dielectric properties of the lipid film. These findings suggest that glycerol enhances lipid cohesion rather than increasing water uptake, which is typically the expected function of humectants. Consequently, UCA and glycerol appear to have distinct roles in maintaining epidermal homeostasis.
Zobrazit více v PubMed
Disalvo E.A. Springer; 2015. Membrane Hydration. PubMed
Elias P.M. Epidermal lipids, membranes, and keratinization. Int. J. Dermatol. 1981;20:1–19. doi: 10.1111/j.1365-4362.1981.tb05278.x. PubMed DOI
Madison K.C., Swartzendruber D.C., et al. Downing D.T. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 1987;88:714–718. doi: 10.1111/1523-1747.ep12470386. PubMed DOI
Bouwstra J.A., Gooris G.S., et al. Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 1991;97:1005–1012. doi: 10.1111/1523-1747.ep12492217. PubMed DOI
Sparr E., Björklund S., et al. Topgaard D. The stratum corneum barrier-from molecular scale to macroscopic properties. Curr. Opin. Colloid Interface Sci. 2023;67
Bjorklund S., Kocherbitov V. Hydration-Induced Phase Transitions in Surfactant and Lipid Films. Langmuir. 2016;32:5223–5232. doi: 10.1021/acs.langmuir.6b00452. PubMed DOI
Alonso A., Meirelles N.C., et al. Tabak M. Water increases the fluidity of intercellular membranes of stratum corneum: correlation with water permeability, elastic, and electrical resistance properties. J. Invest. Dermatol. 1996;106:1058–1063. doi: 10.1111/1523-1747.ep12338682. PubMed DOI
Bjorklund S., Nowacka A., et al. Topgaard D. Characterization of stratum corneum molecular dynamics by natural-abundance (1)(3)C solid-state NMR. PLoS One. 2013;8 doi: 10.1371/journal.pone.0061889. PubMed DOI PMC
Scheuplein R.J., Ross L.W. Mechanism of percutaneous absorption. V. Percutaneous absorption of solvent deposited solids. J. Invest. Dermatol. 1974;62:353–360. doi: 10.1111/1523-1747.ep12701619. PubMed DOI
Björklund S., Engblom J., et al. Sparr E. A water gradient can be used to regulate drug transport across skin. J. Control. Release. 2010;143:191–200. PubMed
Blank I.H. Further observations on factors which influence the water content of the stratum corneum. J. Invest. Dermatol. 1953;21:259–271. PubMed
Blank I.H. Factors which influence the water content of the stratum corneum. J. Invest. Dermatol. 1952;18:433–440. PubMed
Katagiri C., Sato J., et al. Denda M. Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. J. Dermatol. Sci. 2003;31:29–35. PubMed
Harding C.R., Watkinson A., et al. Scott I.R. Dry skin, moisturization and corneodesmolysis. Int. J. Cosmet. Sci. 2000;22:21–52. PubMed
Watkinson A., Harding C., et al. Coan P. Water modulation of stratum corneum chymotryptic enzyme activity and desquamation. Arch. Dermatol. Res. 2001;293:470–476. doi: 10.1007/s004030100257. PubMed DOI
Watanabe M., Tagami H., et al. Kligman A.M. Functional analyses of the superficial stratum corneum in atopic xerosis. Arch. Dermatol. 1991;127:1689–1692. PubMed
Fluhr J.W., Cavallotti C., Berardesca E. Emollients, moisturizers, and keratolytic agents in psoriasis. Clin. Dermatol. 2008;26:380–386. doi: 10.1016/j.clindermatol.2008.01.015. PubMed DOI
Yancey P.H., Clark M.E., et al. Somero G.N. Living with water stress: evolution of osmolyte systems. Science. 1982;217:1214–1222. doi: 10.1126/science.7112124. PubMed DOI
Loden M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am. J. Clin. Dermatol. 2003;4:771–788. doi: 10.2165/00128071-200304110-00005. PubMed DOI
Rawlings A.V., Scott I.R., et al. Bowser P.A. Stratum corneum moisturization at the molecular level. J. Invest. Dermatol. 1994;103:731–741. doi: 10.1111/1523-1747.ep12398620. PubMed DOI
