Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
38967551
PubMed Central
PMC11565580
DOI
10.1021/acs.chemrev.4c00155
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Zobrazit více v PubMed
Rosa E. A.; Machlis G. E.; Keating K. M. Energy and Society. Annu. Rev. Sociol. 1988, 14, 149–172. 10.1146/annurev.so.14.080188.001053. DOI
U.S. Energy Information Administration: International Energy Outlook 2021 with Projections to 2050. https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf (Accessed: 2022-07-22).
International Energy Agency: Global EV Outlook 2022. Securing Supplies for an Electric Future. https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf (Accessed: 2022-07-22).
Li Y.; Sun Y.; Qin Y.; Zhang W.; Wang L.; Luo M.; Yang H.; Guo S. Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials. Adv. Energy Mater. 2020, 10, 1903120.10.1002/aenm.201903120. DOI
Liu D.; Li X.; Chen S.; Yan H.; Wang Ch.; Wu Ch.; Haleem Y. A.; Duan S.; Lu J.; Ge B.; Ajayan P. M.; Luo Y.; Jiang J.; Song L. Atomically Dispersed Platinum Supported on Curved Carbon Supports for Efficient Electrocatalytic Hydrogen Evolution. Nat. Energy 2019, 4, 512–518. 10.1038/s41560-019-0402-6. DOI
Gasteiger H. A.; Kocha S. S.; Sompalli B.; Wagner F. T. Activity Benchmarks and Requirements for Pt, Pt-Alloy, and non-Pt Oxygen Reduction Catalysts for PEMFCs. Appl. Catal. B. Environ. 2005, 56, 9–35. 10.1016/j.apcatb.2004.06.021. DOI
Cui X.; Li W.; Ryabchuk P.; Junge K.; Beller M. Bridging Homogeneous and Heterogeneous Catalysis by Heterogeneous Single-Metal-Site Catalysts. Nat. Catal. 2018, 1, 385–397. 10.1038/s41929-018-0090-9. DOI
Li J.; Huang H.; Xue W.; Sun K.; Song X.; Wu Ch.; Nie L.; Li Y.; Liu Ch.; Pan Y.; Jiang H.-L.; Mei D.; Zhong Ch. Self-Adaptive Dual-Metal-Site Pairs in Metal-Organic Frameworks for Selective CO2 Photoreduction to CH4. Nat. Catal. 2021, 4, 719–729. 10.1038/s41929-021-00665-3. DOI
Greiner M. T.; Jones T. E.; Beeg S.; Zwiener L.; Scherzer M.; Girgsdies F.; Piccinin S.; Armbrüster M.; Knop-Gericke A.; Schlögl R. Free-Atom-Like d States in Single-Atom Alloy Catalysts. Nat. Chem. 2018, 10, 1008–1015. 10.1038/s41557-018-0125-5. PubMed DOI
Shan J.; Ye Ch.; Jiang Y.; Jaroniec M.; Zheng Y.; Qiao S.-Z. Metal-Metal Interactions in Correlated Single-Atom Catalysts. Sci. Adv. 2022, 8, eabo076210.1126/sciadv.abo0762. PubMed DOI PMC
Manna K.; Ji P.; Lin Z.; Greene F. X.; Urban A.; Thacker N. C.; Lin W. Chemoselective Single-Site Earth-Abundant Metal Catalysts at Metal-Organic Frameworks Nodes. Nat. Commun. 2016, 7, 12610.10.1038/ncomms12610. PubMed DOI PMC
Zhang Y.; Zhao J.; Wang H.; Xiao B.; Zhang W.; Zhao X.; Lv T.; Thangamuthu M.; Zhang J.; Guo Y.; Ma J.; Tang J.; Huang R.; Liu Q. Single-Atom Cu Anchored Catalysts for Photocatalytic Renewable H2 Production with a Quantum Efficiency of 56%. Nat. Commun. 2022, 13, 58.10.1038/s41467-021-27698-3. PubMed DOI PMC
Bakandritsos A.; Kadam R. G.; Kumar P.; Zoppellaro G.; Medved′ M.; Tucek J.; Montini T.; Tomanec O.; Andryskova P.; Drahos B.; Varma R. S.; Otyepka M.; Gawande M. B.; Fornasiero P.; Zboril R. Single-Atom Catalysis: Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019, 31, 1900323.10.1002/adma.201970125. PubMed DOI
Ma L.; Zhu G.; Wang D.; Chen H.; Lv Y.; Zhang Y.; He X.; Pang H. Emerging Metal Single Atoms in Electrocatalysts and Batteries. Adv. Funct. Mater. 2020, 30, 2003870.10.1002/adfm.202003870. DOI
Ding S.; Hülsey M. J.; Pérez-Ramírez J.; Yan N. Transforming Energy with Single-Atom Catalysts. Joule 2019, 3, 2897–2929. 10.1016/j.joule.2019.09.015. DOI
Li W.; Guo Z.; Yang J.; Li Y.; Sun X.; He H.; Li S.; Zhang J. Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochem. Energy Rev. 2022, 5, 9.10.1007/s41918-022-00169-z. DOI
Ma R.; Wang J.; Tang Y.; Wang J. Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction. J. Phys. Chem. Lett. 2022, 13, 168–174. 10.1021/acs.jpclett.1c03753. PubMed DOI
Wang Y.; Wang D.; Li Y. Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Adv. Mater. 2021, 33, 2008151.10.1002/adma.202008151. PubMed DOI
Bai T.; Li D.; Xiao S.; Ji F.; Zhang S.; Wang Ch.; Lu J.; Gao Q.; Ci L. Recent Progress on Single-Atom Catalysts for Lithium-Air Battery Applications. Energy Environ. Sci. 2023, 16, 1431–1465. 10.1039/D2EE02949A. DOI
Wang Y.; Cui X.; Zhang J.; Qiao J.; Huang H.; Shi J.; Wang G. Advances of Atomically Dispersed Catalysts from Single-Atom to Clusters in Energy Storage and Conversion Applications. Prog. Mater. Sci. 2022, 128, 100964.10.1016/j.pmatsci.2022.100964. DOI
Liu H.; Rong H.; Zhang J. Synergetic Dual-Atom Catalysts: The Next Boom of Atomic Catalysts. ChemSusChem 2022, 15, e20220049810.1002/cssc.202200498. PubMed DOI
Najam T.; Shah S. S. A.; Ibraheem S.; Cai X.; Hussain E.; Suleman S.; Javed M. S.; Tsiakaras P. Single-Atom Catalysis for Zinc-Air/O2 Batteries, Water Electrolyzers and Fuel Cells Applications. Energy Stor. Mater. 2022, 45, 504–540. 10.1016/j.ensm.2021.11.050. DOI
Han Y.; Zhou C.; Wang B.; Li Y.; Zhang L.; Zhang W.; Huang Y.; Zhang R. Rational Design of Advanced Oxygen Electrocatalysts for High-Performance Zinc-Air Batteries. Chem. Catal. 2022, 2, 3357–3394. 10.1016/j.checat.2022.10.002. DOI
Zhou T.; Liang J.; Ye S.; Zhang Q.; Liu J. Fundamental, Application and Opportunities of Single Atom Catalysts for Li-S Batteries. Energy Stor. Mater. 2023, 55, 322–355. 10.1016/j.ensm.2022.12.002. DOI
Huang X. L.; Wang Y.-X.; Chou S.-L.; Dou S. X.; Wang Z. M. Materials Engineering for Adsorption and Catalysis in Room-Temperature Na-S Batteries. Energy Environ. Sci. 2021, 14, 3757–3795. 10.1039/D1EE01349A. DOI
Wang P.; Zhao D.; Yin L. Two-Dimensional Matrices Confining Metal Single Atoms with Enhanced Electrochemical Reaction Kinetics for Energy Storage Applications. Energy Environ. Sci. 2021, 14, 1794–1834. 10.1039/D0EE02651D. DOI
Chen Y.; Ji S.; Chen Ch.; Peng Q.; Wang D.; Li Y. Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule 2018, 2, 1242–1264. 10.1016/j.joule.2018.06.019. DOI
Nguyen T. N.; Salehi M.; Van Le Q.; Seifitokaldani A.; Dinh C. T. Fundamentals of Electrochemical CO2 Reduction on Single-Metal-Atom Catalysts. ACS Catal. 2020, 10, 10068–10095. 10.1021/acscatal.0c02643. DOI
Li X.; Liu L.; Ren X.; Gao J.; Huang Y.; Liu B. Microenvironment Modulation of Single-Atom Catalysts and Their Roles in Electrochemical Energy Conversion. Sci. Adv. 2020, 6, eabb683310.1126/sciadv.abb6833. PubMed DOI PMC
Wang S.; Wang L.; Wang D.; Li Y. Recent Advances of Single-Atom Catalysts in CO2 Conversion. Energy Environ. Sci. 2023, 16, 2759–2803. 10.1039/D3EE00037K. DOI
Tian Y.; Zeng G.; Rutt A.; Shi T.; Kim H.; Wang J.; Koettgen J.; Sun Y.; Ouyang B.; Chen T.; Lun Z.; Rong Z.; Persson K.; Ceder G. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. 10.1021/acs.chemrev.0c00767. PubMed DOI
Hu X.; Wang G.; Li J.; Huang J.; Liu Y.; Zhong G.; Yuan J.; Zhan H.; Wen Z. Significant Contribution of Single Atomic Mn Implanted in Carbon Nanosheets to High-Performance Sodium-ion Hybrid Capacitors. Energy Environ. Sci. 2021, 14, 4564–4573. 10.1039/D1EE00370D. DOI
Wang Y.; Chu F.; Zeng J.; Wang Q.; Naren T.; Li Y.; Cheng Y.; Lei Y.; Wu F. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano 2021, 15, 210–239. 10.1021/acsnano.0c08652. PubMed DOI
Zhang Q.; Guan J. Single-Atom Catalysts for Electrocatalytic Applications. Adv. Funct. Mater. 2020, 30, 2000768.10.1002/adfm.202000768. DOI
Wang A.; Li J.; Zhang T. Heterogeneous Single-Atom Catalysis. Nat. Rev. Chem. 2018, 2, 65–81. 10.1038/s41570-018-0010-1. DOI
Lai W.-H.; Wang H.; Zheng L.; Jiang Q.; Yan Z.-Ch.; Wang L.; Yoshikawa H.; Matsumura D.; Sun Q.; Wang Y.-X.; Gu Q.; Wang J.-Z.; Liu H.-K.; Chou S.-L.; Dou S.-X. General Synthesis of Single-Atom Catalysts for Hydrogen Evolution Reactions and Room-Temperature Na-S Batteries. Angew. Chem., Int. Ed. 2020, 59, 22171–22178. 10.1002/anie.202009400. PubMed DOI
Gawande M. B.; Fornasiero P.; Zbořil R. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal. 2020, 10, 2231–2259. 10.1021/acscatal.9b04217. DOI
Haynes W. M.; Lide D. R.; Bruno T. J.. Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2016; pp 14–17.
Idoine N. E.; Raycraft E. R.; Shaw R. A.; Hobbs S. F.; Deady E. A.; Everett P.; Evans E. J.; Mills A. J.. World Mineral Production 2016–20; British Geological Survey: Keyworth, Nottingham, https://nora.nerc.ac.uk/id/eprint/534464/1/WMP_2016_2020.pdf (Accessed: 2023-12-28).
Li X.; Xu W.; Fang Y.; Hu R.; Yu J.; Liu H.; Zhou W. Single-Atom Catalyst Application in Distributed Renewable Energy Conversion and Storage. SusMat 2023, 3, 160–179. 10.1002/sus2.114. DOI
Gu H.; Yue W.; Hu J.; Niu X.; Tang H.; Qin F.; Li Y.; Yan Q.; Liu X.; Xu W.; Sun Z.; Liu Q.; Yan W.; Zheng L.; Wang Y.; Wang H.; Li X.; Zhang L.; Xia G.; Chen W. Asymetrically Coordinated Cu-N1C2 Separator Coating for Lithium-Sulfur Batteries. Adv. Energy Mater. 2023, 13, 2204014.10.1002/aenm.202204014. DOI
Yang X. Y.; Fan H. Q.; Hu F. L.; Chen S. M.; Yan K.; Ma L. T. Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts. Nano-Micro Letters 2023, 15, 126.10.1007/s40820-023-01093-7. PubMed DOI PMC
Armand M.; Tarascon J.-M. Building Better Batteries. Nature 2008, 451, 652–657. 10.1038/451652a. PubMed DOI
Choi N.-S.; Chen Z.; Freunberger S. A.; Ji X.; Sun Y.-K.; Amine K.; Yushin G.; Nazar L. F.; Cho J.; Bruce P. G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–1002. 10.1002/anie.201201429. PubMed DOI
Geng P.; Zheng S.; Tang H.; Zhu R.; Zhang L.; Cao S.; Xue H.; Pang H. Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. Adv. Energy Mater. 2018, 8, 1703259.10.1002/aenm.201703259. DOI
Masias A.; Marcicki J.; Paxton W. A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. 10.1021/acsenergylett.0c02584. DOI
Li T.; Yu D.; Liu J.; Wang F. Atomic Pt Promoted N-Doped Carbon as Novel Negative Electrode for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 37559–37566. 10.1021/acsami.9b10533. PubMed DOI
Li Q.; Yuan M.; Ji Y.; Chen X.; Wang Y.; Gao X.; Li H.; He H.; Chen H.; Tan Q.; Xu G.; Zhong Z.; Su F. Atomically Dispersed Sn Incorporated into Carbon Matrix for Stable Electrochemical Lithium Storage. Chem. Eng. J. 2022, 437, 135340.10.1016/j.cej.2022.135340. DOI
Duffner F.; Kronemeyer N.; Tübke J.; Leker J.; Winter M.; Schmuch R. Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure. Nat. Energy 2021, 6, 123–134. 10.1038/s41560-020-00748-8. DOI
El Kharbachi A.; Zavorotynska O.; Latroche M.; Cuevas F.; Yartys V.; Fichtner M. Exploits, Advances and Challenges Benefiting beyond Li-Ion Battery Technologies. J. Alloys Compd. 2020, 817, 153261.10.1016/j.jallcom.2019.153261. DOI
Ponrouch A.; Bitenc J.; Dominko R.; Lindahl N.; Johansson P.; Palacin M. R. Multivalent Rechargeable Batteries. Energy Storage Mater. 2019, 20, 253–262. 10.1016/j.ensm.2019.04.012. DOI
Fu J.; Liang R.; Liu G.; Yu A.; Bai Z.; Yang L.; Chen Z. Recent Progress in Electrically Rechargeable Zinc-Air Batteries. Adv. Mater. 2019, 31, 1805230.10.1002/adma.201805230. PubMed DOI
Seh Z. W.; Sun Y.; Zhang Q.; Cui Y. Designing High-Energy Lithium-Sulfur Batteries. Chem. Soc. Rev. 2016, 45, 5605–5634. 10.1039/C5CS00410A. PubMed DOI
Kwak W.-J.; Rosy; Sharon D.; Xia C.; Kim H.; Johnson L. R.; Bruce P. G.; Nazar L. F.; Sun Y.-K.; Frimer A. A.; Noked M.; Freunberger S. A.; Aurbach D. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev. 2020, 120, 6626–6683. 10.1021/acs.chemrev.9b00609. PubMed DOI
Xie J.; Zhou Z.; Wang Y. Metal-CO2 Batteries at the Crossroad to Practical Energy Storage and CO2 Recycle. Adv. Funct. Mater. 2020, 30, 1908285.10.1002/adfm.201908285. DOI
Lin D.; Liu Y.; Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194–206. 10.1038/nnano.2017.16. PubMed DOI
Zheng J.; Kim M. S.; Tu Z.; Choudhury S.; Tang T.; Archer L. A. Regulating Electrodeposition Morphology of Lithium: Towards Commercially Relevant Secondary Li Metal Batteries. Chem. Soc. Rev. 2020, 49, 2701–2750. 10.1039/C9CS00883G. PubMed DOI
Weber R.; Genovese M.; Louli A. J.; Hames S.; Martin C.; Hill I. G.; Dahn J. R. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte. Nat. Energy 2019, 4, 683–689. 10.1038/s41560-019-0428-9. DOI
Zhang R.; Chen X.-R.; Chen X.; Cheng X.-B.; Zhang X.-Q.; Yan C.; Zhang Q. Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768. 10.1002/anie.201702099. PubMed DOI
Sun Y.; Zhou J.; Ji H.; Liu J.; Qian T.; Yan C. Single-Atom Iron as Lithiophilic Site to Minimize Lithium Nucleation Overpotential for Stable Lithium Metal Full Battery. ACS Appl. Mater. Interfaces 2019, 11, 32008–32014. 10.1021/acsami.9b10551. PubMed DOI
Liu H.; Chen X.; Cheng X.-B.; Li B.-Q.; Zhang R.; Wang B.; Chen X.; Zhang Q. Uniform Lithium Nucleation Guided by Atomically Dispersed Lithiophilic CoNx Sites for Safe Lithium Metal Batteries. Small Methods 2019, 3, 1800354.10.1002/smtd.201800354. DOI
Aalund R.; Diao W.; Kong L.; Pecht M. Understanding the Non-Collision Related Battery Safety Risks in Electric Vehicles a Case Study in Electric Vehicle Recalls and the LG Chem Battery. IEEE Access 2021, 9, 89527–89532. 10.1109/ACCESS.2021.3090304. DOI
Sun P.; Bisschop R.; Niu H.; Huang X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. 10.1007/s10694-019-00944-3. DOI
Mallick S.; Gayen D. Thermal Behaviour and Thermal Runaway Propagation in Lithium-Ion Battery Systems-A Critical Review. J. Energy Storage 2023, 62, 106894.10.1016/j.est.2023.106894. DOI
Diaz L. B.; He X.; Hu Z.; Restuccia F.; Marinescu M.; Barreras J. V.; Patel Y.; Offer G.; Rein G. Meta-Review of Fire Safety of Lithium-Ion Batteries: Industry Challenges and Research Contributions. J. Electrochem. Soc. 2020, 167, 090559.10.1149/1945-7111/aba8b9. DOI
Gas vs. Electric Car Fires [2024 Findings]. AutoinsuranceEZ, https://www.autoinsuranceez.com/gas-vs-electric-car-fires/ (Accessed: 2023-05-16).
