Iron Single-Atom Catalysts Anchored on Defect-Engineered N‑Doped Graphene Reveal an Interplay between CO2 Reduction Activity and Stability
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40510914
PubMed Central
PMC12153042
DOI
10.1021/acssuschemeng.5c01417
Knihovny.cz E-zdroje
- Klíčová slova
- Activity, CO2RR, SAC, Single-atom catalysis, Stability,
- Publikační typ
- časopisecké články MeSH
The precise engineering of vacancies in nitrogen-doped graphene (NG) presents a promising strategy for stabilizing metal single-atom catalysts (SACs) and tuning their catalytic performance. We explore the role of vacancies in NG for stabilizing iron-based SACs (Fe-SACs) by using density functional theory (DFT). First, we examine the stability of various vacancy types in graphene and NG supports, addressing the question of preferential formation of specific structural defects as potential sites for metal binding. We reveal simple rules governing the stability of vacancies and show that nitrogen doping can bring about vacancy healing. We identify preferred binding sites for Fe atoms/ions, specifically single and double vacancies, and analyze how the nitrogen-doping pattern in a vacancy affects the interaction of Fe with the SAC support. The results show that the positions of nitrogen(s) and the local charge environment significantly influence the stability of the Fe-SACs. Notably, some Fe@NG configurations, although not the most thermodynamically stable, exhibit enhanced catalytic performance, particularly for a CO2 reduction reaction (CO2RR). These findings offer valuable insights into vacancy engineering as a strategy for designing high-performance Fe-SACs and emphasize the interplay among vacancy types, nitrogen concentration, and catalyst stability in driving the catalytic behavior.
Zobrazit více v PubMed
Liu L., Corma A.. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018;118(10):4981–5079. doi: 10.1021/acs.chemrev.7b00776. PubMed DOI PMC
Ren Y., Wang J., Zhang M., Wang Y., Cao Y., Kim D. H., Liu Y., Lin Z.. Strategies Toward High Selectivity, Activity, and Stability of Single-Atom Catalysts. Small. 2024;20(22):2308213. doi: 10.1002/smll.202308213. PubMed DOI
Qiao B., Wang A., Yang X., Allard L. F., Jiang Z., Cui Y., Liu J., Li J., Zhang T.. Single-Atom Catalysis of CO Oxidation Using Pt1/FeOx . Nat. Chem. 2011;3(8):634–641. doi: 10.1038/nchem.1095. PubMed DOI
Langer R., Fako E., Błoński P., Vavrečka M., Bakandritsos A., Otyepka M., López N.. Anchoring of Single-Platinum-Adatoms on Cyanographene: Experiment and Theory. Appl. Mater. Today. 2020;18:100462. doi: 10.1016/j.apmt.2019.100462. DOI
Obraztsov I., Bakandritsos A., Šedajová V., Langer R., Jakubec P., Zoppellaro G., Pykal M., Presser V., Otyepka M., Zbořil R.. Graphene Acid for Lithium-Ion BatteriesCarboxylation Boosts Storage Capacity in Graphene. Adv. Energy Mater. 2022;12(5):2103010. doi: 10.1002/aenm.202103010. DOI
Langer R., Mustonen K., Markevich A., Otyepka M., Susi T., Błoński P.. Graphene Lattices with Embedded Transition-Metal Atoms and Tunable Magnetic Anisotropy Energy: Implications for Spintronic Devices. ACS Appl. Nano Mater. 2022;5(1):1562–1573. doi: 10.1021/acsanm.1c04309. DOI
Singh B., Gawande M. B., Kute A. D., Varma R. S., Fornasiero P., McNeice P., Jagadeesh R. V., Beller M., Zbořil R.. Single-Atom (Iron-Based) Catalysts: Synthesis and Applications. Chem. Rev. 2021;121(21):13620–13697. doi: 10.1021/acs.chemrev.1c00158. PubMed DOI