Bjorklund S., Andersson J.M., et al. Sparr E. Stratum corneum molecular mobility in the presence of natural moisturizers. Soft Matter. 2014;10:4535–4546. doi: 10.1039/c4sm00137k. PubMed DOI
Gunnarsson M., Mojumdar E.H., et al. Sparr E. Extraction of natural moisturizing factor from the stratum corneum and its implication on skin molecular mobility. J. Colloid Interface Sci. 2021;604:480–491. doi: 10.1016/j.jcis.2021.07.012. PubMed DOI
Choe C., Schleusener J., et al. Darvin M.E. Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-16202-x. PubMed DOI PMC
Vyumvuhore R., Tfayli A., et al. Baillet-Guffroy A. Effects of atmospheric relative humidity on Stratum Corneum structure at the molecular level: ex vivo Raman spectroscopy analysis. Analyst. 2013;138:4103–4111. doi: 10.1039/c3an00716b. PubMed DOI
Scott I.R., Harding C.R., Barrett J.G. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim. Biophys. Acta. 1982;719:110–117. doi: 10.1016/0304-4165(82)90314-2. PubMed DOI
Campos A.M., Cárcamo C., et al. Lissi E. Distribution of urocanic acid isomers between aqueous solutions and n-octanol, liposomes or bovine serum albumin. J. Photochem. Photobiol. B Biol. 2008;90:41–46. PubMed
Hart P.H., Norval M. The Multiple Roles of Urocanic Acid in Health and Disease. J. Invest. Dermatol. 2021;141:496–502. doi: 10.1016/j.jid.2020.07.017. PubMed DOI
Hara M., Ma T., Verkman A.S. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J. Biol. Chem. 2002;277:46616–46621. doi: 10.1074/jbc.M209003200. PubMed DOI
Hara M., Verkman A.S. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc. Natl. Acad. Sci. USA. 2003;100:7360–7365. doi: 10.1073/pnas.1230416100. PubMed DOI PMC
Fluhr J.W., Mao-Qiang M., et al. Elias P.M. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J. Invest. Dermatol. 2003;120:728–737. doi: 10.1046/j.1523-1747.2003.12134.x. PubMed DOI
Becker L.C., Bergfeld W.F., et al. Heldreth B. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019;38:6S–22S. doi: 10.1177/1091581819883820. PubMed DOI
Froebe C.L., Simion F.A., et al. Friberg S.E. Prevention of stratum corneum lipid phase transitions in vitro by glycerol - An alternative mechanism for skin moisturization. J. Soc. Cosmet. Chem. 1990;41:51–65. (Article)
Nowacka A., Douezan S., et al. Sparr E. Small polar molecules like glycerol and urea can preserve the fluidity of lipid bilayers under dry conditions. Soft Matter. 2012;8:1482–1491. doi: 10.1039/c1sm06273e. DOI
Bjorklund S., Engblom J., et al. Sparr E. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions. Eur. J. Pharmaceut. Sci. 2013;50:638–645. doi: 10.1016/j.ejps.2013.04.022. PubMed DOI
Sagrafena I., Paraskevopoulos G., et al. Vavrova K. Assembly of Human Stratum Corneum Lipids In Vitro: Fluidity Matters. J. Invest. Dermatol. 2022;142:2036–2039.e3. doi: 10.1016/j.jid.2021.12.008. PubMed DOI
Novackova A., Sagrafena I., et al. Vavrova K. Acidic pH Is Required for the Multilamellar Assembly of Skin Barrier Lipids In Vitro. J. Invest. Dermatol. 2021;141:1915–1921.e4. doi: 10.1016/j.jid.2021.02.014. PubMed DOI
Kezic S., Kammeyer A., et al. Bos J.D. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br. J. Dermatol. 2009;161:1098–1104. doi: 10.1111/j.1365-2133.2009.09342.x. PubMed DOI
Bjorklund S., Kocherbitov V. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes. Rev. Sci. Instrum. 2015;86 doi: 10.1063/1.4920919. PubMed DOI
Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959;155:206–222.