Qin G.; Jia Z.; Li A.; Sun S.; Liu Z.; Zhuang C.-l.; Chen J. Nitrogen-Rich Carbon/SiO2 Nanotubes Composites Prepared by Self-Assembly as High-Performance Anode Lithium-Ion Battery. Int. J. Hydrogen Energy 2024, 49, 39–50. 10.1016/j.ijhydene.2023.09.201. DOI
Mayyas A.; Steward D.; Mann M. The Case for Recycling: Overview and Challenges in the Material Supply Chain for Automotive Li-Ion Batteries. Sustain. Mater. Technol. 2019, 19, e0008710.1016/j.susmat.2018.e00087. DOI
Shu X.; Yang M.; Tan D.; Hui K. S.; Hui K. N.; Zhang J. Recent Advances in the Field of Carbon-based Cathode Electrocatalysts for Zn-air Batteries. Mater. Adv. 2021, 2, 96–114. 10.1039/D0MA00745E. DOI
Ortiz-Medina J.; Wang Z.; Cruz-Silva R.; Morelos-Gomez A.; Wang F.; Yao X.; Terrones M.; Endo M. Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis. Adv. Mater. 2019, 31, 1805717.10.1002/adma.201805717. PubMed DOI
Liu D.; Dai L.; Lin X.; Chen J.-F.; Zhang J.; Feng X.; Müllen K.; Zhu X.; Dai S. Chemical Approaches to Carbon-Based Metal-Free Catalysts. Adv. Mater. 2019, 31, 1804863.10.1002/adma.201804863. PubMed DOI
Zhang Y.-Z.; Wang Y.; Cheng T.; Lai W.-Y.; Pang H.; Huang W. Flexible Supercapacitors Based on Paper Substrates: A New Paradigm for Low-Cost Energy Storage. Chem. Soc. Rev. 2015, 44, 5181–5199. 10.1039/C5CS00174A. PubMed DOI
Wang H.-F.; Tang C.; Zhang Q. A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn-Air Batteries. Adv. Funct. Mater. 2018, 28, 1803329.10.1002/adfm.201803329. DOI
Chen X.; Zhou Z.; Karahan H. E.; Shao Q.; Wei L.; Chen Y. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries. Small 2018, 14, 1801929.10.1002/smll.201801929. PubMed DOI
Li Y.; Lu J. Metal-Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?. ACS Energy Lett. 2017, 2, 1370–1377. 10.1021/acsenergylett.7b00119. DOI
Wang H.-F.; Xu Q. Materials Design for Rechargeable Metal-Air Batteries. Matter 2019, 1, 565–595. 10.1016/j.matt.2019.05.008. DOI
Kraytsberg A.; Ein-Eli Y. The Impact of Nano-Scaled Materials on Advanced Metal-Air Battery Systems. Nano Energy 2013, 2, 468–480. 10.1016/j.nanoen.2012.11.016. DOI
Lei X.; Liu B.; Koudakan P. A.; Pan H.; Qian Y.; Wang G. Single-Atom Catalyst Cathodes for Lithium-Oxygen Batteries: A Review. Nano Futures 2022, 6, 012002.10.1088/2399-1984/ac3ec1. DOI
Xia C.; Kwok C. Y.; Nazar L. F. A High-Energy-Density Lithium-Oxygen Battery Based on a Reversible Four-Electron Conversion to Lithium Oxide. Science 2018, 361, 777–781. 10.1126/science.aas9343. PubMed DOI
Shu C.; Wang J.; Long J.; Liu H.-K.; Dou S.-X. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions. Adv. Mater. 2019, 31, 1804587.10.1002/adma.201804587. PubMed DOI
Qiao Y.; Jiang K.; Deng H.; Zhou H. A High-Energy-Density and Long-Life Lithium-Ion Battery via Reversible Oxide-Peroxide Conversion. Nat. Catal. 2019, 2, 1035–1044. 10.1038/s41929-019-0362-z. DOI
Zhang J.; Zhao Z.; Xia Z.; Dai L. A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Nat. Nanotechnol. 2015, 10, 444–452. 10.1038/nnano.2015.48. PubMed DOI
Asadi M.; Sayahpour B.; Abbasi P.; Ngo A. T.; Karis K.; Jokisaari J. R.; Liu C.; Narayanan B.; Gerard M.; Yasaei P.; Hu X.; Mukherjee A.; Lau K. Ch.; Assary R. S.; Khalili-Araghi F.; Klie R. F.; Curtiss L. A.; Salehi-Khojin A. A Lithium-Oxygen Battery with a Long Cycle Life in an Air-Like Atmosphere. Nature 2018, 555, 502–506. 10.1038/nature25984. PubMed DOI
Mu X.; Xia Ch.; Gao B.; Guo S. Two-Dimensional Mo-Based Compounds for the Li-O2 Batteries: Catalytic Performance and Electronic Structure Studies. Energy Stor. Mater. 2021, 41, 650–655. 10.1016/j.ensm.2021.06.036. DOI
Sadighi Z.; Liu J.; Zhao L.; Ciucci F.; Kim J.-K. Metallic MoS2 Nanosheets: Multifunctional Electrocatalyst for the ORR, OER and Li-O2 Batteries. Nanoscale 2018, 10, 22549–22559. 10.1039/C8NR07106C. PubMed DOI
Li D.; Zhao L.; Xia Q.; Wang J.; Liu X.; Xu H.; Chou S. Activating MoS2 Nanoflakes via Sulfur Defect Engineering Wrapped on CNTs for Stable and Efficient Li-O2 Batteries. Adv. Funct. Mater. 2022, 32, 2108153.10.1002/adfm.202108153. DOI
Shui J.-L.; Karan N. K.; Balasubramanian M.; Li S.-Y.; Liu D.-J. Fe/N/C Composite in Li-O2 Battery: Studies of Catalytic Structure and Activity Toward Oxygen Evolution Reaction. J. Am. Chem. Soc. 2012, 134, 16654–16661. 10.1021/ja3042993. PubMed DOI
Débart A.; Paterson A. J.; Bao J.; Bruce P. J. α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angew. Chem., Int. Ed. Engl. 2008, 47, 4521–4524. 10.1002/anie.200705648. PubMed DOI
Song L.-N.; Zhang W.; Wang Y.; Ge X.; Zou L.-C.; Wang H.-F.; Wang X.-X.; Liu Q.-C.; Li F.; Xu J.-J. Tuning Lithium-Peroxide Formation and Decomposition Routes with Single-Atom Catalysts for Lithium-Oxygen Batteries. Nat. Commun. 2020, 11, 2191.10.1038/s41467-020-15712-z. PubMed DOI PMC
Wang P.; Ren Y.; Wang R.; Zhang P.; Ding M.; Li C.; Zhao D.; Qian Z.; Zhang Z.; Zhang L.; Yin L. Atomically Dispersed Cobalt Catalyst Anchored on Nitrogen-Doped Carbon Nanosheets for Lithium-Oxygen Batteries. Nat. Commun. 2020, 11, 1576.10.1038/s41467-020-15416-4. PubMed DOI PMC
Lian Z.; Lu Y.; Ma S.; Li Z.; Liu Q. Metal Atom-Doped Co3O4 Nanosheets for Li-O2 Battery Catalyst: Study on the Difference of Catalytic Activity. Chem. Eng. J. 2022, 445, 136852.10.1016/j.cej.2022.136852. DOI
Sun W.; Wang F.; Zhang B.; Zhang M.; KüPers V.; Ji X.; Theile C.; Bieker P.; Xu K.; Wang C.; Winter M. A Rechargeable Zinc-Air Battery Based on Zinc Peroxide Chemistry. Science 2021, 371, 46–51. 10.1126/science.abb9554. PubMed DOI
Yu H.; Fisher A.; Cheng D.; Cao D. Cu, N-Codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 21431–21439. 10.1021/acsami.6b04189. PubMed DOI
Zhang Y.; Geng H.; Wei W.; Ma J.; Chen L.; Li C. C. Challenges and Recent Progress in the Design of Advanced Electrode Materials for Rechargeable Mg Batteries. Energy Storage Mater. 2019, 20, 118–138. 10.1016/j.ensm.2018.11.033. DOI
Guan C.; Sumboja A.; Wu H.; Ren W.; Liu X.; Zhang H.; Liu Z.; Cheng C.; Pennycook S. J.; Wang J. Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries. Adv. Mater. 2017, 29, 1704117.10.1002/adma.201704117. PubMed DOI
Fu J.; Cano Z. P.; Park M. G.; Yu A.; Fowler M.; Chen Z. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 1604685.10.1002/adma.201604685. PubMed DOI
Mainar A. R.; Iruin E.; Colmenares L. C.; Kvasha A.; de Meatza I.; Bengoechea M.; Leonet O.; Boyano I.; Zhang Z.; Blazquez J. A. An Overview of Progress in Electrolytes for Secondary Zinc-Air Batteries and Other Storage Systems Based on Zinc. J. Energy Storage 2018, 15, 304–328. 10.1016/j.est.2017.12.004. DOI
Martinez U.; Komini Babu S.; Holby E. F.; Chung H. T.; Yin X.; Zelenay P. Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction. Adv. Mater. 2019, 31, 1806545.10.1002/adma.201806545. PubMed DOI
Zhang H.; Hwang S.; Wang M.; Feng Z.; Karakalos S.; Luo L.; Qiao Z.; Xie X.; Wang C.; Su D.; Shao Y.; Wu G. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. 10.1021/jacs.7b06514. PubMed DOI
Qu Y.; Wang L.; Li Z.; Li P.; Zhang Q.; Lin Y.; Zhou F.; Wang H.; Yang Z.; Hu Y.; Zhu M.; Zhao X.; Han X.; Wang C.; Xu Q.; Gu L.; Luo J.; Zheng L.; Wu Y. Ambient Synthesis of Single-Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Adv. Mater. 2019, 31, 1904496.10.1002/adma.201904496. PubMed DOI
Chen J.; Li H.; Fan C.; Meng Q.; Tang Y.; Qiu X.; Fu G.; Ma T. Dual Single-Atomic Ni-N4 and Fe-N4 Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. Adv. Mater. 2020, 32, 2003134.10.1002/adma.202003134. PubMed DOI
Jose V.; Hu H.; Edison E.; Manalastas W. Jr; Ren H.; Kidkhunthod P.; Sreejith S.; Jayakumar A.; Nsanzimana J. M. V.; Srinivasan M.; Choi J.; Lee J.-M. Modulation of Single Atomic Co and Fe Sites on Hollow Carbon Nanospheres as Oxygen Electrodes for Rechargeable Zn-Air Batteries. Small Methods 2021, 5, 2000751.10.1002/smtd.202000751. PubMed DOI
Han J.; Bao H.; Wang J.-Q.; Zheng L.; Sun S.; Wang Z. L.; Sun C. 3D N-Doped Ordered Mesoporous Carbon Supported Single-Atom Fe-N-C Catalysts with Superior Performance for Oxygen Reduction Reaction and Zinc-Air Battery. Appl. Catal. B: Environ. 2021, 280, 119411.10.1016/j.apcatb.2020.119411. DOI
Chen P.; Zhou T.; Xing L.; Xu K.; Tong Y.; Xie H.; Zhang L.; Yan W.; Chu W.; Wu C.; Xie Y. Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614. 10.1002/anie.201610119. PubMed DOI
Yang S.; Yu Y.; Dou M.; Zhang Z.; Dai L.; Wang F. Two-Dimensional Conjugated Aromatic Networks as High-Site-Density and Single-Atom Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2019, 58, 14724–14730. 10.1002/anie.201908023. PubMed DOI
Chen G.; Liu P.; Liao Z.; Sun F.; He Y.; Zhong H.; Zhang T.; Zschech E.; Chen M.; Wu G.; Zhang J.; Feng X. Zinc-Mediated Template Synthesis of Fe-N-C Electrocatalysts with Densely Accessible Fe-Nx Active Sites for Efficient Oxygen Reduction. Adv. Mater. 2020, 32, 1907399.10.1002/adma.201907399. PubMed DOI
Zhang X.; Han X.; Jiang Z.; Xu J.; Chen L.; Xue Y.; Nie A.; Xie Z.; Kuang Q.; Zheng L. Atomically Dispersed Hierarchically Ordered Porous Fe-N-C Electrocatalyst for High Performance Electrocatalytic Oxygen Reduction in Zn-Air Battery. Nano Energy 2020, 71, 104547.10.1016/j.nanoen.2020.104547. DOI
Yang Y.; Yang Y.; Pei Z.; Wu K.-H.; Tan C.; Wang H.; Wei L.; Mahmood A.; Yan C.; Dong J.; Zhao S.; Chen Y. Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter 2020, 3, 1442–1476. 10.1016/j.matt.2020.07.032. DOI
Pan Y.; Liu S.; Sun K.; Chen X.; Wang B.; Wu K.; Cao X.; Cheong W.-C.; Shen R.; Han A.; Chen Z.; Zheng L.; Luo J.; Lin Y.; Liu Y.; Wang D.; Peng Q.; Zhang Q.; Chen C.; Li Y. A Bimetallic Zn/Fe Polyphthalocyanine-Derived Single-Atom Fe-N4 Catalytic Site: A Superior Trifunctional Catalyst for Overall Water Splitting and Zn-Air Batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618. 10.1002/anie.201804349. PubMed DOI
Han J.; Meng X.; Lu L.; Bian J.; Li Z.; Sun C. Single-Atom Fe-Nx-C as an Efficient Electrocatalyst for Zinc-Air Batteries. Adv. Funct. Mater. 2019, 29, 1808872.10.1002/adfm.201808872. DOI
Chen Y.; Ji S.; Zhao S.; Chen W.; Dong J.; Cheong W.-C.; Shen R.; Wen X.; Zheng L.; Rykov A. I.; Cai S.; Tang H.; Zhuang Z.; Chen C.; Peng Q.; Wang D.; Li Y. Enhanced Oxygen Reduction with Single-Atomic-Site Iron Catalysts for a Zinc-Air Battery and Hydrogen-Air Fuel Cell. Nat. Commun. 2018, 9, 5422.10.1038/s41467-018-07850-2. PubMed DOI PMC
Yuan K.; Lützenkirchen-Hecht D.; Li L.; Shuai L.; Li Y.; Cao R.; Qiu M.; Zhuang X.; Leung M. K. H.; Chen Y.; Scherf U. Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412. 10.1021/jacs.9b11852. PubMed DOI
Li H.; Tang Z.; Liu Z.; Zhi C. Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. Joule 2019, 3, 613–619. 10.1016/j.joule.2019.01.013. DOI