Wang H., Maiyalagan T., Wang X.. Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications. ACS Catal. 2012;2(5):781–794. doi: 10.1021/cs200652y. DOI
Groves M. N., Chan A. S. W., Malardier-Jugroot C., Jugroot M.. Improving Platinum Catalyst Binding Energy to Graphene through Nitrogen Doping. Chem. Phys. Lett. 2009;481(4–6):214–219. doi: 10.1016/j.cplett.2009.09.074. DOI
Majumder M., Saini H., Dědek I., Schneemann A., Chodankar N. R., Ramarao V., Santosh M. S., Nanjundan A. K., Kment Š., Dubal D., Otyepka O., Zbořil R., Jayaramulu K.. Rational Design of Graphene Derivatives for Electrochemical Reduction of Nitrogen to Ammonia. ACS Nano. 2021;15(11):17275–17298. doi: 10.1021/acsnano.1c08455. PubMed DOI
Fei H., Dong J., Feng Y., Allen C. S., Wan C., Volosskiy B., Li M., Zhao Z., Wang Y., Sun H., An P., Chen W., Guo Z., Lee C., Chen D., Shakir I., Liu M., Hu T., Li Y., Kirkland A. I., Duan X., Huang Y.. General Synthesis and Definitive Structural Identification of MN4C4 Single-Atom Catalysts with Tunable Electrocatalytic Activities. Nat. Catal. 2018;1(1):63–72. doi: 10.1038/s41929-017-0008-y. DOI
Zhang H., Liu W., Cao D., Cheng D.. Carbon-Based Material-Supported Single-Atom Catalysts for Energy Conversion. iScience. 2022;25(6):104367. doi: 10.1016/j.isci.2022.104367. PubMed DOI PMC
Lu X., Li Y., Yang P., Wan Y., Wang D., Xu H., Liu L., Xiao L., Li R., Wang G., Zhang J., An M., Wu G.. Atomically Dispersed Fe-N-C Catalyst with Densely Exposed Fe-N4 Active Sites for Enhanced Oxygen Reduction Reaction. Chem. Eng. J. 2024;485:149529. doi: 10.1016/j.cej.2024.149529. DOI
Zhang Y., Ge J., Wang L., Wang D., Ding F., Tao X., Chen W.. Manageable N-Doped Graphene for High Performance Oxygen Reduction Reaction. Sci. Rep. 2013;3(1):2771. doi: 10.1038/srep02771. PubMed DOI PMC
Yan M., Dai Z., Chen S., Dong L., Zhang X. L., Xu Y., Sun C.. Single-Iron Supported on Defective Graphene as Efficient Catalysts for Oxygen Reduction Reaction. J. Phys. Chem. C. 2020;124(24):13283–13290. doi: 10.1021/acs.jpcc.0c03930. DOI
Peng H., Mo Z., Liao S., Liang H., Yang L., Luo F., Song H., Zhong Y., Zhang B.. High Performance Fe- and N- Doped Carbon Catalyst with Graphene Structure for Oxygen Reduction. Sci. Rep. 2013;3(1):1765. doi: 10.1038/srep01765. DOI
Sibul R., Kibena-Põldsepp E., Ratso S., Kook M., Sougrati M. T., Käärik M., Merisalu M., Aruväli J., Paiste P., Treshchalov A., Leis J., Kisand V., Sammelselg V., Holdcroft S., Jaouen F., Tammeveski K.. Iron- and Nitrogen-Doped Graphene-Based Catalysts for Fuel Cell Applications. ChemElectroChem. 2020;7(7):1739–1747. doi: 10.1002/celc.202000011. DOI
Kment Š., Bakandritsos A., Tantis I., Kmentová H., Zuo Y., Henrotte O., Naldoni A., Otyepka M., Varma R. S., Zbořil R.. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem. Rev. 2024;124(21):11767–11847. doi: 10.1021/acs.chemrev.4c00155. PubMed DOI PMC
Zhou T., Ma R., Zhang T., Li Z., Yang M., Liu Q., Zhu Y., Wang J.. Increased Activity of Nitrogen-Doped Graphene-like Carbon Sheets Modified by Iron Doping for Oxygen Reduction. J. Colloid Interface Sci. 2019;536:42–52. doi: 10.1016/j.jcis.2018.10.021. PubMed DOI
Ali F. M., Ghuman K. K., O’Brien P. G., Hmadeh M., Sandhel A., Perovic D. D., Singh C. V., Mims C. A., Ozin G. A.. Solar Fuels: Highly Efficient Ambient Temperature CO2 Photomethanation Catalyzed by Nanostructured RuO2 on Silicon Photonic Crystal Support (Adv. Energy Mater. 9/2018) Adv. Energy Mater. 2018;8(9):1870041. doi: 10.1002/aenm.201870041. DOI
