Structure and function of skin barrier lipids: Effects of hydration and natural moisturizers in vitro

. 2024 Nov 19 ; 123 (22) : 3951-3963. [epub] 20241010

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39390747
Odkazy

PubMed 39390747
PubMed Central PMC11617626
DOI 10.1016/j.bpj.2024.10.006
PII: S0006-3495(24)00665-9
Knihovny.cz E-zdroje

Lipid membranes play a crucial role in regulating the body's water balance by adjusting their properties in response to hydration. The intercellular lipid matrix of the stratum corneum (SC), the outermost skin layer, serves as the body's primary defense against environmental factors. Osmolytes, including urocanic acid (UCA) and glycerol, are key components of the natural moisturizing factor that help the SC resist osmotic stress from dry environments. This study examines the effects of UCA and glycerol (each at 5 mol %) on isolated human SC lipids. For this, different techniques were employed, offering complementary information of the system's multiscale characteristics, including humidity-scanning quartz crystal microbalance with dissipation monitoring, infrared spectroscopy, x-ray diffraction, electrical impedance spectroscopy, and studies of water loss and permeability. Our results show that UCA increases water sorption and makes lipid films more liquid-like at high relative humidity, without significantly altering the lipid lamellar structure, chain order, or orthorhombic chain packing. Lipid films containing UCA exhibited higher water loss and significantly higher model drug permeability compared to lipid films without UCA. Further, incorporation of UCA resulted in kinetically faster changes in electrical properties upon contact with aqueous solution compared with control lipids. These observations suggest that UCA reduces lipid cohesion in regions other than the acyl chain-rich leaflets, which may impact SC desquamation. In contrast, glycerol did not influence the hydration or permeability of the SC lipid matrix. However, it increased the proportion of orthorhombic domains at high humidities and slowed the kinetics of the hydration process, as evidenced by slower changes in the dielectric properties of the lipid film. These findings suggest that glycerol enhances lipid cohesion rather than increasing water uptake, which is typically the expected function of humectants. Consequently, UCA and glycerol appear to have distinct roles in maintaining epidermal homeostasis.

Zobrazit více v PubMed

Disalvo E.A. Springer; 2015. Membrane Hydration. PubMed

Elias P.M. Epidermal lipids, membranes, and keratinization. Int. J. Dermatol. 1981;20:1–19. doi: 10.1111/j.1365-4362.1981.tb05278.x. PubMed DOI

Madison K.C., Swartzendruber D.C., et al. Downing D.T. Presence of intact intercellular lipid lamellae in the upper layers of the stratum corneum. J. Invest. Dermatol. 1987;88:714–718. doi: 10.1111/1523-1747.ep12470386. PubMed DOI

Bouwstra J.A., Gooris G.S., et al. Bras W. Structural investigations of human stratum corneum by small-angle X-ray scattering. J. Invest. Dermatol. 1991;97:1005–1012. doi: 10.1111/1523-1747.ep12492217. PubMed DOI

Sparr E., Björklund S., et al. Topgaard D. The stratum corneum barrier-from molecular scale to macroscopic properties. Curr. Opin. Colloid Interface Sci. 2023;67

Bjorklund S., Kocherbitov V. Hydration-Induced Phase Transitions in Surfactant and Lipid Films. Langmuir. 2016;32:5223–5232. doi: 10.1021/acs.langmuir.6b00452. PubMed DOI

Alonso A., Meirelles N.C., et al. Tabak M. Water increases the fluidity of intercellular membranes of stratum corneum: correlation with water permeability, elastic, and electrical resistance properties. J. Invest. Dermatol. 1996;106:1058–1063. doi: 10.1111/1523-1747.ep12338682. PubMed DOI

Bjorklund S., Nowacka A., et al. Topgaard D. Characterization of stratum corneum molecular dynamics by natural-abundance (1)(3)C solid-state NMR. PLoS One. 2013;8 doi: 10.1371/journal.pone.0061889. PubMed DOI PMC

Scheuplein R.J., Ross L.W. Mechanism of percutaneous absorption. V. Percutaneous absorption of solvent deposited solids. J. Invest. Dermatol. 1974;62:353–360. doi: 10.1111/1523-1747.ep12701619. PubMed DOI