Zhang Z.; Zhao X.; Xi S.; Zhang L.; Chen Z.; Zeng Z.; Huang M.; Yang H.; Liu B.; Pennycook S. J.; Chen P. Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn-Air Battery and Self-Driven Water Splitting. Adv. Energy Mater. 2020, 10, 2002896.10.1002/aenm.202002896. DOI
Han Y.; Duan H.; Zhou C.; Meng H.; Jiang Q.; Wang B.; Yan W.; Zhang R. Stabilizing Cobalt Single Atoms via Flexible Carbon Membranes as Bifunctional Electrocatalysts for Binder-Free Zinc-Air Batteries. Nano Lett. 2022, 22, 2497–2505. 10.1021/acs.nanolett.2c00278. PubMed DOI
Wang Q.; Feng Q.; Lei Y.; Tang S.; Xu L.; Xiong Y.; Fang G.; Wang Y.; Yang P.; Liu J.; Liu W.; Xiong X. Quasi-Solid-State Zn-air Batteries with an Atomically Dispersed Cobalt Electrocatalyst and Organohydrogel Electrolyte. Nat. Commun. 2022, 13, 3689.10.1038/s41467-022-31383-4. PubMed DOI PMC
Niu W.-J.; Sun Q.-Q.; He J.-Z.; Chen J.-L.; Gu B.; Liu M.-J.; Chung C.-C.; Wu Y.; Chueh Y.-L. Zeolitic Imidazolate Framework-Derived Copper Single Atom Anchored on Nitrogen-Doped Porous Carbon as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction toward Zn-Air Battery. Chem. Mater. 2022, 34, 4104–4114. 10.1021/acs.chemmater.2c00350. DOI
Sarkar S.; Biswas A.; Siddharthan E. E.; Thapa R.; Dey R. S. Strategic Modulation of Target-Specific Isolated Fe, Co Single-Atom Active Sites for Oxygen Electrocatalysis Impacting High Power Zn-Air Battery. ACS Nano 2022, 16, 7890–7903. 10.1021/acsnano.2c00547. PubMed DOI
Melchionna M.; Fornasiero P.; Prato M.; Bonchio M. Electrocatalytic CO2 Reduction: Role of the Cross-Talk at Nano-Carbon Interfaces. Energy Environ. Sci. 2021, 14, 5816–5833. 10.1039/D1EE00228G. DOI
Osgood H.; Devaguptapu S. V.; Xu H.; Cho J.; Wu G. Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media. Nano Today 2016, 11, 601–625. 10.1016/j.nantod.2016.09.001. DOI
Ren S.; Duan X.; Liang S.; Zhang M.; Zheng H. Bifunctional Electrocatalysts for Zn-Air Batteries: Recent Developments and Future Perspectives. J. Mater. Chem. A 2020, 8, 6144–6182. 10.1039/C9TA14231B. DOI
Sun X.; Hou Z.; He P.; Zhou H. Recent Advances in Rechargeable Li-CO2 Batteries. Energy Fuels 2021, 35, 9165–9186. 10.1021/acs.energyfuels.1c00635. DOI
Takechi K.; Shiga T.; Asaoka T. A Li-O2/CO2 Battery. Chem. Commun. 2011, 47, 3463–3465. 10.1039/c0cc05176d. PubMed DOI
Li S.; Dong Y.; Zhou J.; Liu Y.; Wang J.; Gao X.; Han Y.; Qi P.; Wang B. Carbon Dioxide in the Cage: Manganese Metal-Organic Frameworks for High Performance CO2 Electrodes in Li-CO2 Batteries. Energy Environ. Sci. 2018, 11, 1318–1325. 10.1039/C8EE00415C. DOI
Xie J.; Wang Y. Recent Development of CO2 Electrochemistry from Li-CO2 Batteries to Zn-CO2 Batteries. Acc. Chem. Res. 2019, 52, 1721–1729. 10.1021/acs.accounts.9b00179. PubMed DOI
Xu S.-M.; Ren Z.-C.; Liu X.; Liang X.; Wang K.-X.; Chen J.-S. Carbonate Decomposition: Low-Overpotential Li-CO2 Battery Based on Interlayer-Confined Monodisperse Catalyst. Energy Storage Mater. 2018, 15, 291–298. 10.1016/j.ensm.2018.05.015. DOI
Xie Z.; Zhang X.; Zhang Z.; Zhou Z. Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source. Adv. Mater. 2017, 29, 1605891.10.1002/adma.201605891. PubMed DOI
Xing Y.; Yang Y.; Li D.; Luo M.; Chen N.; Ye Y.; Qian J.; Li L.; Yang D.; Wu F.; Chen R.; Guo S. Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long-Life Rechargeable Lithium-CO2 Batteries. Adv. Mater. 2018, 30, 1803124.10.1002/adma.201803124. PubMed DOI
Qie L.; Lin Y.; Connell J. W.; Xu J.; Dai L. Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode. Angew. Chem., Int. Ed. 2017, 56, 6970–6974. 10.1002/anie.201701826. PubMed DOI
Yin W.; Grimaud A.; Azcarate I.; Yang C.; Tarascon J.-M. Electrochemical Reduction of CO2 Mediated by Quinone Derivatives: Implication for Li-CO2 Battery. J. Phys. Chem. C 2018, 122, 6546–6554. 10.1021/acs.jpcc.8b00109. DOI
Wei Y.-S.; Zhang M.; Zou R.; Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. 10.1021/acs.chemrev.9b00757. PubMed DOI
Liu Y.; Zhao S.; Wang D.; Chen B.; Zhang Z.; Sheng J.; Zhong X.; Zou X.; Jiang S. P.; Zhou G.; Cheng H.-M. Toward an Understanding of the Reversible Li-CO2 Batteries over Metal-N4 -Functionalized Graphene Electrocatalysts. ACS Nano 2022, 16, 1523–1532. 10.1021/acsnano.1c10007. PubMed DOI
Zhang B.; Jiao Y.; Chao D.; Ye C.; Wang Y.; Davey K.; Liu H.; Dou S.; Qiao S. Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for Li-CO2 Batteries. Adv. Funct. Mater. 2019, 29, 1904206.10.1002/adfm.201904206. DOI
Hu C.; Gong L.; Xiao Y.; Yuan Y.; Bedford N. M.; Xia Z.; Ma L.; Wu T.; Lin Y.; Connell J. W.; Shahbazian-Yassar R.; Lu J.; Amine K.; Dai L. High-Performance, Long-Life, Rechargeable Li-CO2 Batteries Based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms. Adv. Mater. 2020, 32, 1907436.10.1002/adma.201907436. PubMed DOI
Zhang Y.; Zhong R.-L.; Lu M.; Wang J.-H.; Jiang C.; Gao G.-K.; Dong L.-Z.; Chen Y.; Li S.-L.; Lan Y.-Q. Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO2 Batteries. ACS Cent. Sci. 2021, 7, 175–182. 10.1021/acscentsci.0c01390. PubMed DOI PMC
Rogge S. M. J.; Bavykina A.; Hajek J.; Garcia H.; Olivos-Suarez A. I.; Sepulveda-Escribano A.; Vimont A.; Clet G.; Bazin P.; Kapteijn F.; Daturi M.; Ramos-Fernandez E. V.; Llabres i Xamena F. X.; Van Speybroeck V.; Gascon J. Metal-Organic and Covalent Organic Frameworks as Single-Site Catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. 10.1039/C7CS00033B. PubMed DOI PMC
Cheng J.; Bai Y.; Lian Y.; Ma Y.; Yin Z.; Wei L.; Sun H.; Su Y.; Gu Y.; Kuang P.; Zhong J.; Peng Y.; Wang H.; Deng Z. Homogenizing Li2CO3 Nucleation and Growth through High-Density Single-Atomic Ru Loading toward Reversible Li-CO2 Reaction. ACS Appl. Mater. Interfaces 2022, 14, 18561–18569. 10.1021/acsami.2c02249. PubMed DOI
Yang S.; Qiao Y.; He P.; Liu Y.; Cheng Z.; Zhu J.; Zhou H. A Reversible Lithium-CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972–978. 10.1039/C6EE03770D. DOI
Wang T.; Sang X.; Zheng W.; Yang B.; Yao S.; Lei C.; Li Z.; He Q.; Lu J.; Lei L.; Dai L.; Hou Y. Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO2 Electroreduction and High-Performance Zn-CO2 Batteries. Adv. Mater. 2020, 32, 2002430.10.1002/adma.202002430. PubMed DOI
Zeng Z.; Gan L. Y.; Yang H. B.; Su X.; Gao J.; Liu W.; Matsumoto H.; Gong J.; Zhang J.; Cai W.; Zhang Z.; Yan Y.; Liu B.; Chen P. Orbital Coupling of Hetero-Diatomic Nickel-Iron Site for Bifunctional Electrocatalysis of CO2 Reduction and Oxygen Evolution. Nat. Commun. 2021, 12, 4088.10.1038/s41467-021-24052-5. PubMed DOI PMC
Jeoung J.-H.; Dobbek H. Carbon Dioxide Activation at the Ni, Fe-Cluster of Anaerobic Carbon Monoxide Dehydrogenase. Science 2007, 318, 1461–1464. 10.1126/science.1148481. PubMed DOI
Jiao L.; Zhu J.; Zhang Y.; Yang W.; Zhou S.; Li A.; Xie C.; Zheng X.; Zhou W.; Yu S.-H.; Jiang H.-L. Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO2 Electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424. 10.1021/jacs.1c08050. PubMed DOI
Jiao L.; Jiang H.-L. Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. Chem. 2019, 5, 786–804. 10.1016/j.chempr.2018.12.011. DOI
Fei H.; Dong J.; Feng Y.; Allen Ch. S.; Wan Ch.; Volosskiy B.; Li M.; Zhao Z.; Wang Y.; Sun H.; An P.; Chen W.; Guo Z.; Lee Ch.; Chen D.; Shakir I.; Liu M.; Hu T.; Li Y.; Kirkland A. I.; Duan X.; Huang Y. General Synthesis and Definitive Structural Identification of MN4C4 Single-Atom Catalysts with Tunable Electrocatalytic Activities. Nat. Catal. 2018, 1, 63–72. 10.1038/s41929-017-0008-y. DOI
Gelman D.; Shvartsev B.; Ein-Eli Y. Aluminum-Air Battery Based on an Ionic Liquid Electrolyte. J. Mater. Chem. A 2014, 2, 20237–20242. 10.1039/C4TA04721D. DOI
Girishkumar G.; McCloskey B.; Luntz A. C.; Swanson S.; Wilcke W. Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203. 10.1021/jz1005384. DOI
Faegh E.; Ng B.; Hayman D.; Mustain W. E. Practical Assessment of the Performance of Aluminium Battery Technologies. Nat. Energy 2021, 6, 21–29. 10.1038/s41560-020-00728-y. DOI
Egan D. R.; Ponce de León C.; Wood R. J. K.; Jones R. L.; Stokes K. R.; Walsh F. C. Developments in Electrode Materials and Electrolytes for Aluminium-Air Batteries. J. Power Sources 2013, 236, 293–310. 10.1016/j.jpowsour.2013.01.141. DOI
Ryu J.; Park M.; Cho J. Advanced Technologies for High-Energy Aluminum-Air Batteries. A comprehensive review. Adv. Mater. 2019, 31, 1804784.10.1002/adma.201804784. PubMed DOI
Chen L. D.; Nørskov J. K.; Luntz A. C. Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. J. Phys. Chem. Lett. 2015, 6, 175–179. 10.1021/jz502422v. PubMed DOI
Liu Y.; Sun Q.; Li W.; Adair K. R.; Li J.; Sun X. A Comprehensive Review on Recent Progress in Aluminum-Air Batteries. Green Energy Environ. 2017, 2, 246–277. 10.1016/j.gee.2017.06.006. DOI
Olabi A. G.; Sayed E. T.; Wilberforce T.; Jamal A.; Alami A. H.; Elsaid K.; Rahman S. M. A.; Shah S. K.; Abdelkareem M. A. Metal-Air Batteries-A Review. Energies 2021, 14, 7373.10.3390/en14217373. DOI
He T.; Zhang Y.; Chen Y.; Zhang Z.; Wang H.; Hu Y.; Liu M.; Pao C.-W.; Chen J.-L.; Chang L. Y.; Sun Z.; Xiang J.; Zhang Y.; Chen S. Single Iron Atoms Stabilized by Microporous Defects of Biomass-Derived Carbon Aerogels as High-Performance Cathode Electrocatalysts for Aluminum-Air Batteries. J. Mater. Chem. A 2019, 7, 20840–20846. 10.1039/C9TA05981D. DOI
Sanchis-Gual R.; Seijas-Da Silva A.; Coronado-Puchau M.; Otero T. F.; Abellán G.; Coronado E. Improving the Onset Potential and Tafel Slope Determination of Earth-Abundant Water Oxidation Electrocatalysts. Electrochim. Acta 2021, 388, 138613.10.1016/j.electacta.2021.138613. DOI
Zhao L.; Zhang Y.; Huang L.-B.; Liu X.-Z.; Zhang Q.-H.; He C.; Wu Z.-Y.; Zhang L.-J.; Wu J.; Yang W.; Gu L.; Hu J.-S.; Wan L.-J. Cascade Anchoring Strategy for General Mass Production of High-Loading Single-Atomic Metal-Nitrogen Catalysts. Nat. Commun. 2019, 10, 1278.10.1038/s41467-019-09290-y. PubMed DOI PMC
Chen K.; Liu K.; An P.; Li H.; Lin Y.; Hu J.; Jia C.; Fu J.; Li H.; Liu H.; Lin Z.; Li W.; Li J.; Lu Y.-R.; Chan T.-S.; Zhang N.; Liu M. Iron Phthalocyanine with Coordination Induced Electronic Localization to Boost Oxygen Reduction Reaction. Nat. Commun. 2020, 11, 4173.10.1038/s41467-020-18062-y. PubMed DOI PMC
Cao R.; Thapa R.; Kim H.; Xu X.; Gyu Kim M.; Li Q.; Park N.; Liu M.; Cho J. Promotion of Oxygen Reduction by a Bio-Inspired Tethered Iron Phthalocyanine Carbon Nanotube-Based Catalyst. Nat. Commun. 2013, 4, 2076.10.1038/ncomms3076. PubMed DOI
Wang Y.; Yu B.; Liu K.; Yang X.; Liu M.; Chan T.-S.; Qiu X.; Li J.; Li W. Co Single-Atoms on Ultrathin N-Doped Porous Carbon via a Biomass Complexation Strategy for High Performance Metal-Air Batteries. J. Mater. Chem. A 2020, 8, 2131–2139. 10.1039/C9TA12171D. DOI