Zhao Y., Zhou S., Zhao J.. Selective C-C Coupling by Spatially Confined Dimeric Metal Centers. iScience. 2020;23(5):101051. doi: 10.1016/j.isci.2020.101051. PubMed DOI PMC
Sarma S. Ch., Barrio J., Gong M., Pedersen A., Kucernak A., Titirici M., Stephens I. E. L.. Atomically Dispersed Fe in a C2N-Derived Matrix for the Reduction of CO2 to CO. Electrochim. Acta. 2023;463:142855. doi: 10.1016/j.electacta.2023.142855. DOI
Zhang C., Yang S., Wu J., Liu M., Yazdi S., Ren M., Sha J., Zhong J., Nie K., Jalilov A. S., Li Z., Li H., Yakobson B. I., Wu Q., Ringe E., Xu H., Ajayan P. M., Tour J. M.. Electrochemical CO2 Reduction with Atomic Iron-Dispersed on Nitrogen-Doped Graphene. Adv. Energy Mater. 2018;8(19):1703487. doi: 10.1002/aenm.201703487. DOI
Varela A. S., Kroschel M., Leonard N. D., Ju W., Steinberg J., Bagger A., Rossmeisl J., Strasser P.. pH Effects on the Selectivity of the Electrocatalytic CO2 Reduction on Graphene-Embedded Fe-N-C Motifs: Bridging Concepts between Molecular Homogeneous and Solid-State Heterogeneous Catalysis. ACS Energy Lett. 2018;3(4):812–817. doi: 10.1021/acsenergylett.8b00273. DOI
Ha M., Kim D. Y., Umer M., Gladkikh V., Myung C. W., Kim K. S.. Tuning Metal Single Atoms Embedded in NxCy Moieties toward High-Performance Electrocatalysis. Energy Environ. Sci. 2021;14(6):3455–3468. doi: 10.1039/D1EE00154J. DOI
Umer M., Umer S., Zafari M., Ha M., Anand R., Hajibabaei A., Abbas A., Lee G., Kim K. S.. Machine Learning Assisted High-Throughput Screening of Transition Metal Single Atom Based Superb Hydrogen Evolution Electrocatalysts. J. Mater. Chem. A. 2022;10(12):6679–6689. doi: 10.1039/D1TA09878K. DOI
Panáček D., Belza J., Hochvaldová L., Bad’ura Z., Zoppellaro G., Šrejber M., Malina T., Šedajová V., Paloncýová M., Langer R., Zdražil L., Zeng J., Li L., Zhao E., Chen Z., Xiong Z., Li R., Panáček A., Večeřová R., Kučová P., Kolář M., Otyepka M., Bakandritsos A., Zbořil R.. Single Atom Engineered Antibiotics Overcome Bacterial Resistance. Adv. Mater. 2024;36(50):2410652. doi: 10.1002/adma.202410652. PubMed DOI PMC
Butera V.. Density Functional Theory Methods Applied to Homogeneous and Heterogeneous Catalysis: A Short Review and a Practical User Guide. Phys. Chem. Chem. Phys. 2024;26(10):7950–7970. doi: 10.1039/D4CP00266K. PubMed DOI
Tosoni S., Di Liberto G., Matanovic I., Pacchioni G.. Modelling Single Atom Catalysts for Water Splitting and Fuel Cells: A Tutorial Review. J. Power Sources. 2023;556:232492. doi: 10.1016/j.jpowsour.2022.232492. DOI
Bu S., Yao N., Hunter M. A., Searles D. J., Yuan Q.. Design of Two-Dimensional Carbon-Nitride Structures by Tuning the Nitrogen Concentration. NPJ Comput. Mater. 2020;6(1):128. doi: 10.1038/s41524-020-00393-5. DOI
He C., Wu Z.-Y., Zhao L., Ming M., Zhang Y., Yi Y., Hu J.-S.. Identification of FeN4 as an Efficient Active Site for Electrochemical N2 Reduction. ACS Catal. 2019;9(8):7311–7317. doi: 10.1021/acscatal.9b00959. DOI
Hohenberg P., Kohn W.. Inhomogeneous Electron Gas. Phys. Rev. 1964;136(3B):B864–B871. doi: 10.1103/PhysRev.136.B864. DOI
Kresse G., Furthmüller J.. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0. DOI
Allen, M. P. ; Tildesley, D. J. . Computer Simulation of Liquids; Oxford Science Publications, Clarendon Press: Oxford, U.K., 2009.