Rodahl M., Höök F., et al. Kasemo B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–246. doi: 10.1039/a703137h. PubMed DOI
Groen D., Gooris G.S., et al. Bouwstra J.A. Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys. J. 2011;100:1481–1489. doi: 10.1016/j.bpj.2011.02.001. PubMed DOI PMC
Skolova B., Janusova B., et al. Vavrova K. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624–15633. doi: 10.1021/la4037474. PubMed DOI
Hirschorn B., Orazem M.E., et al. Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta. 2010;55:6218–6227. doi: 10.1016/j.electacta.2009.10.065. DOI
Bjorklund S., Ruzgas T., et al. Engblom J. Skin membrane electrical impedance properties under the influence of a varying water gradient. Biophys. J. 2013;104:2639–2650. doi: 10.1016/j.bpj.2013.05.008. PubMed DOI PMC
Orazem M.E., Pèbrè N., Tribollet B. Enhanced graphical representation of electrochemical impedance data. J. Electrochem. Soc. 2006;153
Bouwstra J.A., Nădăban A., et al. Gooris G.S. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog. Lipid Res. 2023;92 doi: 10.1016/j.plipres.2023.101252. PubMed DOI PMC
Bouwstra J.A., Gooris G.S., et al. Bras W. Structure of human stratum corneum as a function of temperature and hydration: A wide-angle X-ray diffraction study. Int. J. Pharm. 1992;84:205–216. doi: 10.1016/0378-5173(92)90158-x. DOI
Bjorklund S., Kocherbitov V. Water vapor sorption-desorption hysteresis in glassy surface films of mucins investigated by humidity scanning QCM-D. J. Colloid Interface Sci. 2019;545:289–300. doi: 10.1016/j.jcis.2019.03.037. PubMed DOI
Bouwstra J.A., Gooris G.S., et al. Bras W. The lipid and protein structure of mouse stratum corneum: a wide and small angle diffraction study. Biochim. Biophys. Acta. 1994;1212:183–192. doi: 10.1016/0005-2760(94)90252-6. PubMed DOI
Fandrei F., Engberg O., et al. Huster D. Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability. J. Lipid Res. 2022;63 doi: 10.1016/j.jlr.2022.100177. PubMed DOI PMC
Paraskevopoulos G., Fandrei F., et al. Vávrová K. Effects of imidazolium ionic liquids on skin barrier lipids - Perspectives for drug delivery. J. Colloid Interface Sci. 2024;659:449–462. doi: 10.1016/j.jcis.2023.12.139. PubMed DOI
Damien F., Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010;130:611–614. doi: 10.1038/jid.2009.272. PubMed DOI
DeNuzzio J.D., Berner B. Electrochemical and iontophoretic studies of human skin. J. Control. Release. 1990;11:105–112.
Kontturi K., Murtomäki L. Impedance spectroscopy in human skin. A refined model. Pharm. Res. (N. Y.) 1994;11:1355–1357. doi: 10.1023/a:1018915100150. PubMed DOI
Oh S., Leung L., et al. Potts R. Effect of current, ionic strength and temperature on the electrical properties of skin. J. Control. Release. 1993;27:115–125.
Morin M., Runnsjo A., et al. Bjorklund S. Effects of storage conditions on permeability and electrical impedance properties of the skin barrier. Int. J. Pharm. 2023;637 doi: 10.1016/j.ijpharm.2023.122891. PubMed DOI
Raju R., Torrent-Burgués J., Bryant G. Interactions of cryoprotective agents with phospholipid membranes-A Langmuir monolayer study. Chem. Phys. Lipids. 2020;231 PubMed
Bianco I.D., Fidelio G.D., Maggio B. Effect of glycerol on the molecular properties of cerebrosides, sulphatides and gangliosides in monolayers. Biochem. J. 1988;251:613–616. doi: 10.1042/bj2510613. PubMed DOI PMC
Malajczuk C.J., Hughes Z.E., Mancera R.L. Molecular dynamics simulations of the interactions of DMSO, mono- and polyhydroxylated cryosolvents with a hydrated phospholipid bilayer. Biochim. Biophys. Acta. 2013;1828:2041–2055. doi: 10.1016/j.bbamem.2013.05.010. PubMed DOI
Schrader A.M., Cheng C.-Y., et al. Han S. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces. J. Chem. Phys. 2016;145 doi: 10.1063/1.4959904. PubMed DOI PMC
Choe C., Lademann J., Darvin M.E. A depth-dependent profile of the lipid conformation and lateral packing order of the stratum corneum in vivo measured using Raman microscopy. Analyst. 2016;141:1981–1987. doi: 10.1039/c5an02373d. PubMed DOI
Sato J., Denda M., et al. Koyama J. Dry condition affects desquamation of stratum corneum in vivo. J. Dermatol. Sci. 1998;18:163–169. doi: 10.1016/s0923-1811(98)00037-1. PubMed DOI
Harding C.R., Watkinson A., et al. Scott I.R. Dry skin, moisturization and corneodesmolysis. Int. J. Cosmet. Sci. 2000;22:21–52. doi: 10.1046/j.1467-2494.2000.00001.x. PubMed DOI