Fetrow Ch. J.; Carugati C.; Zhou X.-D.; Wei S. Electrochemistry of Metal-CO2 Batteries: Opportunities and Challenges. Energy Stor. Mater. 2022, 45, 911–933. 10.1016/j.ensm.2021.12.035. DOI
Wan W.; Zhao Y.; Wei S.; Triana C. A.; Li J.; Arcifa A.; Allen Ch. S.; Cao R.; Patzke G. R. Mechanistic Insight into the Active Centers of Single/Dual-Atom Ni/Fe-based Oxygen Electrocatalysts. Nat. Commun. 2021, 12, 5589.10.1038/s41467-021-25811-0. PubMed DOI PMC
Yin Y.-X.; Xin S.; Guo Y.-G.; Wan L.-J. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200. 10.1002/anie.201304762. PubMed DOI
Betz J.; Bieker G.; Meister P.; Placke T.; Winter M.; Schmuch R. Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Adv. Energy Mater. 2019, 9, 1803170.10.1002/aenm.201803170. DOI
Manthiram A.; Fu Y.; Su Y.-S. Challenges and Prospects of Lithium-Sulfur Batteries. Acc. Chem. Res. 2013, 46, 1125–1134. 10.1021/ar300179v. PubMed DOI
Larcher D.; Tarascon J.-M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29. 10.1038/nchem.2085. PubMed DOI
Tantis I.; Bakandritsos A.; Zaoralová D.; Medved′ M.; Jakubec P.; Havláková J.; Zbořil R.; Otyepka M. Covalently Interlinked Graphene Sheets with Sulfur-Chains Enable Superior Lithium-Sulfur Battery Cathodes at Full-Mass Level. Adv. Funct. Mater. 2021, 31, 2101326.10.1002/adfm.202101326. DOI
Lim W.-G.; Kim S.; Jo C.; Lee J. A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757. 10.1002/anie.201902413. PubMed DOI
Xu R.; Lu J.; Amine K. Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Adv. Energy Mater. 2015, 5, 1500408.10.1002/aenm.201500408. DOI
Lang S.-Y.; Xiao R.-J.; Gu L.; Guo Y.-G.; Wen R.; Wan L.-J. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. J. Am. Chem. Soc. 2018, 140, 8147–8155. 10.1021/jacs.8b02057. PubMed DOI
Yang Y.; Wang Z.; Jiang T.; Dong C.; Mao Z.; Lu C.; Sun W.; Sun K. A Heterogenized Ni-Doped Zeolitic Imidazolate Framework to Guide Efficient Trapping and Catalytic Conversion of Polysulfides for Greatly Improved Lithium-Sulfur Batteries. J. Mater. Chem. A 2018, 6, 13593–13598. 10.1039/C8TA05176C. DOI
Pang Q.; Kundu D.; Cuisinier M.; Nazar L. F. Surface-Enhanced Redox Chemistry of Polysulphides on a Metallic and Polar Host for Lithium-Sulphur Batteries. Nat. Commun. 2014, 5, 4759.10.1038/ncomms5759. PubMed DOI
Huang W.; Lin Z.; Liu H.; Na R.; Tian J.; Shan Z. Enhanced Polysulfide Redox Kinetics Electro-Catalyzed by Cobalt Phthalocyanine for Advanced Lithium-Sulfur Batteries. J. Mater. Chem. A 2018, 6, 17132–17141. 10.1039/C8TA04890H. DOI
Zhang J.; Li Z.; Chen Y.; Gao S.; Lou X. W. D. Nickel-Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium-Sulfur Batteries. Angew. Chem., Int. Ed. 2018, 57, 10944–10948. 10.1002/anie.201805972. PubMed DOI
Liang X.; Hart C.; Pang Q.; Garsuch A.; Weiss T.; Nazar L. F. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries. Nat. Commun. 2015, 6, 5682.10.1038/ncomms6682. PubMed DOI
Zhuang Z.; Kang Q.; Wang D.; Li Y. Single-Atom Catalysis Enables Long-Life, High-Energy Lithium-Sulfur Batteries. Nano Res. 2020, 13, 1856–1866. 10.1007/s12274-020-2827-4. DOI
Wang P.; Xi B.; Huang M.; Chen W.; Feng J.; Xiong S. Emerging Catalysts to Promote Kinetics of Lithium-Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2002893.10.1002/aenm.202002893. DOI
Xiao R.; Chen K.; Zhang X.; Yang Z.; Hu G.; Sun Z.; Cheng H.-M.; Li F. Single-Atom Catalysts for Metal-Sulfur Batteries: Current Progress and Future Perspectives. J. Energy Chem. 2021, 54, 452–466. 10.1016/j.jechem.2020.06.018. DOI
Zhou L.; Danilov D. L.; Qiao F.; Wang J.; Li H.; Eichel R.-A.; Notten P. H. L. Sulfur Reduction Reaction in Lithium-Sulfur Batteries: Mechanisms, Catalysts, and Characterization. Adv. Energy Mater. 2022, 12, 2202094.10.1002/aenm.202270183. DOI
Zhou G.; Zhao S.; Wang T.; Yang S.-Z.; Johannessen B.; Chen H.; Liu C.; Ye Y.; Wu Y.; Peng Y.; Liu C.; Jiang S. P.; Zhang Q.; Cui Y. Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li-S Batteries. Nano Lett. 2020, 20, 1252–1261. 10.1021/acs.nanolett.9b04719. PubMed DOI
Wang C.; Song H.; Yu C.; Ullah Z.; Guan Z.; Chu R.; Zhang Y.; Zhao L.; Li Q.; Liu L. Iron Single-Atom Catalyst Anchored on Nitrogen-Rich MOF-Derived Carbon Nanocage to Accelerate Polysulfide Redox Conversion for Lithium Sulfur Batteries. J. Mater. Chem. A 2020, 8, 3421–3430. 10.1039/C9TA11680J. DOI
Wang J.; Jia L.; Zhong J.; Xiao Q.; Wang C.; Zang K.; Liu H.; Zheng H.; Luo J.; Yang J.; Fan H.; Duan W.; Wu Y.; Lin H.; Zhang Y. Single-Atom Catalyst Boosts Electrochemical Conversion Reactions in Batteries. Energy Storage Mater. 2019, 18, 246–252. 10.1016/j.ensm.2018.09.006. DOI
Yu M.; Zhou S.; Wang Z.; Wang Y.; Zhang N.; Wang S.; Zhao J.; Qiu J. Accelerating Polysulfide Redox Conversion on Bifunctional Electrocatalytic Electrode for Stable Li-S Batteries. Energy Storage Mater. 2019, 20, 98–107. 10.1016/j.ensm.2018.11.028. DOI
Liu Z.; Zhou L.; Ge Q.; Chen R.; Ni M.; Utetiwabo W.; Zhang X.; Yang W. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 19311–19317. 10.1021/acsami.8b03830. PubMed DOI
Zhang Y.; Liu J.; Wang J.; Zhao Y.; Luo D.; Yu A.; Wang X.; Chen Z. Engineering Oversaturated Fe-N5Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. Angew. Chem., Int. Ed. 2021, 60, 26622–26629. 10.1002/anie.202108882. PubMed DOI
Kim J.; Kim S.-J.; Jung E.; Mok D. H.; Paidi V. K.; Lee J.; Lee H. S.; Jeoun Y.; Ko W.; Shin H.; Lee B.-H.; Kim S.-Y.; Kim H.; Kim J. H.; Cho S.-P.; Lee K.-S.; Back S.; Yu S.-H.; Sung Y.-E.; Hyeon T. Atomic Structure Modification of Fe-N-C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithium-Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2110857.10.1002/adfm.202110857. DOI
Du Z.; Chen X.; Hu W.; Chuang C.; Xie S.; Hu A.; Yan W.; Kong X.; Wu X.; Ji H.; Wan L.-J. Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985. 10.1021/jacs.8b12973. PubMed DOI
Sun X.; Qiu Y.; Jiang B.; Chen Z.; Zhao Ch.; Zhou H.; Yang L.; Fan L.; Zhang Y.; Zhang N. Isolated Fe-Co Heteronuclear Diatomic Sites as Efficient Bifunctional Catalysts for High-Performance Lithium-Sulfur Batteries. Nat. Commun. 2023, 14, 291.10.1038/s41467-022-35736-x. PubMed DOI PMC
Wang R.; Wu R.; Yan X.; Liu D.; Guo P.; Li W.; Pan H. Implanting Single Zn Atoms Coupled with Metallic Co Nanoparticles into Porous Carbon Nanosheets Grafted with Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2200424.10.1002/adfm.202200424. DOI
Zhang D.; Wang S.; Hu R.; Gu J.; Cui Y.; Li B.; Chen W.; Liu C.; Shang J.; Yang S. Catalytic Conversion of Polysulfides on Single Atom Zinc Implanted MXene toward High-Rate Lithium-Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2002471.10.1002/adfm.202002471. DOI
Zhang L.; Liu D.; Muhammad Z.; Wan F.; Xie W.; Wang Y.; Song L.; Niu Z.; Chen J. Single Nickel Atoms on Nitrogen-Doped Graphene Enabling Enhanced Kinetics of Lithium-Sulfur Batteries. Adv. Mater. 2019, 31, 1903955.10.1002/adma.201903955. PubMed DOI
Zhang K.; Chen Z.; Ning R.; Xi S.; Tang W.; Du Y.; Liu C.; Ren Z.; Chi X.; Bai M.; Shen C.; Li X.; Wang X.; Zhao X.; Leng K.; Pennycook S. J.; Li H.; Xu H.; Loh K. P.; Xie K. Single-Atom Coated Separator for Robust Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 25147–25154. 10.1021/acsami.9b05628. PubMed DOI
Wu F.; Zhao C.; Chen S.; Lu Y.; Hou Y.; Hu Y.-S.; Maier J.; Yu Y. Multi-Electron Reaction Materials for Sodium-Based Batteries. Mater. Today 2018, 21, 960–973. 10.1016/j.mattod.2018.03.004. DOI
Wang Y.-X.; Zhang B.; Lai W.; Xu Y.; Chou S.-L.; Liu H.-K.; Dou S.-X. Sodium-Sulfur Batteries: Room-Temperature Sodium-Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry. Adv. Energy Mater. 2017, 7, 1602829.10.1002/aenm.201770140. DOI
Manthiram A.; Yu X. Ambient Temperature Sodium-Sulfur Batteries. Small 2015, 11, 2108–2114. 10.1002/smll.201403257. PubMed DOI
Jayan R.; Islam M. M. Single-Atom Catalysts for Improved Cathode Performance in Na-S Batteries: A Density Functional Theory (DFT) Study. J. Phys. Chem. C 2021, 125, 4458–4467. 10.1021/acs.jpcc.1c00467. DOI
Zhang B.-W.; Sheng T.; Liu Y.-D.; Wang Y.-X.; Zhang L.; Lai W.-H.; Wang L.; Yang J.; Gu Q.-F.; Chou S.-L.; Liu H.-K.; Dou S.-X. Atomic Cobalt as an Efficient Electrocatalyst in Sulfur Cathodes for Superior Room-Temperature Sodium-Sulfur Batteries. Nat. Commun. 2018, 9, 4082.10.1038/s41467-018-06144-x. PubMed DOI PMC
Liu H.; Lai W.-H.; Liang Y.; Liang X.; Yan Z.-C.; Yang H.-L.; Lei Y.-J.; Wei P.; Zhou S.; Gu Q.-F.; Chou S.-L.; Liu H. K.; Dou S. X.; Wang Y.-X. Sustainable S Cathodes with Synergic Electrocatalysis for Room-Temperature Na-S Batteries. J. Mater. Chem. A 2021, 9, 566–574. 10.1039/D0TA08748C. DOI
Xiao F.; Wang H.; Xu J.; Yang W.; Yang X.; Yu D. Y. W.; Rogach A. L. Generating Short-Chain Sulfur Suitable for Efficient Sodium-Sulfur Batteries via Atomic Copper Sites on a N, O-Codoped Carbon Composite. Adv. Energy Mater. 2021, 11, 2100989.10.1002/aenm.202100989. DOI
Ding J.; Zhang H.; Fan W.; Zhong C.; Hu W.; Mitlin D. Review of Emerging Potassium-Sulfur Batteries. Adv. Mater. 2020, 32, 1908007.10.1002/adma.201908007. PubMed DOI
Yi Z.; Jiang S.; Tian J.; Qian Y.; Chen S.; Wei S.; Lin N.; Qian Y. Amidation-Dominated Re-Assembly Strategy for Single-Atom Design/Nano-Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable K-Storage. Angew. Chem., Int. Ed. 2020, 59, 6459–6465. 10.1002/anie.201916370. PubMed DOI
Ye C.; Shan J.; Chao D.; Liang P.; Jiao Y.; Hao J.; Gu Q.; Davey K.; Wang H.; Qiao S.-Z. Catalytic Oxidation of K2S via Atomic Co and Pyridinic N Synergy in Potassium-Sulfur Batteries. J. Am. Chem. Soc. 2021, 143, 16902–16907. 10.1021/jacs.1c06255. PubMed DOI
Eftekhari A. The Rise of Lithium-Selenium Batteries. Sustain. Energy Fuels 2017, 1, 14–29. 10.1039/C6SE00094K. DOI
Abouimrane A.; Dambournet D.; Chapman K. W.; Chupas P. J.; Weng W.; Amine K. A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium-Sulfur as a Positive Electrode. J. Am. Chem. Soc. 2012, 134, 4505–4508. 10.1021/ja211766q. PubMed DOI
Sun K.; Zhao H.; Zhang S.; Yao J.; Xu J. Selenium/Pomelo Peel-Derived Carbon Nanocomposite as Advanced Cathode for Lithium-Selenium Batteries. Ionics 2015, 21, 2477–2484. 10.1007/s11581-015-1451-x. DOI
Li Z.; Yuan L.; Yi Z.; Liu Y.; Huang Y. Confined Selenium within Porous Carbon Nanospheres as Cathode for Advanced Li-Se Batteries. Nano Energy 2014, 9, 229–236. 10.1016/j.nanoen.2014.07.012. DOI
Tian H.; Tian H.; Wang S.; Chen S.; Zhang F.; Song L.; Liu H.; Liu J.; Wang G. High-Power Lithium-Selenium Batteries Enabled by Atomic Cobalt Electrocatalyst in Hollow Carbon Cathode. Nat. Commun. 2020, 11, 5025.10.1038/s41467-020-18820-y. PubMed DOI PMC