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Kresse G., Hafner J.. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B. 1993;47(1):558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Paier J., Marsman M., Hummer K., Kresse G., Gerber I. C., Ángyán J. G.. Screened Hybrid Density Functionals Applied to Solids. J. Chem. Phys. 2006;124(15):154709. doi: 10.1063/1.2187006. PubMed DOI
Grimme S., Ehrlich S., Goerigk L.. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011;32(7):1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Banhart F., Kotakoski J., Krasheninnikov A. V.. Structural Defects in Graphene. ACS Nano. 2011;5(1):26–41. doi: 10.1021/nn102598m. PubMed DOI
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. ; Li, X. ; Caricato, M. ; Marenich, A. V. ; Bloino, J. ; Janesko, B. G. ; Gomperts, R. ; Mennucci, B. ; Hratchian, H. P. ; Ortiz, J. V. ; Izmaylov, A. F. ; Sonnenberg, J. L. ; Williams-Young, D. ; Ding, F. ; Lipparini, F. ; Egidi, F. ; Goings, J. ; Peng, B. ; Petrone, A. ; Henderson, T. ; Ranasinghe, D. ; Zakrzewski, V. G. ; Gao, J. ; Rega, N. ; Zheng, G. ; Liang, W. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Throssell, K. ; Montgomery, J. A., Jr. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. J. ; Heyd, J. J. ; Brothers, E. N. ; Kudin, K. N. ; Staroverov, V. N. ; Keith, T. A. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. P. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Millam, J. M. ; Klene, M. ; Adamo, C. ; Cammi, R. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Farkas, O. ; Foresman, J. B. ; Fox, D. J. . Gaussian 16, revision A.03; Gaussian, Inc.: Wallingford, CT, 2016.
Chai J.-D., Head-Gordon M.. Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008;10(44):6615–6620. doi: 10.1039/b810189b. PubMed DOI
Weigend F., Ahlrichs R.. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. Phys. Chem. Chem. Phys. 2005;7(18):3297. doi: 10.1039/b508541a. PubMed DOI
Becke A. D.. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98(7):5648–5652. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R. G.. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988;37(2):785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98(45):11623–11627. doi: 10.1021/j100096a001. DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI
Wadt W. R., Hay P. J.. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi. J. Chem. Phys. 1985;82(1):284–298. doi: 10.1063/1.448800. DOI
Hay P. J., Wadt W. R.. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985;82(1):270–283. doi: 10.1063/1.448799. DOI
Woon D. E., Dunning T. H.. Gaussian Basis Sets for Use in Correlated Molecular Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993;98(2):1358–1371. doi: 10.1063/1.464303. DOI
Marenich A. V., Cramer C. J., Truhlar D. G.. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113(18):6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J. R., Bligaard T., Jónsson H.. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B. 2004;108(46):17886–17892. doi: 10.1021/jp047349j. PubMed DOI
