Iron Single-Atom Catalysts Anchored on Defect-Engineered N‑Doped Graphene Reveal an Interplay between CO2 Reduction Activity and Stability

. 2025 Jun 09 ; 13 (22) : 8319-8330. [epub] 20250528

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40510914

The precise engineering of vacancies in nitrogen-doped graphene (NG) presents a promising strategy for stabilizing metal single-atom catalysts (SACs) and tuning their catalytic performance. We explore the role of vacancies in NG for stabilizing iron-based SACs (Fe-SACs) by using density functional theory (DFT). First, we examine the stability of various vacancy types in graphene and NG supports, addressing the question of preferential formation of specific structural defects as potential sites for metal binding. We reveal simple rules governing the stability of vacancies and show that nitrogen doping can bring about vacancy healing. We identify preferred binding sites for Fe atoms/ions, specifically single and double vacancies, and analyze how the nitrogen-doping pattern in a vacancy affects the interaction of Fe with the SAC support. The results show that the positions of nitrogen(s) and the local charge environment significantly influence the stability of the Fe-SACs. Notably, some Fe@NG configurations, although not the most thermodynamically stable, exhibit enhanced catalytic performance, particularly for a CO2 reduction reaction (CO2RR). These findings offer valuable insights into vacancy engineering as a strategy for designing high-performance Fe-SACs and emphasize the interplay among vacancy types, nitrogen concentration, and catalyst stability in driving the catalytic behavior.

Zobrazit více v PubMed

Liu L., Corma A.. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018;118(10):4981–5079. doi: 10.1021/acs.chemrev.7b00776. PubMed DOI PMC

Ren Y., Wang J., Zhang M., Wang Y., Cao Y., Kim D. H., Liu Y., Lin Z.. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. Small. 2024;20(22):2308213. doi: 10.1002/smll.202308213. PubMed DOI

Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T.. Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx . Nat. Chem. 2011;3(8):634–641. doi: 10.1038/nchem.1095. PubMed DOI

Langer R., Fako E., Błoński P., Vavrečka M., Bakandritsos A., Otyepka M., López N.. Anchoring of Single-Platinum-Adatoms on Cyanographene: Experiment and Theory. Appl. Mater. Today. 2020;18:100462. doi: 10.1016/j.apmt.2019.100462. DOI

Obraztsov I., Bakandritsos A., Šedajová V., Langer R., Jakubec P., Zoppellaro G., Pykal M., Presser V., Otyepka M., Zbořil R.. Graphene Acid for Lithium-Ion BatteriesCarboxylation Boosts Storage Capacity in Graphene. Adv. Energy Mater. 2022;12(5):2103010. doi: 10.1002/aenm.202103010. DOI

Langer R., Mustonen K., Markevich A., Otyepka M., Susi T., Błoński P.. Graphene Lattices with Embedded Transition-Metal Atoms and Tunable Magnetic Anisotropy Energy: Implications for Spintronic Devices. ACS Appl. Nano Mater. 2022;5(1):1562–1573. doi: 10.1021/acsanm.1c04309. DOI

Singh B., Gawande M. B., Kute A. D., Varma R. S., Fornasiero P., McNeice P., Jagadeesh R. V., Beller M., Zbořil R.. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem. Rev. 2021;121(21):13620–13697. doi: 10.1021/acs.chemrev.1c00158. PubMed DOI

Wang H., Maiyalagan T., Wang X.. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012;2(5):781–794. doi: 10.1021/cs200652y. DOI

Groves M. N., Chan A. S. W., Malardier-Jugroot C., Jugroot M.. Improving Platinum Catalyst Binding Energy to Graphene through Nitrogen Doping. Chem. Phys. Lett. 2009;481(4–6):214–219. doi: 10.1016/j.cplett.2009.09.074. DOI

Majumder M., Saini H., Dědek I., Schneemann A., Chodankar N. R., Ramarao V., Santosh M. S., Nanjundan A. K., Kment Š., Dubal D., Otyepka O., Zbořil R., Jayaramulu K.. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano. 2021;15(11):17275–17298. doi: 10.1021/acsnano.1c08455. PubMed DOI

Fei H., Dong J., Feng Y., Allen C. S., Wan C., Volosskiy B., Li M., Zhao Z., Wang Y., Sun H., An P., Chen W., Guo Z., Lee C., Chen D., Shakir I., Liu M., Hu T., Li Y., Kirkland A. I., Duan X., Huang Y.. General Synthesis and Definitive Structural Identification of MN4C4 Single-Atom Catalysts with Tunable Electrocatalytic Activities. Nat. Catal. 2018;1(1):63–72. doi: 10.1038/s41929-017-0008-y. DOI