Fleischmann S.; Zhang Y.; Wang X.; Cummings P. T.; Wu J.; Simon P.; Gogotsi Y.; Presser V.; Augustyn V. Continuous Transition from Double-Layer to Faradaic Charge Storage in Confined Electrolytes. Nat. Energy 2022, 7, 222–228. 10.1038/s41560-022-00993-z. DOI
Fleischmann S.; Mitchell J. B.; Wang R.; Zhan C.; Jiang D.; Presser V.; Augustyn V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. 10.1021/acs.chemrev.0c00170. PubMed DOI
Simon P.; Gogotsi Y. Perspectives for Electrochemical Capacitors and Related Devices. Nat. Mater. 2020, 19, 1151–1163. 10.1038/s41563-020-0747-z. PubMed DOI
Zhang L. L.; Zhao X. S. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. 10.1039/b813846j. PubMed DOI
Jiao Y.; Pei J.; Chen D.; Yan C.; Hu Y.; Zhang Q.; Chen G. Mixed-Metallic MOF Based Electrode Materials for High Performance Hybrid Supercapacitors. J. Mater. Chem. A 2017, 5, 1094–1102. 10.1039/C6TA09805C. DOI
Wang H.; Casalongue H. S.; Liang Y.; Dai H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. 10.1021/ja102267j. PubMed DOI
Shan Q. Y.; Guo X. L.; Dong F.; Zhang Y. X. Single Atom (K/Na) Doped Graphitic Carbon Nitride@MnO2 as an Efficient Electrode Material for Supercapacitor. Mater. Lett. 2017, 202, 103–106. 10.1016/j.matlet.2017.05.061. DOI
Lu D.; Zhang X.; Chen H.; Lin J.; Liu Y.; Chang B.; Qiu F.; Han S.; Zhang F. A High Performance Solid-State Asymmetric Supercapacitor Based on Anderson-Type Polyoxometalate-Doped Graphene Aerogel. Res. Chem. Intermed. 2019, 45, 3237–3250. 10.1007/s11164-019-03789-1. DOI
Yu F.; Xiong X.; Zhou L.-Y.; Li J.-L.; Liang J.-Y.; Hu S.-Qi.; Lu W.-T.; Li B.; Zhou H.-C. Hierarchical Nickel/Phosphorus/Nitrogen/Carbon Composites Templated by One Metal-Organic Framework as Highly Efficient Supercapacitor Electrode Materials. J. Mater. Chem. A 2019, 7, 2875–2883. 10.1039/C8TA11568K. DOI
Li Z.; Wang D.; Li H.; Ma M.; Zhang Y.; Yan Z.; Agnoli S.; Zhang G.; Sun X. Single-Atom Zn for Boosting Supercapacitor Performance. Nano Res. 2022, 15, 1715–1724. 10.1007/s12274-021-3839-4. DOI
Muzaffar A.; Ahamed M. B.; Deshmukh K.; Thirumalai J. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renew. Sust. Energy Rev. 2019, 101, 123–145. 10.1016/j.rser.2018.10.026. DOI
Yuan J.; Hu X.; Liu Y.; Zhong G.; Yu B.; Wen Z. Recent Progress in Sodium/Potassium Hybrid Capacitors. Chem. Commun. 2020, 56, 13933–13949. 10.1039/D0CC05476C. PubMed DOI
Salanne M.; Rotenberg B.; Naoi K.; Kaneko K.; Taberna P.-L.; Grey C. P.; Dunn B.; Simon P. Efficient Storage Mechanisms for Building Better Supercapacitors. Nat. Energy 2016, 1, 16070.10.1038/nenergy.2016.70. DOI
Dong L.; Yang W.; Yang W.; Li Y.; Wu W.; Wang G. Multivalent Metal Ion Hybrid Capacitors: A Review with a Focus on Zinc-Ion Hybrid Capacitors. J. Mater. Chem. A 2019, 7, 13810–13832. 10.1039/C9TA02678A. DOI
Li H.; Lang J.; Lei S.; Chen J.; Wang K.; Liu L.; Zhang T.; Liu W.; Yan X. A High-Performance Sodium-Ion Hybrid Capacitor Constructed by Metal-Organic Framework-Derived Anode and Cathode Materials. Adv. Funct. Mater. 2018, 28, 1800757.10.1002/adfm.201800757. DOI
Hai X.; Xi S.; Mitchell S.; Harrath K.; Xu H.; Akl D. F.; Kong D.; Li J.; Li Z.; Sun T.; Yang H.; Cui Y.; Su Ch.; Zhao X.; Li J.; Pérez-Ramírez J.; Lu J. Scalable Two-Step Annealing Method for Preparing Ultra-High-Density Single-Atom Catalyst Libraries. Nat. Nanotechnol. 2022, 17, 174–181. 10.1038/s41565-021-01022-y. PubMed DOI
Qiao J.; Liu Y.; Hong F.; Zhang J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. Chem. Soc. Rev. 2014, 43, 631–675. 10.1039/C3CS60323G. PubMed DOI
Nitopi S.; Bertheussen E.; Scott S. B.; Liu X.; Engstfeld A. K.; Horch S.; Seger B.; Stephens I. E. L.; Chan K.; Hahn Ch.; Norskov J. K.; Jaramillo T. F.; Chorkendorff I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610–7672. 10.1021/acs.chemrev.8b00705. PubMed DOI
Long Ch.; Li X.; Guo J.; Shi Y.; Liu S.; Tang Z. Electrochemical Reduction of CO2 over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods 2019, 3, 1800369.10.1002/smtd.201800369. DOI
Huang Y.; Rehman F.; Tamtaji M.; Li X.; Huang Y.; Zhang T.; Luo Z. Mechanistic Understanding and Design of Non-Noble Metal-Based Single-Atom Catalysts Supported on Two-Dimensional Materials for CO2 Electroreduction. J. Mater. Chem. A 2022, 10, 5813–5834. 10.1039/D1TA08337F. DOI
Handoko A. D.; Wei F.; Jenndy; Yeo B. S.; Seh Z. W. Understanding Heterogeneous Electrocatalytic Carbon Dioxide Reduction Through Operando Techniques. Nat. Catal. 2018, 1, 922–934. 10.1038/s41929-018-0182-6. DOI
Gu J.; Hsu Ch.-S.; Bai L.; Chen H. M.; Hu X. Atomically dispersed Fe3+ Sites Catalyze Efficient CO2 Electroreduction to CO. Science 2019, 364, 1091–1094. 10.1126/science.aaw7515. PubMed DOI
Pan F.; Zhang H.; Liu K.; Cullen D.; More K.; Wang M.; Feng Z.; Wang G.; Wu G.; Li Y. Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catal. 2018, 8, 3116–3122. 10.1021/acscatal.8b00398. DOI
Fei H.; Dong J.; Chen D.; Hu T.; Duan X.; Shakir I.; Huang Y.; Duan X. Single Atom Electrocatalysts Supported on Graphene or Graphene-Like Carbons. Chem. Soc. Rev. 2019, 48, 5207–5241. 10.1039/C9CS00422J. PubMed DOI
Wang Y.; Wang Q.; Wu J.; Zhao X.; Xiong Y.; Luo F.; Lei Y. Asymmetric Atomic Sites Make Different: Recent Progress in Electrocatalytic CO2 Reduction. Nano Energy 2022, 103, 107815.10.1016/j.nanoen.2022.107815. DOI
Xu Y.; Li F.; Xu A.; Edwards J. P.; Hung S.-F.; Gabardo C. M.; O’Brien C. P.; Liu S.; Wang X.; Li Y.; Wicks L.; Miao R. K.; Liu Y.; Li J.; Huang J. E.; Abed J.; Wang Y.; Sargent E. H.; Sinton D. Low Coordination Number Copper Catalysts for Electrochemical CO2 Methanation in a Membrane Electrode Assembly. Nat. Commun. 2021, 12, 2932.10.1038/s41467-021-23065-4. PubMed DOI PMC
Abdinejad M.; Tang K.; Dao C.; Saedy S.; Burdyny T. Immobilization Strategies for Porphyrin-Based Molecular Catalysts for the Electroreduction of CO2. J. Mater. Chem. A 2022, 10, 7626–7636. 10.1039/D2TA00876A. PubMed DOI PMC
Inglis J. L.; MacLean B. J.; Pryce M. T.; Vos J. G. Electrocatalytic Pathways Towards Sustainable Fuel Production from Water and CO2. Coord. Chem. Rev. 2012, 256, 2571–2600. 10.1016/j.ccr.2012.05.002. DOI
Weng Z.; Jiang J.; Wu Y.; Wu Z.; Guo X.; Materna K. L.; Liu W.; Batista V. S.; Brudvig G. W.; Wang H. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. J. Am. Chem. Soc. 2016, 138, 8076–8079. 10.1021/jacs.6b04746. PubMed DOI
Wu Y.; Jiang Z.; Lu X.; Liang Y.; Wang H. Domino Electroreduction of CO2 to Methanol on a Molecular Catalyst. Nature 2019, 575, 639–642. 10.1038/s41586-019-1760-8. PubMed DOI
Shen J.; Kortlever R.; Kas R.; Birdja Y. Y.; Diaz-Morales O.; Kwon Y.; Ledezma-Yanez I.; Schouten K. J. P.; Mul G.; Koper M. T. M. Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide and Methane at an Immobilized Cobalt Protoporphyrin. Nat. Commun. 2015, 6, 8177.10.1038/ncomms9177. PubMed DOI PMC
Niu K.; Xu Y.; Wang H.; Ye R.; Xin H. L.; Lin F.; Tian C.; Lum Y.; Bustillo K. C.; Doeff M. M.; Koper M. T. M.; Ager J.; Xu R.; Zheng H. A Spongy Nickel-Organic CO2 Reduction Photocatalyst for Nearly 100% Selective CO Production. Sci. Adv. 2017, 3, e170092110.1126/sciadv.1700921. PubMed DOI PMC
Wu Y.; Jiang J.; Weng Z.; Wang M.; Broere D. L. J.; Zhong Y.; Brudvig G. W.; Feng Z.; Wang H. Electroreduction of CO2 Catalyzed by a Heterogenized Zn-Porphyrin Complex with a Redox-Innocent Metal Center. ACS Cent. Sci. 2017, 3, 847–852. 10.1021/acscentsci.7b00160. PubMed DOI PMC
Meng D.-L.; Zhang M.-D.; Si D.-H.; Mao M.-J.; Hou Y.; Huang Y.-B.; Cao R. Highly Selective Tandem Electroreduction of CO2 to Ethylene over Atomically Isolated Nickel-Nitrogen Site/Copper Nanoparticle Catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492. 10.1002/anie.202111136. PubMed DOI
Benson E. E.; Kubiak C. P.; Sathrum A. J.; Smieja J. M. Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels. Chem. Soc. Rev. 2009, 38, 89–99. 10.1039/B804323J. PubMed DOI
Li M.; Wang H.; Luo W.; Sherrell P. C.; Chen J.; Yang J. Heterogeneous Single-Atom Catalysts for Electrochemical CO2 Reduction Reaction. Adv. Mater. 2020, 32, 2001848.10.1002/adma.202001848. PubMed DOI
Gong L.; Zhang D.; Lin Ch.-Y.; Zhu Y.; Shen Y.; Zhang J.; Han X.; Zhang L.; Xia Z. Catalytic Mechanisms and Design Principles for Single-Atom Catalysts in Highly Efficient CO2 Conversion. Adv. Energy Mater. 2019, 9, 1902625.10.1002/aenm.201902625. DOI
Liu J.; Cai Y.; Song R.; Ding S.; Lyu Z.; Chang Y.-Ch.; Tian H.; Zhang X.; Du D.; Zhu W.; Zhou Y.; Lin Y. Recent Progress on Single-Atom Catalysts for CO2 Electroreduction. Mater. Today 2021, 48, 95–114. 10.1016/j.mattod.2021.02.005. DOI
Guan J. Effect of Coordination Surroundings of Isolated Metal Sites on Electrocatalytic Performances. J. Power Sources 2021, 506, 230143.10.1016/j.jpowsour.2021.230143. DOI
Wang Y.; Liu Y.; Liu W.; Wu J.; Li Q.; Feng Q.; Chen Z.; Xiong X.; Wang D.; Lei Y. Regulating the Coordination Structure of Metal Single Atoms for Efficient Electrocatalytic CO2 Reduction. Energy Environ. Sci. 2020, 13, 4609–4624. 10.1039/D0EE02833A. DOI
Yang H. B.; Hung S.-F.; Liu S.; Yuan K.; Miao S.; Zhang L.; Huang X.; Wang H.-Y.; Cai W.; Chen R.; Gao J.; Yang X.; Chen W.; Huang Y.; Chen H. M.; Li Ch. M.; Zhang T.; Liu B. Atomically Dispersed Ni(I) as the Active Site for Electrochemical CO2 Reduction. Nat. Energy 2018, 3, 140–147. 10.1038/s41560-017-0078-8. DOI
Ju W.; Bagger A.; Hao G.-P.; Varela A. S.; Sinev I.; Bon V.; Roldan Cuenya B.; Kaskel S.; Rossmeisl J.; Strasser P. Understanding Activity and Selectivity of Metal-Nitrogen-Doped Carbon Catalysts for Electrochemical Reduction of CO2. Nat. Commun. 2017, 8, 944.10.1038/s41467-017-01035-z. PubMed DOI PMC
Hossain M. D.; Huang Y.; Yu T. H.; Goddard W. A. III; Luo Z. Reaction Mechanism and Kinetics for CO2 Reduction on Nickel Single Atom Catalysts from Quantum Mechanics. Nat. Commun. 2020, 11, 2256.10.1038/s41467-020-16119-6. PubMed DOI PMC
Liu S.; Yang H. B.; Hung S.-F.; Ding J.; Cai W.; Liu L.; Gao J.; Li X.; Ren X.; Kuang Z.; Huang Y.; Zhang T.; Liu B. Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803. 10.1002/anie.201911995. PubMed DOI
Zhao X.; Liu Y. Unveiling the Active Structure of Single Nickel Atom Catalysis: Critical Roles of Charge Capacity and Hydrogen Bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777. 10.1021/jacs.9b13872. PubMed DOI
Yang H.; Shang L.; Zhang Q.; Shi R.; Waterhouse G. I. N.; Gu L.; Zhang T. A Universal Ligand Mediated Method for Large Scale Synthesis of Transition Metal Single Atom Catalysts. Nat. Commun. 2019, 10, 4585.10.1038/s41467-019-12510-0. PubMed DOI PMC
Song Z.; Zhang L.; Doyle-Davis K.; Fu X.; Luo J.-L.; Sun X. Recent Advances in MOF-Derived Single Atom Catalysts for Electrochemical Applications. Adv. Energy Mater. 2020, 10, 2001561.10.1002/aenm.202001561. DOI