Björklund S., Engblom J., et al. Sparr E. A water gradient can be used to regulate drug transport across skin. J. Control. Release. 2010;143:191–200. PubMed

Blank I.H. Further observations on factors which influence the water content of the stratum corneum. J. Invest. Dermatol. 1953;21:259–271. PubMed

Blank I.H. Factors which influence the water content of the stratum corneum. J. Invest. Dermatol. 1952;18:433–440. PubMed

Katagiri C., Sato J., et al. Denda M. Changes in environmental humidity affect the water-holding property of the stratum corneum and its free amino acid content, and the expression of filaggrin in the epidermis of hairless mice. J. Dermatol. Sci. 2003;31:29–35. PubMed

Harding C.R., Watkinson A., et al. Scott I.R. Dry skin, moisturization and corneodesmolysis. Int. J. Cosmet. Sci. 2000;22:21–52. PubMed

Watkinson A., Harding C., et al. Coan P. Water modulation of stratum corneum chymotryptic enzyme activity and desquamation. Arch. Dermatol. Res. 2001;293:470–476. doi: 10.1007/s004030100257. PubMed DOI

Watanabe M., Tagami H., et al. Kligman A.M. Functional analyses of the superficial stratum corneum in atopic xerosis. Arch. Dermatol. 1991;127:1689–1692. PubMed

Fluhr J.W., Cavallotti C., Berardesca E. Emollients, moisturizers, and keratolytic agents in psoriasis. Clin. Dermatol. 2008;26:380–386. doi: 10.1016/j.clindermatol.2008.01.015. PubMed DOI

Yancey P.H., Clark M.E., et al. Somero G.N. Living with water stress: evolution of osmolyte systems. Science. 1982;217:1214–1222. doi: 10.1126/science.7112124. PubMed DOI

Loden M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am. J. Clin. Dermatol. 2003;4:771–788. doi: 10.2165/00128071-200304110-00005. PubMed DOI

Rawlings A.V., Scott I.R., et al. Bowser P.A. Stratum corneum moisturization at the molecular level. J. Invest. Dermatol. 1994;103:731–741. doi: 10.1111/1523-1747.ep12398620. PubMed DOI

Bjorklund S., Andersson J.M., et al. Sparr E. Stratum corneum molecular mobility in the presence of natural moisturizers. Soft Matter. 2014;10:4535–4546. doi: 10.1039/c4sm00137k. PubMed DOI

Gunnarsson M., Mojumdar E.H., et al. Sparr E. Extraction of natural moisturizing factor from the stratum corneum and its implication on skin molecular mobility. J. Colloid Interface Sci. 2021;604:480–491. doi: 10.1016/j.jcis.2021.07.012. PubMed DOI

Choe C., Schleusener J., et al. Darvin M.E. Keratin-water-NMF interaction as a three layer model in the human stratum corneum using in vivo confocal Raman microscopy. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-16202-x. PubMed DOI PMC

Vyumvuhore R., Tfayli A., et al. Baillet-Guffroy A. Effects of atmospheric relative humidity on Stratum Corneum structure at the molecular level: ex vivo Raman spectroscopy analysis. Analyst. 2013;138:4103–4111. doi: 10.1039/c3an00716b. PubMed DOI

Scott I.R., Harding C.R., Barrett J.G. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim. Biophys. Acta. 1982;719:110–117. doi: 10.1016/0304-4165(82)90314-2. PubMed DOI

Campos A.M., Cárcamo C., et al. Lissi E. Distribution of urocanic acid isomers between aqueous solutions and n-octanol, liposomes or bovine serum albumin. J. Photochem. Photobiol. B Biol. 2008;90:41–46. PubMed

Hart P.H., Norval M. The Multiple Roles of Urocanic Acid in Health and Disease. J. Invest. Dermatol. 2021;141:496–502. doi: 10.1016/j.jid.2020.07.017. PubMed DOI

Hara M., Ma T., Verkman A.S. Selectively reduced glycerol in skin of aquaporin-3-deficient mice may account for impaired skin hydration, elasticity, and barrier recovery. J. Biol. Chem. 2002;277:46616–46621. doi: 10.1074/jbc.M209003200. PubMed DOI