Zhang H., Liu W., Cao D., Cheng D.. Carbon-Based Material-Supported Single-Atom Catalysts for Energy Conversion. iScience. 2022;25(6):104367. doi: 10.1016/j.isci.2022.104367. PubMed DOI PMC

Lu X., Li Y., Yang P., Wan Y., Wang D., Xu H., Liu L., Xiao L., Li R., Wang G., Zhang J., An M., Wu G.. Atomically Dispersed Fe-N-C Catalyst with Densely Exposed Fe-N4 Active Sites for Enhanced Oxygen Reduction Reaction. Chem. Eng. J. 2024;485:149529. doi: 10.1016/j.cej.2024.149529. DOI

Zhang Y., Ge J., Wang L., Wang D., Ding F., Tao X., Chen W.. Manageable N-Doped Graphene for High Performance Oxygen Reduction Reaction. Sci. Rep. 2013;3(1):2771. doi: 10.1038/srep02771. PubMed DOI PMC

Yan M., Dai Z., Chen S., Dong L., Zhang X. L., Xu Y., Sun C.. Single-Iron Supported on Defective Graphene as Efficient Catalysts for Oxygen Reduction Reaction. J. Phys. Chem. C. 2020;124(24):13283–13290. doi: 10.1021/acs.jpcc.0c03930. DOI

Peng H., Mo Z., Liao S., Liang H., Yang L., Luo F., Song H., Zhong Y., Zhang B.. High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Sci. Rep. 2013;3(1):1765. doi: 10.1038/srep01765. DOI

Sibul R., Kibena-Põldsepp E., Ratso S., Kook M., Sougrati M. T., Käärik M., Merisalu M., Aruväli J., Paiste P., Treshchalov A., Leis J., Kisand V., Sammelselg V., Holdcroft S., Jaouen F., Tammeveski K.. Iron- and Nitrogen-Doped Graphene-Based Catalysts for Fuel Cell Applications. ChemElectroChem. 2020;7(7):1739–1747. doi: 10.1002/celc.202000011. DOI

Kment Š., Bakandritsos A., Tantis I., Kmentová H., Zuo Y., Henrotte O., Naldoni A., Otyepka M., Varma R. S., Zbořil R.. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem. Rev. 2024;124(21):11767–11847. doi: 10.1021/acs.chemrev.4c00155. PubMed DOI PMC

Zhou T., Ma R., Zhang T., Li Z., Yang M., Liu Q., Zhu Y., Wang J.. Increased Activity of Nitrogen-Doped Graphene-like Carbon Sheets Modified by Iron Doping for Oxygen Reduction. J. Colloid Interface Sci. 2019;536:42–52. doi: 10.1016/j.jcis.2018.10.021. PubMed DOI

Ali F. M., Ghuman K. K., O’Brien P. G., Hmadeh M., Sandhel A., Perovic D. D., Singh C. V., Mims C. A., Ozin G. A.. Solar Fuels: Highly Efficient Ambient Temperature CO2 Photomethanation Catalyzed by Nanostructured RuO2 on Silicon Photonic Crystal Support (Adv. Energy Mater. 9/2018) Adv. Energy Mater. 2018;8(9):1870041. doi: 10.1002/aenm.201870041. DOI

Zhao Y., Zhou S., Zhao J.. Selective C-C Coupling by Spatially Confined Dimeric Metal Centers. iScience. 2020;23(5):101051. doi: 10.1016/j.isci.2020.101051. PubMed DOI PMC

Sarma S. Ch., Barrio J., Gong M., Pedersen A., Kucernak A., Titirici M., Stephens I. E. L.. Atomically Dispersed Fe in a C2N-Derived Matrix for the Reduction of CO2 to CO. Electrochim. Acta. 2023;463:142855. doi: 10.1016/j.electacta.2023.142855. DOI

Zhang C., Yang S., Wu J., Liu M., Yazdi S., Ren M., Sha J., Zhong J., Nie K., Jalilov A. S., Li Z., Li H., Yakobson B. I., Wu Q., Ringe E., Xu H., Ajayan P. M., Tour J. M.. Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. Adv. Energy Mater. 2018;8(19):1703487. doi: 10.1002/aenm.201703487. DOI

Varela A. S., Kroschel M., Leonard N. D., Ju W., Steinberg J., Bagger A., Rossmeisl J., Strasser P.. pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis. ACS Energy Lett. 2018;3(4):812–817. doi: 10.1021/acsenergylett.8b00273. DOI