Zhang H.; Li J.; Xi S.; Du Y.; Hai X.; Wang J.; Xu H.; Wu G.; Zhang J.; Lu J.; Wang J. A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction. Angew. Chem., Int. Ed. 2019, 58, 14871–14876. 10.1002/anie.201906079. PubMed DOI
Pan F.; Deng W.; Justiniano C.; Li Y. Identification of Champion Transition Metals Centers in Metal and Nitrogen-Codoped Carbon Catalysts for CO2 Reduction. Appl. Catal. B: Environ. 2018, 226, 463–472. 10.1016/j.apcatb.2018.01.001. DOI
Zheng W.; Yang J.; Chen H.; Hou Y.; Wang Q.; Gu M.; He F.; Xia Y.; Xia Z.; Li Z.; Yang B.; Lei L.; Yuan Ch.; He Q.; Qiu M.; Feng X. Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.10.1002/adfm.201907658. DOI
Li X.; Bi W.; Chen M.; Sun Y.; Ju H.; Yan W.; Zhu J.; Wu X.; Chu W.; Wu C.; Xie Y. Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892. 10.1021/jacs.7b09074. PubMed DOI
Zhang E.; Wang T.; Yu K.; Liu J.; Chen W.; Li A.; Rong H.; Lin R.; Ji S.; Zheng X.; Wang Y.; Zheng L.; Chen Ch.; Wang D.; Zhang J.; Li Y. Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573. 10.1021/jacs.9b08259. PubMed DOI
Hu X.-M.; Hval H. H.; Bjerglund E. T.; Dalgaard K. J.; Madsen M. R.; Pohl M.-M.; Welter E.; Lamagni P.; Buhl K. B.; Bremholm M.; Beller M.; Pedersen S. U.; Skrydstrup T.; Daasbjerg K. Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catal. 2018, 8, 6255–6264. 10.1021/acscatal.8b01022. DOI
Mochizuki S.; Ogiwara N.; Takayanagi M.; Nagaoka M.; Kitagawa S.; Uemura T. Sequence-Regulated Copolymerization Based on Periodic Covalent Positioning of Monomers Along One-Dimensional Nanochannels. Nat. Commun. 2018, 9, 329.10.1038/s41467-017-02736-1. PubMed DOI PMC
Huan T. N.; Ranjbar N.; Rousse G.; Sougrati M.; Zitolo A.; Mougel V.; Jaouen F.; Fontecave M. Electrochemical Reduction of CO2 Catalyzed by Fe-N-C Materials: A Structure-Selectivity Study. ACS Catal. 2017, 7, 1520–1525. 10.1021/acscatal.6b03353. DOI
Zhao C.; Dai X.; Yao T.; Chen W.; Wang X.; Wang J.; Yang J.; Wei S.; Wu Y.; Li Y. Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081. 10.1021/jacs.7b02736. PubMed DOI
Zhang Y.; Qi K.; Li J.; Karamoko B. A.; Lajaunie L.; Godiard F.; Oliviero E.; Cui X.; Wang Y.; Zhang Y.; Wu H.; Wang W.; Voiry D. 2.6% cm–-2 Single-Pass CO2-to-CO Conversion Using Ni Single Atoms Supported on Ultra-Thin Carbon Nanosheets in a Flow Electrolyzer. ACS Catal. 2021, 11, 12701–12711. 10.1021/acscatal.1c03231. DOI
Wang X.; Chen Z.; Zhao X.; Yao T.; Chen W.; You R.; Zhao C.; Wu G.; Wang J.; Huang W.; Yang J.; Hong X.; Wei S.; Wu Y.; Li Y. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948. 10.1002/anie.201712451. PubMed DOI
Varela A. S.; Ranjbar Sahraie N.; Steinberg J.; Ju W.; Oh H.-S.; Strasser P. Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons. Angew. Chem., Int. Ed. 2015, 54, 10758–10762. 10.1002/anie.201502099. PubMed DOI
Jiang K.; Siahrostami S.; Zheng T.; Hu Y.; Hwang S.; Stavitski E.; Peng Y.; Dynes J.; Gangisetty M.; Su D.; Attenkofer K.; Wang H. Isolated Ni Single Atoms in Graphene Nanosheets for High-Performance CO2 Reduction. Energy Environ. Sci. 2018, 11, 893–903. 10.1039/C7EE03245E. DOI
Yan C.; Li H.; Ye Y.; Wu H.; Cai F.; Si R.; Xiao J.; Miao S.; Xie S.; Yang F.; Li Y.; Wang G.; Bao X. Coordinatively Unsaturated Nickel-Nitrogen Sites Towards Selective and High-Rate CO2 Electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210. 10.1039/C8EE00133B. DOI
Cheng Y.; Zhao S.; Li H.; He S.; Veder J.-P.; Johannessen B.; Xiao J.; Lu S.; Pan J.; Chisholm M. F.; Yang S. Z.; Liu Ch.; Chen J. G.; Jiang S. P. Unsaturated Edge-Anchored Ni Single Atoms on Porous Microwave Exfoliated Graphene Oxide for Electrochemical CO2. Appl. Catal. B: Environ. 2019, 243, 294–303. 10.1016/j.apcatb.2018.10.046. DOI
Zheng T.; Jiang K.; Ta N.; Hu Y.; Zeng J.; Liu J.; Wang H. Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst. Joule 2019, 3, 265–278. 10.1016/j.joule.2018.10.015. DOI
Xia C.; Qiu Y.; Xia Y.; Zhu P.; King G.; Zhang X.; Wu Z.; Kim J. Y.; Cullen D. A.; Zheng D.; Li P.; Shakouri M.; Heredia E.; Cui P.; Alshareef H. N.; Hu Y.; Wang H.. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887, Figure 270.10.1038/s41557-021-00734-x PubMed DOI
Han S.-G.; Ma D.-D.; Zhou S.-H.; Zhang K.; Wei W.-B.; Du Y.; Wu X.-T.; Xu Q.; Zou R.; Zhu Q.-L. Fluorine-Tuned Single-Atom Catalysts with Dense Surface Ni-N4 Sites on Ultrathin Carbon Nanosheets for Efficient CO2 Electroreduction. Appl. Catal. B: Environ. 2021, 283, 119591.10.1016/j.apcatb.2020.119591. DOI
Cao X.; Zhao L.; Wulan B.; Tan D.; Chen Q.; Ma J.; Zhang J. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e20211391810.1002/anie.202113918. PubMed DOI
Chen Z.; Huang A.; Yu K.; Cui T.; Zhuang Z.; Liu S.; Li J.; Tu R.; Sun K.; Tan X.; Zhang J.; Liu D.; Zhang Y.; Jiang P.; Pan Y.; Chen Ch.; Peng Q.; Li Y. Fe1N4-O1 Site with Axial Fe-O Coordination for Highly Selective CO2 Reduction Over a Wide Potential Range. Energy Environ. Sci. 2021, 14, 3430–3437. 10.1039/D1EE00569C. DOI
Sun X.; Tuo Y.; Ye C.; Chen C.; Lu Q.; Li G.; Jiang P.; Chen S.; Zhu P.; Ma M.; Zhang J.; Bitter J. H.; Wang D.; Li Y. Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO2 Electroreduction Reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618. 10.1002/anie.202110433. PubMed DOI
Pan Y.; Lin R.; Chen Y.; Liu S.; Zhu W.; Cao X.; Chen W.; Wu K.; Cheong W.-Ch.; Wang Y.; Zheng L.; Luo J.; Lin Y.; Liu Y.; Liu Ch.; Li J.; Lu Q.; Chen X.; Wang D.; Peng Q.; Chen Ch.; Li Y. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability. J. Am. Chem. Soc. 2018, 140, 4218–4221. 10.1021/jacs.8b00814. PubMed DOI
Wang C.; Liu Y.; Ren H.; Guan Q.; Chou S.; Li W. Diminishing the Uncoordinated N Species in Co-N-C Catalysts toward Highly Efficient Electrochemical CO2 Reduction. ACS Catal. 2022, 12, 2513–2521. 10.1021/acscatal.1c05029. DOI
Yang H.; Lin Q.; Wu Y.; Li G.; Hu Q.; Chai X.; Ren X.; Zhang Q.; Liu J.; He C. Highly Efficient Utilization of Single Atoms via Constructing 3D and Free-Standing Electrodes for CO2 Reduction with Ultrahigh Current Density. Nano Energy 2020, 70, 104454.10.1016/j.nanoen.2020.104454. DOI
Zhang B.; Zhang J.; Shi J.; Tan D.; Liu L.; Zhang F.; Lu C.; Su Z.; Tan X.; Cheng X.; Han B.; Zheng L.; Zhang J. Manganese Acting as a High-Performance Heterogeneous Electrocatalyst in Carbon Dioxide Reduction. Nat. Commun. 2019, 10, 2980.10.1038/s41467-019-10854-1. PubMed DOI PMC
Wang S.; Zhou P.; Zhou L.; Lv F.; Sun Y.; Zhang Q.; Gu L.; Yang H.; Guo S. A Unique Gas-Migration, Trapping, and Emitting Strategy for High-Loading Single Atomic Cd Sites for Carbon Dioxide Electroreduction. Nano Lett. 2021, 21, 4262–4269. 10.1021/acs.nanolett.1c00432. PubMed DOI
Wang Q.; Liu K.; Fu J.; Cai C.; Li H.; Long Y.; Chen S.; Liu B.; Li H.; Li W.; Qiu X.; Zhang N.; Hu J.; Pan H.; Liu M. Atomically Dispersed s-Block Magnesium Sites for Electroreduction of CO2 to CO. Angew. Chem., Int. Ed. 2021, 60, 25241–25245. 10.1002/anie.202109329. PubMed DOI
Chen S.; Wang B.; Zhu J.; Wang L.; Ou H.; Zhang Z.; Liang X.; Zheng L.; Zhou L.; Su Y.-Q.; Wang D.; Li Y. Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO2 Methanation. Nano Lett. 2021, 21, 7325–7331. 10.1021/acs.nanolett.1c02502. PubMed DOI
Han L.; Song S.; Liu M.; Yao S.; Liang Z.; Cheng H.; Ren Z.; Liu W.; Lin R.; Qi G.; Liu X.; Wu Q.; Luo J.; Xin H. L. Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567. 10.1021/jacs.9b12111. PubMed DOI
Jiang Z.; Wang T.; Pei J.; Shang H.; Zhou D.; Li H.; Dong J.; Wang Y.; Cao R.; Zhuang Z.; Chen W.; Wang D.; Zhang J.; Li Y. Discovery of Main Group Single Sb-N4 Active Sites for CO2 Electroreduction to Formate with High Efficiency. Energy Environ. Sci. 2020, 13, 2856–2863. 10.1039/D0EE01486A. DOI
Zhang M.; Wei W.; Zhou S.; Ma D.-D.; Cao A.; Wu X.-T.; Zhu Q.-L. Engineering a Conductive Network of Atomically Thin Bismuthene with Rich Defects Enables CO2 Reduction to Formate with Industry-Compatible Current Densities and Stability. Energy Environ. Sci. 2021, 14, 4998–5008. 10.1039/D1EE01495A. DOI
Yang H.; Wu Y.; Li G.; Lin Q.; Hu Q.; Zhang Q.; Liu J.; He C. Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723. 10.1021/jacs.9b04907. PubMed DOI
Karapinar D.; Huan N. T.; Ranjbar Sahraie N.; Li J.; Wakerley D.; Touati N.; Zanna S.; Taverna D.; Galvão Tizei L. H.; Zitolo A.; Jaouen F.; Mougel V.; Fontecave M. Electroreduction of CO2 on Single-Site Copper-Nitrogen-Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103. 10.1002/anie.201907994. PubMed DOI
Zhao K.; Nie X.; Wang H.; Chen S.; Quan X.; Yu H.; Choi W.; Zhang G.; Kim B.; Chen J. G. Selective Electroreduction of CO2 to Acetone by Single Copper Atoms Anchored on N-Doped Porous Carbon. Nat. Commun. 2020, 11, 2455.10.1038/s41467-020-16381-8. PubMed DOI PMC
Chang Q.; Liu Y.; Lee J.-H.; Ologunagba D.; Hwang S.; Xie Z.; Kattel S.; Lee J. H.; Chen J. G. Metal-Coordinated Phthalocyanines as Platform Molecules for Understanding Isolated Metal Sites in the Electrochemical Reduction of CO2. J. Am. Chem. Soc. 2022, 144, 16131–16138. 10.1021/jacs.2c06953. PubMed DOI
Xiong Z.; Lei Z.; Li Y.; Dong L.; Zhao Y.; Zhang J. A Review on Modification of Facet-Engineered TiO2 for Photocatalytic CO2 Reduction. J. Photochem. Photobiol. C 2018, 36, 24–47. 10.1016/j.jphotochemrev.2018.07.002. DOI
Wang J.; Huang X.; Xi S.; Lee J.-M.; Wang C.; Du Y.; Wang X. Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction. Angew. Chem., Int. Ed. 2019, 58, 13532–13539. 10.1002/anie.201906475. PubMed DOI
Han J.; An P.; Liu S.; Zhang X.; Wang D.; Yuan Y.; Guo J.; Qiu X.; Hou K.; Shi L.; Zhang Y.; Zhao S.; Long Ch.; Tang Z. Reordering d Orbital Energies of Single-Site Catalysts for CO2 Electroreduction. Angew. Chem., Int. Ed. 2019, 58, 12711–12716. 10.1002/anie.201907399. PubMed DOI
Bahmanpour A. M.; Signorile M.; Kröcher O. Recent Progress in Syngas Production via Catalytic CO2 Hydrogenation Reaction. Appl. Catal. B. Environ. 2021, 295, 120319.10.1016/j.apcatb.2021.120319. DOI
De Luna P.; Hahn Ch.; Higgins D.; Jaffer S. A.; Jaramillo T. F.; Sargent E. H. What Would It Take for Renewably Powered Electrosynhesis to Displace Petrochemical Processes?. Science 2019, 364, 6438.10.1126/science.aav3506. PubMed DOI
Zhang H.; Ming J.; Zhao J.; Gu Q.; Xu Ch.; Ding Z.; Yuan R.; Zhang Z.; Lin H.; Wang X.; Long J. High-Rate, Tunable Syngas Production with Artificial Photosynthetic Cells. Angew. Chem., Int. Ed. 2019, 58, 7718–7722. 10.1002/anie.201902361. PubMed DOI
Lu S.; Shi Y.; Meng N.; Lu S.; Yu Y.; Zhang B. Electrosynthesis of Syngas via the Co-Reduction of CO2 and H2O. Cell Rep. 2020, 1, 100237.10.1016/j.xcrp.2020.100237. DOI