Zhao X., Levell Z. H., Yu S., Liu Y.. Atomistic Understanding of Two-Dimensional Electrocatalysts from First Principles. Chem. Rev. 2022;122(12):10675–10709. doi: 10.1021/acs.chemrev.1c00981. PubMed DOI
Brimley P., Almajed H., Alsunni Y., Alherz A. W., Bare Z. J. L., Smith W. A., Musgrave C. B.. Electrochemical CO2 Reduction over Metal-/Nitrogen-Doped Graphene Single-Atom Catalysts Modeled Using the Grand-Canonical Density Functional Theory. ACS Catal. 2022;12(16):10161–10171. doi: 10.1021/acscatal.2c01832. DOI
Reed A. E., Weinstock R. B., Weinhold F.. Natural Population Analysis. J. Chem. Phys. 1985;83(2):735–746. doi: 10.1063/1.449486. DOI
Girit Ç. Ö., Meyer J. C., Erni R., Rossell M. D., Kisielowski C., Yang L., Park C.-H., Crommie M. F., Cohen M. L., Louie S. G., Zettl A.. Graphene at the Edge: Stability and Dynamics. Science. 2009;323(5922):1705–1708. doi: 10.1126/science.1166999. PubMed DOI
Robertson A. W., Lee G.-D., He K., Gong C., Chen Q., Yoon E., Kirkland A. I., Warner J. H.. Atomic Structure of Graphene Subnanometer Pores. ACS Nano. 2015;9(12):11599–11607. doi: 10.1021/acsnano.5b05700. PubMed DOI
Ugeda M. M., Brihuega I., Guinea F., Gómez-Rodríguez J. M.. Missing Atom as a Source of Carbon Magnetism. Phys. Rev. Lett. 2010;104(9):096804. doi: 10.1103/PhysRevLett.104.096804. PubMed DOI
Kotakoski J., Krasheninnikov A. V., Kaiser U., Meyer J. C.. From Point Defects in Graphene to Two-Dimensional Amorphous Carbon. Phys. Rev. Lett. 2011;106(10):105505. doi: 10.1103/PhysRevLett.106.105505. PubMed DOI
Tian W., Li W., Yu W., Liu X.. A Review on Lattice Defects in Graphene: Types, Generation, Effects and Regulation. Micromachines. 2017;8(5):163. doi: 10.3390/mi8050163. DOI
Kotakoski J., Krasheninnikov A. V., Nordlund K.. Energetics, Structure, and Long-Range Interaction of Vacancy-Type Defects in Carbon Nanotubes: Atomistic Simulations. Phys. Rev. B. 2006;74(24):245420. doi: 10.1103/PhysRevB.74.245420. DOI
Luo G., Liu L., Zhang J., Li G., Wang B., Zhao J.. Hole Defects and Nitrogen Doping in Graphene: Implication for Supercapacitor Applications. ACS Appl. Mater. Interfaces. 2013;5(21):11184–11193. doi: 10.1021/am403427h. PubMed DOI
Wang B., Tsetseris L., Pantelides S. T.. Introduction of Nitrogen with Controllable Configuration into Graphene via Vacancies and Edges. J. Mater. Chem. A. 2013;1(47):14927. doi: 10.1039/c3ta13610h. DOI
Wang B., Pantelides S. T.. Controllable Healing of Defects and Nitrogen Doping of Graphene by CO and NO Molecules. Phys. Rev. B. 2011;83(24):245403. doi: 10.1103/PhysRevB.83.245403. DOI
Zaoralová D., Hrubý V., Šedajová V., Mach R., Kupka V., Ugolotti J., Bakandritsos A., Medved’ M., Otyepka M.. Tunable Synthesis of Nitrogen Doped Graphene from Fluorographene under Mild Conditions. ACS Sustainable Chem. Eng. 2020;8(12):4764–4772. doi: 10.1021/acssuschemeng.9b07161. DOI
Krasheninnikov A. V., Nordlund K.. Ion and Electron Irradiation-Induced Effects in Nanostructured Materials. J. Appl. Phys. 2010;107(7):071301. doi: 10.1063/1.3318261. DOI