Ha M., Kim D. Y., Umer M., Gladkikh V., Myung C. W., Kim K. S.. Tuning Metal Single Atoms Embedded in NxCy Moieties toward High-Performance Electrocatalysis. Energy Environ. Sci. 2021;14(6):3455–3468. doi: 10.1039/D1EE00154J. DOI

Umer M., Umer S., Zafari M., Ha M., Anand R., Hajibabaei A., Abbas A., Lee G., Kim K. S.. Machine Learning Assisted High-Throughput Screening of Transition Metal Single Atom Based Superb Hydrogen Evolution Electrocatalysts. J. Mater. Chem. A. 2022;10(12):6679–6689. doi: 10.1039/D1TA09878K. DOI

Panáček D., Belza J., Hochvaldová L., Bad’ura Z., Zoppellaro G., Šrejber M., Malina T., Šedajová V., Paloncýová M., Langer R., Zdražil L., Zeng J., Li L., Zhao E., Chen Z., Xiong Z., Li R., Panáček A., Večeřová R., Kučová P., Kolář M., Otyepka M., Bakandritsos A., Zbořil R.. Single Atom Engineered Antibiotics Overcome Bacterial Resistance. Adv. Mater. 2024;36(50):2410652. doi: 10.1002/adma.202410652. PubMed DOI PMC

Butera V.. Density Functional Theory Methods Applied to Homogeneous and Heterogeneous Catalysis: A Short Review and a Practical User Guide. Phys. Chem. Chem. Phys. 2024;26(10):7950–7970. doi: 10.1039/D4CP00266K. PubMed DOI

Tosoni S., Di Liberto G., Matanovic I., Pacchioni G.. Modelling Single Atom Catalysts for Water Splitting and Fuel Cells: A Tutorial Review. J. Power Sources. 2023;556:232492. doi: 10.1016/j.jpowsour.2022.232492. DOI

Bu S., Yao N., Hunter M. A., Searles D. J., Yuan Q.. Design of Two-Dimensional Carbon-Nitride Structures by Tuning the Nitrogen Concentration. NPJ Comput. Mater. 2020;6(1):128. doi: 10.1038/s41524-020-00393-5. DOI

He C., Wu Z.-Y., Zhao L., Ming M., Zhang Y., Yi Y., Hu J.-S.. Identification of FeN4 as an Efficient Active Site for Electrochemical N2 Reduction. ACS Catal. 2019;9(8):7311–7317. doi: 10.1021/acscatal.9b00959. DOI

Hohenberg P., Kohn W.. Inhomogeneous Electron Gas. Phys. Rev. 1964;136(3B):B864–B871. doi: 10.1103/PhysRev.136.B864. DOI

Kresse G., Furthmüller J.. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0. DOI

Allen, M. P. ; Tildesley, D. J. . Computer Simulation of Liquids; Oxford Science Publications, Clarendon Press: Oxford, U.K., 2009.

Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Kresse G., Hafner J.. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B. 1993;47(1):558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Paier J., Marsman M., Hummer K., Kresse G., Gerber I. C., Ángyán J. G.. Screened Hybrid Density Functionals Applied to Solids. J. Chem. Phys. 2006;124(15):154709. doi: 10.1063/1.2187006. PubMed DOI

Grimme S., Ehrlich S., Goerigk L.. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011;32(7):1456–1465. doi: 10.1002/jcc.21759. PubMed DOI

Banhart F., Kotakoski J., Krasheninnikov A. V.. Structural Defects in Graphene. ACS Nano. 2011;5(1):26–41. doi: 10.1021/nn102598m. PubMed DOI

Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. ; Li, X. ; Caricato, M. ; Marenich, A. V. ; Bloino, J. ; Janesko, B. G. ; Gomperts, R. ; Mennucci, B. ; Hratchian, H. P. ; Ortiz, J. V. ; Izmaylov, A. F. ; Sonnenberg, J. L. ; Williams-Young, D. ; Ding, F. ; Lipparini, F. ; Egidi, F. ; Goings, J. ; Peng, B. ; Petrone, A. ; Henderson, T. ; Ranasinghe, D. ; Zakrzewski, V. G. ; Gao, J. ; Rega, N. ; Zheng, G. ; Liang, W. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Throssell, K. ; Montgomery, J. A., Jr. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. J. ; Heyd, J. J. ; Brothers, E. N. ; Kudin, K. N. ; Staroverov, V. N. ; Keith, T. A. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. P. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Millam, J. M. ; Klene, M. ; Adamo, C. ; Cammi, R. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Farkas, O. ; Foresman, J. B. ; Fox, D. J. . Gaussian 16, revision A.03; Gaussian, Inc.: Wallingford, CT, 2016.