Chu S.; Fan S.; Wang Y.; Rossouw D.; Wang Y.; Botton G. A.; Mi Z. Tunable Syngas Production from CO2 and H2O in an Aqueous Photoelectrochemical Cell. Angew. Chem., Int. Ed. 2016, 55, 14262–14266. 10.1002/anie.201606424. PubMed DOI
Nguyen V. N.; Blum L. Syngas and Synfuels from H2O and CO2: Current Status. Chem. Ing. Technol. 2015, 87, 354–375. 10.1002/cite.201400090. DOI
Hua Y.; Wang J.; Min T.; Gao Z. Electrochemical CO2 Conversion Towards Syngas: Recent Catalysts and Improving Strategies for Ratio-Tunable Syngas. J. Power Sources 2022, 535, 231453.10.1016/j.jpowsour.2022.231453. DOI
Ross M. B.; Li Y.; De Luna P.; Kim D.; Sargent E. H.; Yang P. Electrocatalytic Rate Alignment Enhances Syngas Generation. Joule 2019, 3, 257–264. 10.1016/j.joule.2018.09.013. DOI
Kortlever R.; Shen J.; Schouten K. J. P.; Calle-Vallejo F.; Koper M. T. M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082. 10.1021/acs.jpclett.5b01559. PubMed DOI
Qin B.; Li Y.; Fu H.; Wang H.; Chen S.; Liu Z.; Peng F. Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. ACS Appl. Mater. Interfaces 2018, 10, 20530–20539. 10.1021/acsami.8b04809. PubMed DOI
Wang Z.; Yang J.; Cao J.; Chen W.; Wang G.; Liao F.; Zhou X.; Zhou F.; Li R.; Yu Z. Q.; Zhang G.; Duan X.; Wu Y. Room-Temperature Synthesis of Single Iron Site by Electrofiltration for Photoreduction of CO2 into Tunable Syngas. ACS Nano 2020, 14, 6164–6172. 10.1021/acsnano.0c02162. PubMed DOI
Rong X.; Wang H. J.; Lu X. L.; Si R.; Lu T. B. Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965. 10.1002/anie.201912458. PubMed DOI
He Q.; Liu D.; Lee J. H.; Liu Y.; Xie Z.; Hwang S.; Kattel S.; Song L.; Chen J. G. Electrochemical Conversion of CO2 to Syngas with Controllable CO/H2 Ratios over Co and Ni Single-Atom Catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037. 10.1002/anie.201912719. PubMed DOI
Ni W.; Liu Z.; Guo X.; Zhang Y.; Ma Ch.; Deng Y.; Zhang S. Dual Single-Cobalt Atom-Based Carbon Electrocatalysts for Efficient CO2-to-Syngas Conversion with Industrial Current Densities. Appl. Catal. B. Environ. 2021, 291, 120092.10.1016/j.apcatb.2021.120092. DOI
Peterson A. A.; Abild-Pedersen F.; Studt F.; Rossmeisl J.; Nørskov J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3, 1311–1315. 10.1039/c0ee00071j. DOI
Wang Y.; Chen Z.; Han P.; Du Y.; Gu Z.; Xu X.; Zheng G. Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4. ACS Catal. 2018, 8, 7113–7119. 10.1021/acscatal.8b01014. DOI
He H.; Jagvaral Y. Electrochemical Reduction of CO2 on Graphene Supported Transition Metals - Towards Single Atom Catalysts. Phys. Chem. Chem. Phys. 2017, 19, 11436–11446. 10.1039/C7CP00915A. PubMed DOI
Zhao Z.; Lu G. Cu-Based Single-Atom Catalysts Boost Electroreduction of CO2 to CH3OH: First-Principles Predictions. J. Phys. Chem. C 2019, 123, 4380–4387. 10.1021/acs.jpcc.8b12449. DOI
Cui X.; An W.; Liu X.; Wang H.; Men Y.; Wang J. C2N-Graphene Supported Single-Atom Catalysts for CO2 Electrochemical Reduction Reaction: Mechanistic Insight and Catalyst Screening. Nanoscale 2018, 10, 15262–15272. 10.1039/C8NR04961K. PubMed DOI
Lang R.; Du X.; Huang Y.; Jiang X.; Zhang Q.; Guo Y.; Liu K.; Qiao B.; Wang A.; Zhang T. Single-Atom Catalysts Based on the Metal-Oxide Interaction. Chem. Rev. 2020, 120, 11986–12043. 10.1021/acs.chemrev.0c00797. PubMed DOI
Jasinski R. A. New Fuel Cell Cathode Catalyst. Nature 1964, 201, 1212–1213. 10.1038/2011212a0. DOI
Gupta S.; Tryk D.; Bae I.; Aldred W.; Yeager E. Heat-Treated Polyacrylonitrile-Based Catalysts for Oxygen Electroreduction. J. Appl. Electrochem. 1989, 19, 19–27. 10.1007/BF01039385. DOI
Kim J.; Kim H.-E.; Lee H. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions. ChemSusChem 2018, 11, 104–113. 10.1002/cssc.201701306. PubMed DOI
Zagal J. H.; Koper M. T. M. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2016, 55, 14510–14521. 10.1002/anie.201604311. PubMed DOI
He H.; Lei Y.; Xiao C.; Chu D.; Chen R.; Wang G. Molecular and Electronic Structures of Transition-Metal Macrocyclic Complexes as Related to Catalyzing Oxygen Reduction Reactions: A Density Functional Theory Study. J. Phys. Chem. C 2012, 116, 16038–16046. 10.1021/jp303312r. DOI
Sun Y.; Silvioli L.; Sahraie N. R.; Ju W.; Li J.; Zitolo A.; Li S.; Bagger A.; Arnarson L.; Wang X.; Moeller T.; Bernsmeier D.; Rossmeisl J.; Jaouen F.; Strasser P. Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381. 10.1021/jacs.9b05576. PubMed DOI
Chen Y.; Li Z.; Zhu Y.; Sun D.; Liu X.; Xu L.; Tang Y. Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction. Adv. Mater. 2019, 31, 1806312.10.1002/adma.201806312. PubMed DOI
Tan X.; Li H.; Zhang W.; Jiang K.; Zhai S.; Zhang W.; Chen N.; Li H.; Li Z. Square-Pyramidal Fe-N4 with Defect-Modulated O-Coordination: Two-Tier Electronic Structure Fine-Tuning for Enhanced Oxygen Reduction. Chem. Catalysis 2022, 2, 816–835. 10.1016/j.checat.2022.01.025. DOI
Zhu Q.-L.; Xia W.; Zheng L.-R.; Zou R.; Liu Z.; Xu Q. Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal-Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Lett. 2017, 2, 504–511. 10.1021/acsenergylett.6b00686. DOI
Yin P.; Yao T.; Wu Y.; Zheng L.; Lin Y.; Liu W.; Ju H.; Zhu J.; Hong X.; Deng Z.; Zhou G.; Wei S.; Li Y. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805. 10.1002/anie.201604802. PubMed DOI
Chen Y.; Ji S.; Wang Y.; Dong J.; Chen W.; Li Z.; Shen R.; Zheng L.; Zhuang Z.; Wang D.; Li Y. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941. 10.1002/anie.201702473. PubMed DOI
Peng H.; Liu F.; Liu X.; Liao S.; You C.; Tian X.; Nan H.; Luo F.; Song H.; Fu Z.; Huang P. Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived from Polyaniline and Melamine for ORR Application. ACS Catal. 2014, 4, 3797–3805. 10.1021/cs500744x. DOI
Masa J.; Zhao A.; Xia W.; Muhler M.; Schuhmann W. Metal-Free Catalysts for Oxygen Reduction in Alkaline Electrolytes: Influence of the Presence of Co, Fe, Mn and Ni Inclusions. Electrochim. Acta 2014, 128, 271–278. 10.1016/j.electacta.2013.11.026. DOI
Yang J.; Liu W.; Xu M.; Liu X.; Qi H.; Zhang L.; Yang X.; Niu S.; Zhou D.; Liu Y.; Su Y.; Li J. F.; Tian Z. Q.; Zhou W.; Wang A.; Zhang T. Dynamic Behavior of Single-Atom Catalysts in Electrocatalysis: Identification of Cu-N3 as an Active Site for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539. 10.1021/jacs.1c03788. PubMed DOI
Lin Z.; Zhang Q.; Pan J.; Tsounis C.; Esmailpour A. A.; Xi S.; Yang H. Y.; Han Z.; Yun J.; Amal R.; Lu X. Atomic Co Decorated Free-Standing Graphene Electrode Assembly for Efficient Hydrogen Peroxide Production in Acid. Energy Environ. Sci. 2022, 15, 1172–1182. 10.1039/D1EE02884G. DOI
Jiang K.; Back S.; Akey A. J.; Xia C.; Hu Y.; Liang W.; Schaak D.; Stavitski E.; Nørskov J. K.; Siahrostami S.; Wang H. Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nat. Commun. 2019, 10, 3997.10.1038/s41467-019-11992-2. PubMed DOI PMC
Gao J.; Yang H. b.; Huang X.; Hung S.-F.; Cai W.; Jia C.; Miao S.; Chen H. M.; Yang X.; Huang Y.; Zhang T.; Liu B. Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem. 2020, 6, 658–674. 10.1016/j.chempr.2019.12.008. DOI
Tang C.; Chen L.; Li H.; Li L.; Jiao Y.; Zheng Y.; Xu H.; Davey K.; Qiao S.-Z. Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827. 10.1021/jacs.1c03135. PubMed DOI
Wang Y.; Shi R.; Shang L.; Waterhouse G. I. N.; Zhao J.; Zhang Q.; Gu L.; Zhang T. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Phase Flow Cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062. 10.1002/anie.202004841. PubMed DOI
Tang C.; Jiao Y.; Shi B.; Liu J.-N.; Xie Z.; Chen X.; Zhang Q.; Qiao S.-Z. Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176. 10.1002/anie.202003842. PubMed DOI
Yang Q.; Xu W.; Gong S.; Zheng G.; Tian Z.; Wen Y.; Peng L.; Zhang L.; Lu Z.; Chen L. Atomically Dispersed Lewis Acid Sites Boost 2-Electron Oxygen Reduction Activity of Carbon-Based Catalysts. Nat. Commun. 2020, 11, 5478.10.1038/s41467-020-19309-4. PubMed DOI PMC
Yang L.; Zhang X.; Yu L.; Hou J.; Zhou Z.; Lv R. Atomic Fe-N4/C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathode for Zn-Air Batteries with Stable Cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.10.1002/adma.202105410. PubMed DOI
Qu Y.; Li Z.; Chen W.; Lin Y.; Yuan T.; Yang Z.; Zhao C.; Wang J.; Zhao C.; Wang X.; Zhou F.; Zhuang Z.; Wu Y.; Li Y. Direct Transformation of Bulk Copper into Copper Single Sites via Emitting and Trapping of Atoms. Nat. Catal. 2018, 1, 781–786. 10.1038/s41929-018-0146-x. DOI
Wang T.; Cao X.; Qin H.; Shang L.; Zheng S.; Fang F.; Jiao L. P-Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2021, 60, 21237–21241. 10.1002/anie.202108599. PubMed DOI
Han G.; Zheng Y.; Zhang X.; Wang Z.; Gong Y.; Du C.; Banis M. N.; Yiu Y.-M.; Sham T.-K.; Gu L.; Sun Y.; Wang Y.; Wang J.; Gao Y.; Yin G.; Sun X. High Loading Single-Atom Cu Dispersed on Graphene for Efficient Oxygen Reduction Reaction. Nano Energy 2019, 66, 104088.10.1016/j.nanoen.2019.104088. DOI
Wu H.; Li H.; Zhao X.; Liu Q.; Wang J.; Xiao J.; Xie S.; Si R.; Yang F.; Miao S.; Guo X.; Wang G.; Bao X. Highly Doped and Exposed Cu(I)-N Active Sites Within Graphene Towards Efficient Oxygen Reduction for Zinc-Air Batteries. Energy Environ. Sci. 2016, 9, 3736–3745. 10.1039/C6EE01867J. DOI
Wagh N. K.; Shinde S. S.; Lee C. H.; Jung J.-Y.; Kim D.-H.; Kim S.-H.; Lin C.; Lee S. U.; Lee J.-H. Densely Colonized Isolated Cu-N Single Sites for Efficient Bifunctional Electrocatalysts and Rechargeable Advanced Zn-Air Batteries. Appl. Catal. B: Environ. 2020, 268, 118746.10.1016/j.apcatb.2020.118746. DOI
Cui L.; Cui L.; Li Z.; Zhang J.; Wang H.; Lu S.; Xiang Y. A Copper Single-Atom Catalyst Towards Efficient and Durable Oxygen Reduction for Fuel Cells. J. Mater. Chem. A 2019, 7, 16690–16695. 10.1039/C9TA03518D. DOI
Kattel S.; Wang G. Reaction Pathway for Oxygen Reduction on FeN4 Embedded Graphene. J. Phys. Chem. Lett. 2014, 5, 452–456. 10.1021/jz402717r. PubMed DOI
Liu K.; Kattel S.; Mao V.; Wang G. Electrochemical and Computational Study of Oxygen Reduction Reaction on Nonprecious Transition Metal/Nitrogen Doped Carbon Nanofibers in Acid Medium. J. Phys. Chem. C 2016, 120, 1586–1596. 10.1021/acs.jpcc.5b10334. DOI
Yu D.; Ma Y.; Hu F.; Lin C.-C.; Li L.; Chen H.-Y.; Han X.; Peng S. Dual-Sites Coordination Engineering of Single Atom Catalysts for Flexible Metal-Air Batteries. Adv. Energy Mater. 2021, 11, 2101242.10.1002/aenm.202101242. DOI
Liu M.; Li N.; Cao S.; Wang X.; Lu X.; Kong L.; Xu Y.; Bu X.-H. A “Pre-Constrained Metal Twins” Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis. Adv. Mater. 2022, 34, 2107421.10.1002/adma.202107421. PubMed DOI
Xie X.; Peng L.; Yang H.; Waterhouse G. I. N.; Shang L.; Zhang T. MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. Adv. Mater. 2021, 33, 2101038.10.1002/adma.202101038. PubMed DOI