Hara M., Verkman A.S. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc. Natl. Acad. Sci. USA. 2003;100:7360–7365. doi: 10.1073/pnas.1230416100. PubMed DOI PMC

Fluhr J.W., Mao-Qiang M., et al. Elias P.M. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J. Invest. Dermatol. 2003;120:728–737. doi: 10.1046/j.1523-1747.2003.12134.x. PubMed DOI

Becker L.C., Bergfeld W.F., et al. Heldreth B. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019;38:6S–22S. doi: 10.1177/1091581819883820. PubMed DOI

Froebe C.L., Simion F.A., et al. Friberg S.E. Prevention of stratum corneum lipid phase transitions in vitro by glycerol - An alternative mechanism for skin moisturization. J. Soc. Cosmet. Chem. 1990;41:51–65. (Article)

Nowacka A., Douezan S., et al. Sparr E. Small polar molecules like glycerol and urea can preserve the fluidity of lipid bilayers under dry conditions. Soft Matter. 2012;8:1482–1491. doi: 10.1039/c1sm06273e. DOI

Bjorklund S., Engblom J., et al. Sparr E. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions. Eur. J. Pharmaceut. Sci. 2013;50:638–645. doi: 10.1016/j.ejps.2013.04.022. PubMed DOI

Sagrafena I., Paraskevopoulos G., et al. Vavrova K. Assembly of Human Stratum Corneum Lipids In Vitro: Fluidity Matters. J. Invest. Dermatol. 2022;142:2036–2039.e3. doi: 10.1016/j.jid.2021.12.008. PubMed DOI

Novackova A., Sagrafena I., et al. Vavrova K. Acidic pH Is Required for the Multilamellar Assembly of Skin Barrier Lipids In Vitro. J. Invest. Dermatol. 2021;141:1915–1921.e4. doi: 10.1016/j.jid.2021.02.014. PubMed DOI

Kezic S., Kammeyer A., et al. Bos J.D. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods. Br. J. Dermatol. 2009;161:1098–1104. doi: 10.1111/j.1365-2133.2009.09342.x. PubMed DOI

Bjorklund S., Kocherbitov V. Humidity scanning quartz crystal microbalance with dissipation monitoring setup for determination of sorption-desorption isotherms and rheological changes. Rev. Sci. Instrum. 2015;86 doi: 10.1063/1.4920919. PubMed DOI

Sauerbrey G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys. 1959;155:206–222.

Rodahl M., Höök F., et al. Kasemo B. Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss. 1997;107:229–246. doi: 10.1039/a703137h. PubMed DOI

Groen D., Gooris G.S., et al. Bouwstra J.A. Disposition of ceramide in model lipid membranes determined by neutron diffraction. Biophys. J. 2011;100:1481–1489. doi: 10.1016/j.bpj.2011.02.001. PubMed DOI PMC

Skolova B., Janusova B., et al. Vavrova K. Ceramides in the skin lipid membranes: length matters. Langmuir. 2013;29:15624–15633. doi: 10.1021/la4037474. PubMed DOI

Hirschorn B., Orazem M.E., et al. Musiani M. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta. 2010;55:6218–6227. doi: 10.1016/j.electacta.2009.10.065. DOI

Bjorklund S., Ruzgas T., et al. Engblom J. Skin membrane electrical impedance properties under the influence of a varying water gradient. Biophys. J. 2013;104:2639–2650. doi: 10.1016/j.bpj.2013.05.008. PubMed DOI PMC

Orazem M.E., Pèbrè N., Tribollet B. Enhanced graphical representation of electrochemical impedance data. J. Electrochem. Soc. 2006;153

Bouwstra J.A., Nădăban A., et al. Gooris G.S. The skin barrier: An extraordinary interface with an exceptional lipid organization. Prog. Lipid Res. 2023;92 doi: 10.1016/j.plipres.2023.101252. PubMed DOI PMC

Bouwstra J.A., Gooris G.S., et al. Bras W. Structure of human stratum corneum as a function of temperature and hydration: A wide-angle X-ray diffraction study. Int. J. Pharm. 1992;84:205–216. doi: 10.1016/0378-5173(92)90158-x. DOI