Chai J.-D., Head-Gordon M.. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008;10(44):6615–6620. doi: 10.1039/b810189b. PubMed DOI

Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297. doi: 10.1039/b508541a. PubMed DOI

Becke A. D.. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98(7):5648–5652. doi: 10.1063/1.464913. DOI

Lee C., Yang W., Parr R. G.. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988;37(2):785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98(45):11623–11627. doi: 10.1021/j100096a001. DOI

Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI

Wadt W. R., Hay P. J.. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985;82(1):284–298. doi: 10.1063/1.448800. DOI

Hay P. J., Wadt W. R.. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985;82(1):270–283. doi: 10.1063/1.448799. DOI

Woon D. E., Dunning T. H.. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993;98(2):1358–1371. doi: 10.1063/1.464303. DOI

Marenich A. V., Cramer C. J., Truhlar D. G.. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113(18):6378–6396. doi: 10.1021/jp810292n. PubMed DOI

Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H.. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B. 2004;108(46):17886–17892. doi: 10.1021/jp047349j. PubMed DOI

Zhao X., Levell Z. H., Yu S., Liu Y.. Atomistic Understanding of Two-Dimensional Electrocatalysts from First Principles. Chem. Rev. 2022;122(12):10675–10709. doi: 10.1021/acs.chemrev.1c00981. PubMed DOI

Brimley P., Almajed H., Alsunni Y., Alherz A. W., Bare Z. J. L., Smith W. A., Musgrave C. B.. Electrochemical CO2 Reduction over Metal-/Nitrogen-Doped Graphene Single-Atom Catalysts Modeled Using the Grand-Canonical Density Functional Theory. ACS Catal. 2022;12(16):10161–10171. doi: 10.1021/acscatal.2c01832. DOI

Reed A. E., Weinstock R. B., Weinhold F.. Natural Population Analysis. J. Chem. Phys. 1985;83(2):735–746. doi: 10.1063/1.449486. DOI

Girit Ç. Ö., Meyer J. C., Erni R., Rossell M. D., Kisielowski C., Yang L., Park C.-H., Crommie M. F., Cohen M. L., Louie S. G., Zettl A.. Graphene at the Edge: Stability and Dynamics. Science. 2009;323(5922):1705–1708. doi: 10.1126/science.1166999. PubMed DOI

Robertson A. W., Lee G.-D., He K., Gong C., Chen Q., Yoon E., Kirkland A. I., Warner J. H.. Atomic Structure of Graphene Subnanometer Pores. ACS Nano. 2015;9(12):11599–11607. doi: 10.1021/acsnano.5b05700. PubMed DOI

Ugeda M. M., Brihuega I., Guinea F., Gómez-Rodríguez J. M.. Missing Atom as a Source of Carbon Magnetism. Phys. Rev. Lett. 2010;104(9):096804. doi: 10.1103/PhysRevLett.104.096804. PubMed DOI

Kotakoski J., Krasheninnikov A. V., Kaiser U., Meyer J. C.. From Point Defects in Graphene to Two-Dimensional Amorphous Carbon. Phys. Rev. Lett. 2011;106(10):105505. doi: 10.1103/PhysRevLett.106.105505. PubMed DOI

Tian W., Li W., Yu W., Liu X.. A Review on Lattice Defects in Graphene: Types, Generation, Effects and Regulation. Micromachines. 2017;8(5):163. doi: 10.3390/mi8050163. DOI

Kotakoski J., Krasheninnikov A. V., Nordlund K.. Energetics, Structure, and Long-Range Interaction of Vacancy-Type Defects in Carbon Nanotubes: Atomistic Simulations. Phys. Rev. B. 2006;74(24):245420. doi: 10.1103/PhysRevB.74.245420. DOI

Luo G., Liu L., Zhang J., Li G., Wang B., Zhao J.. Hole Defects and Nitrogen Doping in Graphene: Implication for Supercapacitor Applications. ACS Appl. Mater. Interfaces. 2013;5(21):11184–11193. doi: 10.1021/am403427h. PubMed DOI

Wang B., Tsetseris L., Pantelides S. T.. Introduction of Nitrogen with Controllable Configuration into Graphene via Vacancies and Edges. J. Mater. Chem. A. 2013;1(47):14927. doi: 10.1039/c3ta13610h. DOI

Wang B., Pantelides S. T.. Controllable Healing of Defects and Nitrogen Doping of Graphene by CO and NO Molecules. Phys. Rev. B. 2011;83(24):245403. doi: 10.1103/PhysRevB.83.245403. DOI