Liu Q., Wang Y., Hu Z., Zhang Z.. Iron-Based Single-Atom Electrocatalysts: Synthetic Strategies and Applications. RSC Adv. 2021;11(5):3079–3095. doi: 10.1039/D0RA08223F. PubMed DOI PMC
Sorcar S., Yoriya S., Lee H., Grimes C. A., Feng S. P.. A Review of Recent Progress in Gas Phase CO2 Reduction and Suggestions on Future Advancement. Mater. Today Chem. 2020;16:100264. doi: 10.1016/j.mtchem.2020.100264. DOI
Kattel S., Atanassov P., Kiefer B.. A Density Functional Theory Study of Oxygen Reduction Reaction on Non-PGM Fe-Nx-C Electrocatalysts. Phys. Chem. Chem. Phys. 2014;16(27):13800. doi: 10.1039/c4cp01634c. PubMed DOI
Kropp T., Mavrikakis M.. Transition Metal Atoms Embedded in Graphene: How Nitrogen Doping Increases CO Oxidation Activity. ACS Catal. 2019;9(8):6864–6868. doi: 10.1021/acscatal.9b01944. DOI
Nosheen U., Jalil A., Ilyas S. Z., Ahmed S., Illahi A., Rafiq M. A.. Ab-Initio Characterization of Iron-Embedded Nitrogen-Doped Graphene as a Toxic Gas Sensor. J. Comput. Electron. 2022;22:116–127. doi: 10.1007/s10825-022-01977-8. DOI
Impeng S., Junkaew A., Maitarad P., Kungwan N., Zhang D., Shi L., Namuangruk S.. A MnN4 Moiety Embedded Graphene as a Magnetic Gas Sensor for CO Detection: A First Principle Study. Appl. Surf. Sci. 2019;473:820–827. doi: 10.1016/j.apsusc.2018.12.209. DOI
Owen C. J., Marcella N., O’Connor C. R., Kim T.-S., Shimogawa R., Xie C. Y., Nuzzo R. G., Frenkel A. I., Reece C., Kozinsky B.. Surface Roughening in Nanoparticle Catalysts. arXiv. 2024:2407.13643. doi: 10.48550/arXiv.2407.13643. DOI
Owen C. J., Russotto L., O’Connor C. R., Marcella N., Johansson A., Musaelian A., Kozinsky B.. Atomistic Evolution of Active Sites in Multi-Component Heterogeneous Catalysts. arXiv. 2024:2407.13607. doi: 10.48550/arXiv.2407.13607. DOI
Liu L., Chen T., Chen Z.. Understanding the Dynamic Aggregation in Single-Atom Catalysis. Adv. Sci. 2024;11(13):2308046. doi: 10.1002/advs.202308046. PubMed DOI PMC
Liang W., Chen J., Liu Y., Chen S.. Density-Functional-Theory Calculation Analysis of Active Sites for Four-Electron Reduction of O2 on Fe/N-Doped Graphene. ACS Catal. 2014;4(11):4170–4177. doi: 10.1021/cs501170a. DOI
Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X.. A Single Iron Site Confined in a Graphene Matrix for the Catalytic Oxidation of Benzene at Room Temperature. Sci. Adv. 2015;1(11):e1500462. doi: 10.1126/sciadv.1500462. PubMed DOI PMC
Ren D., Fong J., Yeo B. S.. The Effects of Currents and Potentials on the Selectivities of Copper toward Carbon Dioxide Electroreduction. Nat. Commun. 2018;9(1):925. doi: 10.1038/s41467-018-03286-w. PubMed DOI PMC
Anand R., Zafari M., Gupta V., Lee G., Kim K. S.. Unlocking the Catalytic Potential of iMXenes: Selective Electrochemical CO2 Reduction for Methane Production. J. Mater. Chem. A. 2025;13(7):5045–5055. doi: 10.1039/D4TA06307D. DOI
Umer M., Umer S., Anand R., Mun J., Zafari M., Lee G., Kim K. S.. Transition Metal Single Atom Embedded GaN Monolayer Surface for Efficient and Selective CO2 Electroreduction. J. Mater. Chem. A. 2022;10(45):24280–24289. doi: 10.1039/D2TA06991A. DOI