Bjorklund S., Kocherbitov V. Water vapor sorption-desorption hysteresis in glassy surface films of mucins investigated by humidity scanning QCM-D. J. Colloid Interface Sci. 2019;545:289–300. doi: 10.1016/j.jcis.2019.03.037. PubMed DOI

Bouwstra J.A., Gooris G.S., et al. Bras W. The lipid and protein structure of mouse stratum corneum: a wide and small angle diffraction study. Biochim. Biophys. Acta. 1994;1212:183–192. doi: 10.1016/0005-2760(94)90252-6. PubMed DOI

Fandrei F., Engberg O., et al. Huster D. Cholesterol sulfate fluidizes the sterol fraction of the stratum corneum lipid phase and increases its permeability. J. Lipid Res. 2022;63 doi: 10.1016/j.jlr.2022.100177. PubMed DOI PMC

Paraskevopoulos G., Fandrei F., et al. Vávrová K. Effects of imidazolium ionic liquids on skin barrier lipids - Perspectives for drug delivery. J. Colloid Interface Sci. 2024;659:449–462. doi: 10.1016/j.jcis.2023.12.139. PubMed DOI

Damien F., Boncheva M. The extent of orthorhombic lipid phases in the stratum corneum determines the barrier efficiency of human skin in vivo. J. Invest. Dermatol. 2010;130:611–614. doi: 10.1038/jid.2009.272. PubMed DOI

DeNuzzio J.D., Berner B. Electrochemical and iontophoretic studies of human skin. J. Control. Release. 1990;11:105–112.

Kontturi K., Murtomäki L. Impedance spectroscopy in human skin. A refined model. Pharm. Res. (N. Y.) 1994;11:1355–1357. doi: 10.1023/a:1018915100150. PubMed DOI

Oh S., Leung L., et al. Potts R. Effect of current, ionic strength and temperature on the electrical properties of skin. J. Control. Release. 1993;27:115–125.

Morin M., Runnsjo A., et al. Bjorklund S. Effects of storage conditions on permeability and electrical impedance properties of the skin barrier. Int. J. Pharm. 2023;637 doi: 10.1016/j.ijpharm.2023.122891. PubMed DOI

Raju R., Torrent-Burgués J., Bryant G. Interactions of cryoprotective agents with phospholipid membranes-A Langmuir monolayer study. Chem. Phys. Lipids. 2020;231 PubMed

Bianco I.D., Fidelio G.D., Maggio B. Effect of glycerol on the molecular properties of cerebrosides, sulphatides and gangliosides in monolayers. Biochem. J. 1988;251:613–616. doi: 10.1042/bj2510613. PubMed DOI PMC

Malajczuk C.J., Hughes Z.E., Mancera R.L. Molecular dynamics simulations of the interactions of DMSO, mono- and polyhydroxylated cryosolvents with a hydrated phospholipid bilayer. Biochim. Biophys. Acta. 2013;1828:2041–2055. doi: 10.1016/j.bbamem.2013.05.010. PubMed DOI

Schrader A.M., Cheng C.-Y., et al. Han S. Communication: Contrasting effects of glycerol and DMSO on lipid membrane surface hydration dynamics and forces. J. Chem. Phys. 2016;145 doi: 10.1063/1.4959904. PubMed DOI PMC

Choe C., Lademann J., Darvin M.E. A depth-dependent profile of the lipid conformation and lateral packing order of the stratum corneum in vivo measured using Raman microscopy. Analyst. 2016;141:1981–1987. doi: 10.1039/c5an02373d. PubMed DOI

Sato J., Denda M., et al. Koyama J. Dry condition affects desquamation of stratum corneum in vivo. J. Dermatol. Sci. 1998;18:163–169. doi: 10.1016/s0923-1811(98)00037-1. PubMed DOI

Harding C.R., Watkinson A., et al. Scott I.R. Dry skin, moisturization and corneodesmolysis. Int. J. Cosmet. Sci. 2000;22:21–52. doi: 10.1046/j.1467-2494.2000.00001.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...