Zaoralová D., Hrubý V., Šedajová V., Mach R., Kupka V., Ugolotti J., Bakandritsos A., Medved’ M., Otyepka M.. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustainable Chem. Eng. 2020;8(12):4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI

Krasheninnikov A. V., Nordlund K.. Ion and Electron Irradiation-Induced Effects in Nanostructured Materials. J. Appl. Phys. 2010;107(7):071301. doi: 10.1063/1.3318261. DOI

Liu Q., Wang Y., Hu Z., Zhang Z.. Iron-Based Single-Atom Electrocatalysts: Synthetic Strategies and Applications. RSC Adv. 2021;11(5):3079–3095. doi: 10.1039/D0RA08223F. PubMed DOI PMC

Sorcar S., Yoriya S., Lee H., Grimes C. A., Feng S. P.. A Review of Recent Progress in Gas Phase CO2 Reduction and Suggestions on Future Advancement. Mater. Today Chem. 2020;16:100264. doi: 10.1016/j.mtchem.2020.100264. DOI

Kattel S., Atanassov P., Kiefer B.. A Density Functional Theory Study of Oxygen Reduction Reaction on Non-PGM Fe-Nx-C Electrocatalysts. Phys. Chem. Chem. Phys. 2014;16(27):13800. doi: 10.1039/c4cp01634c. PubMed DOI

Kropp T., Mavrikakis M.. Transition Metal Atoms Embedded in Graphene: How Nitrogen Doping Increases CO Oxidation Activity. ACS Catal. 2019;9(8):6864–6868. doi: 10.1021/acscatal.9b01944. DOI

Nosheen U., Jalil A., Ilyas S. Z., Ahmed S., Illahi A., Rafiq M. A.. Ab-Initio Characterization of Iron-Embedded Nitrogen-Doped Graphene as a Toxic Gas Sensor. J. Comput. Electron. 2022;22:116–127. doi: 10.1007/s10825-022-01977-8. DOI

Impeng S., Junkaew A., Maitarad P., Kungwan N., Zhang D., Shi L., Namuangruk S.. A MnN4 Moiety Embedded Graphene as a Magnetic Gas Sensor for CO Detection: A First Principle Study. Appl. Surf. Sci. 2019;473:820–827. doi: 10.1016/j.apsusc.2018.12.209. DOI

Owen C. J., Marcella N., O’Connor C. R., Kim T.-S., Shimogawa R., Xie C. Y., Nuzzo R. G., Frenkel A. I., Reece C., Kozinsky B.. Surface Roughening in Nanoparticle Catalysts. arXiv. 2024:2407.13643. doi: 10.48550/arXiv.2407.13643. DOI

Owen C. J., Russotto L., O’Connor C. R., Marcella N., Johansson A., Musaelian A., Kozinsky B.. Atomistic Evolution of Active Sites in Multi-Component Heterogeneous Catalysts. arXiv. 2024:2407.13607. doi: 10.48550/arXiv.2407.13607. DOI

Liu L., Chen T., Chen Z.. Understanding the Dynamic Aggregation in Single-Atom Catalysis. Adv. Sci. 2024;11(13):2308046. doi: 10.1002/advs.202308046. PubMed DOI PMC

Liang W., Chen J., Liu Y., Chen S.. Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of O2 on Fe/N-Doped Graphene. ACS Catal. 2014;4(11):4170–4177. doi: 10.1021/cs501170a. DOI

Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X.. A Single Iron Site Confined in a Graphene Matrix for the Catalytic Oxidation of Benzene at Room Temperature. Sci. Adv. 2015;1(11):e1500462. doi: 10.1126/sciadv.1500462. PubMed DOI PMC

Ren D., Fong J., Yeo B. S.. The Effects of Currents and Potentials on the Selectivities of Copper toward Carbon Dioxide Electroreduction. Nat. Commun. 2018;9(1):925. doi: 10.1038/s41467-018-03286-w. PubMed DOI PMC

Anand R., Zafari M., Gupta V., Lee G., Kim K. S.. Unlocking the Catalytic Potential of iMXenes: Selective Electrochemical CO2 Reduction for Methane Production. J. Mater. Chem. A. 2025;13(7):5045–5055. doi: 10.1039/D4TA06307D. DOI

Umer M., Umer S., Anand R., Mun J., Zafari M., Lee G., Kim K. S.. Transition Metal Single Atom Embedded GaN Monolayer Surface for Efficient and Selective CO2 Electroreduction. J. Mater. Chem. A. 2022;10(45):24280–24289. doi: 10.1039/D2TA06991A. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...