Xie X.; Shang L.; Xiong X.; Shi R.; Zhang T. Fe Single-Atom Catalysts on MOF-5 Derived Carbon for Efficient Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Adv. Energy Mater. 2022, 12, 2102688.10.1002/aenm.202102688. DOI
Wang X. X.; Cullen D. A.; Pan Y.-T.; Hwang S.; Wang M.; Feng Z.; Wang J.; Engelhard M. H.; Zhang H.; He Y.; Shao Y.; Su D.; More K. L.; Spendelow J. S.; Wu G. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Adv. Mater. 2018, 30, 1706758.10.1002/adma.201706758. PubMed DOI
Li J.; Zhang H.; Samarakoon W.; Shan W.; Cullen D. A.; Karakalos S.; Chen M.; Gu D.; More K. L.; Wang G.; Feng Z.; Wang Z.; Wu G. Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980. 10.1002/anie.201909312. PubMed DOI
Wang J.; Huang Z.; Liu W.; Chang C.; Tang H.; Li Z.; Chen W.; Jia C.; Yao T.; Wei S.; Wu Y.; Li Y. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284. 10.1021/jacs.7b10385. PubMed DOI
Sa Y. J.; Seo D.-J.; Woo J.; Lim J. T.; Cheon J. Y.; Yang S. Y.; Lee J. M.; Kang D.; Shin T. J.; Shin H. S.; Jeong H. Y.; Kim Ch. S.; Kim M. G.; kim T. Y.; Joo S. H. A General Approach to Preferential Formation of Active Fe-Nx Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056. 10.1021/jacs.6b09470. PubMed DOI
Jin H.; Sultan S.; Ha M.; Tiwari J. N.; Kim M.; Kim K.-S. Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen. Adv. Funct. Mater. 2020, 30, 2000531.10.1002/adfm.202000531. DOI
Wei J.; Zhou M.; Long A.; Xue Y.; Liao H.; Wei Ch.; Xu Z. J. Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Lett. 2018, 10, 75.10.1007/s40820-018-0229-x. PubMed DOI PMC
Zuo Y.; Rao D.; Li S.; Li T.; Zhu G.; Chen S.; Song L.; Chai Y.; Han H. Atomic Vacancies Control of Pd-Based Catalysts for Enhanced Electrochemical Performance. Adv. Mater. 2018, 30, 1704171.10.1002/adma.201704171. PubMed DOI
Zhao G.; Rui K.; Dou S.; Sun W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291.10.1002/adfm.201803291. DOI
Zhou Z.; Pei Z.; Wei L.; Zhao S.; Jian X.; Chen Y. Electrocatalytic Hydrogen Evolution Under Neutral pH Conditions: Current Understandings, Recent Advances, and Future Prospects. Energy Environ. Sci. 2020, 13, 3185–3206. 10.1039/D0EE01856B. DOI
Anantharaj S.; Noda S.; Jothi V.-R.; Yi S.; Driess M.; Menezes P.-W. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew.Chem. Int. Ed. 2021, 60, 18981–19006. 10.1002/anie.202015738. PubMed DOI PMC
Zuo Y.; Li T.; Zhang N.; Jing T.; Rao D.; Schmuki P.; Kment Š.; Zbořil R.; Chai Y. Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors. ACS Nano 2021, 15, 7790–7798. 10.1021/acsnano.1c01872. PubMed DOI
Lin Z.; Xiao B.; Wang Z.; Tao W.; Shen S.; Huang L.; Zhang J.; Meng F.; Zhang Q.; Gu L.; Zhong W. Planar-Coordination PdSe2 Nanosheets as Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2102321.10.1002/adfm.202102321. DOI
Zhu Y.; Lin Q.; Zhong Y.; Tahini H.-A.; Shao Z.; Wang H. Metal Oxide-Based Materials as an Emerging Family of Hydrogen Evolution Electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392. 10.1039/D0EE02485F. DOI
Zhou K.; Wang Z.; Han C.; Ke X.; Wang C.; Jin Y.; Zhang Q.; Liu J.; Wang H.; Yan H. Platinum Single-Atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction. Nat. Commun. 2021, 12, 3783.10.1038/s41467-021-24079-8. PubMed DOI PMC
Zhu C.; Shi Q.; Feng S.; Du D.; Lin Y. Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Lett. 2018, 3, 1713–1721. 10.1021/acsenergylett.8b00640. DOI
Wang Z.; Hao X.; Jiang Z.; Sun X.; Xu D.; Wang J.; Zhong H.; Meng F.; Zhang X. C and N Hybrid Coordination Derived Co-C-N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 15070–15073. 10.1021/jacs.5b09021. PubMed DOI
Sun T.; Zang W.; Yan H.; Li J.; Zhang Z.; Bu Y.; Chen W.; Wang J.; Lu J.; Su C. Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catal. 2021, 11, 4498–4509. 10.1021/acscatal.0c05577. DOI
Liu X.; Zheng L.; Han C.; Zong H.; Yang G.; Lin S.; Kumar A.; Jadhav A.-R.; Tran N.; Hwang Y.; Lee J.; Vasimalla S.; Chen Z.; Kim S.; Lee H. Identifying the Activity Origin of a Cobalt Single-Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Adv. Funct. Mater. 2021, 31, 2100547.10.1002/adfm.202100547. DOI
Staszak-Jirkovský J.; Malliakas C.-D.; Lopes P.-P.; Danilovic N.; Kota S.-S.; Chang K.; Genorio B.; Strmcnik D.; Stamenkovic V.-R.; Kanatzidis M.-G.; Markovic N.-M. Design of Active and Stable Co-Mo-Sx Chalcogels as pH-Universal Catalysts for the Hydrogen Evolution Reaction. Nat. Mater. 2016, 15, 197–203. 10.1038/nmat4481. PubMed DOI
Hossain M.-D.; Liu Z.; Zhuang M.; Yan X.; Xu G.; Gadre C.-A.; Tyagi A.; Abidi I.-F.; Sun C.; Wong H.; Guda A.; Hao Y.; Pan X.; Amine K.; Luo Z. Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction. Adv. Energy Mater. 2019, 9, 1803689.10.1002/aenm.201803689. DOI
Cheng Y.; Guo H.; Li X.; Wu X.; Xu X.; Zheng L.; Song R. Rational Design of Ultrahigh Loading Metal Single-Atoms (Co, Ni, Mo) Anchored on In-Situ Pre-Crosslinked Guar Gum Derived N-Doped Carbon Aerogel for Efficient Overall Water Splitting. Chem. Eng. J. 2021, 410, 128359.10.1016/j.cej.2020.128359. DOI
Zhang J.; Liu Y.; Sun C.; Xi P.; Peng S.; Gao D.; Xue D. Accelerated Hydrogen Evolution Reaction in CoS2 by Transition-Metal Doping. ACS Energy Lett. 2018, 3, 779–786. 10.1021/acsenergylett.8b00066. DOI
Luo Y.; Zhang S.; Pan H.; Xiao S.; Guo Z.; Tang L.; Khan U.; Ding B.; Li M.; Cai Z.; Zhao Y.; Lv W.; Feng Q.; Zou X.; Lin J.; Cheng H.; Liu B. Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafast Hydrogen Evolution. ACS Nano 2020, 14, 767–776. 10.1021/acsnano.9b07763. PubMed DOI
Xue Y.; Huang B.; Yi Y.; Guo Y.; Zuo Z.; Li Y.; Jia Z.; Liu H.; Li Y. Anchoring Zero Valence Single Atoms of Nickel and iron on Graphdiyne for Hydrogen Evolution. Nat. Commun. 2018, 9, 1460.10.1038/s41467-018-03896-4. PubMed DOI PMC
Zhao Y.; Ling T.; Chen S.; Jin B.; Vasileff A.; Jiao Y.; Song L.; Luo J.; Qiao S. Non-Metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angew. Chem., Int. Ed. 2019, 58, 12252–12257. 10.1002/anie.201905554. PubMed DOI
Zuo Y.; Rao D.; Ma S.; Li T.; Tsang Y.; Kment S.; Chai Y. Valence Engineering via Dual-Cation and Boron Doping in Pyrite Selenide for Highly Efficient Oxygen Evolution. ACS Nano 2019, 13, 11469–11476. 10.1021/acsnano.9b04956. PubMed DOI
Suen N.; Hung S.; Quan Q.; Zhang N.; Xu Y.; Chen H. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. 10.1039/C6CS00328A. PubMed DOI
Plevová M.; Hnát J.; Bouzek K. Electrocatalysts for the Oxygen Evolution Reaction in Alkaline and Neutral Media. A Comparative Review. J. Pow. Sour. 2021, 507, 230072.10.1016/j.jpowsour.2021.230072. DOI
Zhong L.; Jiang C.; Zheng M.; Peng X.; Liu T.; Xi S.; Chi X.; Zhang Q.; Gu L.; Zhang S.; Shi G.; Zhang L.; Wu K.; Chen Z.; Li T.; Dahbi M.; Alami J.; Amine K.; Lu J. Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn-Air Batteries. ACS Energy Lett. 2021, 6, 3624–3633. 10.1021/acsenergylett.1c01678. DOI
Zhang J.; Zhang M.; Zeng Y.; Chen J.; Qiu L.; Zhou H.; Sun C.; Yu Y.; Zhu C.; Zhu Z. Single Fe Atom on Hierarchically Porous S, N-Codoped Nanocarbon Derived from Porphyra Enable Boosted Oxygen Catalysis for Rechargeable Zn-Air Batteries. Small 2019, 15, 1900307.10.1002/smll.201900307. PubMed DOI
Khan K.; Yan X.; Yu Q.; Bae S.; White J.; Liu J.; Liu T.; Sun C.; Kim J.; Cheng H.; Wang Y.; Liu B.; Amine K.; Pan X.; Luo Z. Stone-Wales Defect-Rich Carbon-Supported Dual-Metal Single Atom Sites for Zn-Air Batteries. Nano Energy 2021, 90, 106488.10.1016/j.nanoen.2021.106488. DOI
Zhu X.; Zhang D.; Chen C.; Zhang Q.; Liu R.; Xia Z.; Dai L.; Amal R.; Lu X. Harnessing the Interplay of Fe-Ni Atom Pairs Embedded in Nitrogen-Doped Carbon for Bifunctional Oxygen Electrocatalysis. Nano Energy 2020, 71, 104597.10.1016/j.nanoen.2020.104597. DOI
Bai L.; Hsu C.-S.; Alexander D.; Chen H.; Hu X. A Cobalt-Iron Double-Atom catalyst for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199. 10.1021/jacs.9b05268. PubMed DOI
Lai W.; Zhang L.; Hua W.; Indris S.; Yan Z.; Hu Z.; Zhang B.; Liu Y.; Wang L.; Liu M.; Liu R.; Wang Y.; Wang J.; Hu Z.; Liu H.; Chou S.; Dou S. General π-Electron-Assisted Strategy for Constructing Transition Metal Single-Atom Electrocatalysts with bi-Functional Active Sites Toward Highly Efficient Water Splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873. 10.1002/anie.201904614. PubMed DOI
Doan T. L. L.; Nguyen D. C.; Prabhakaran S.; Kim D. H.; Tran D. T.; Kim N. H.; Lee J. H. Single-Atom Co-Decorated MoS2 Nanosheets Assembled on Metal Nitride Nanorod Arrays as an Efficient Bifunctional Electrocatalyst for pH-Universal Water Splitting. Adv. Funct. Mater. 2021, 31, 2100233.10.1002/adfm.202100233. DOI
Wang L.; Duan X.; Liu X.; Gu J.; Si R.; Qiu Y.; Qiu Y.; Shi D.; Chen F.; Sun X.; Lin J.; Sun J. Atomically Dispersed Mo Supported on Metallic Co9S8 Nanoflakes as an Advanced Noble-Metal-Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Adv. Energy Mater. 2020, 10, 1903137.10.1002/aenm.201903137. DOI
Deng Q.; Zhao J.; Wu T.; Chen G.; Hansen H. A.; Vegge T. 2D Transition Metal-TCNQ Sheets as Bifunctional Single-Atom Catalysts for Oxygen Reduction and Evolution Reaction (ORR/OER). J. Catal. 2019, 370, 378–384. 10.1016/j.jcat.2018.12.012. DOI
Liu T.; Wang Y.; Li Y. Two-Dimensional Organometallic Frameworks with Pyridinic Single-Metal-Atom Sites for Bifunctional ORR/OER. Adv. Funct. Mater. 2022, 32, 2207110.10.1002/adfm.202207110. DOI
Chen Z.; Zhao J.; Cabrera C.; Chen Z. Computational Screening of Efficient Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction. Small Methods 2019, 3, 1800368.10.1002/smtd.201800368. DOI
Lv X.; Wei W.; Li F.; Huang B.; Dai Y. Metal-Free B@g-CN: Visible/Infrared Light-Driven Single Atom Photocatalyst Enables Spontaneous Dinitrogen Reduction to Ammonia. Nano Lett. 2019, 19, 6391–6399. 10.1021/acs.nanolett.9b02572. PubMed DOI
Wang X.; Qiu S.; Feng J.; Tong Y.; Zhou F.; Li Q.; Song L.; Chen S.; Wu K.-H.; Su P.; Ye S.; Hou F.; Dou S. X.; Liu H. K.; Lu G. Q. M.; Sun C.; Liu J.; Liang J. Confined Fe-Cu Clusters as Sub-Nanometer Reactors for Efficiently Regulating the Electrochemical Nitrogen Reduction Reaction. Adv. Mater. 2020, 32, 2004382.10.1002/adma.202004382. PubMed DOI
Yan X.; Liu D.; Cao H.; Hou F.; Liang J.; Dou S. X. Nitrogen Reduction to Ammonia on Atomic-Scale Active Sites under Mild Conditions. Small Methods 2019, 3, 1800501.10.1002/smtd.201800501. DOI
Suryanto B. H. R.; Du H. L.; Wang D.; Chen J.; Simonov A. N.; MacFarlane D. R. Challenges and Prospects in the Catalysis of Electroreduction of Nitrogen to Ammonia. Nat. Catal. 2019, 2, 290–296. 10.1038/s41929-019-0252-4. DOI
Ren Y.; Yu C.; Tan X.; Huang H.; Wei Q.; Qiu J. Strategies to Suppress Hydrogen Evolution for Highly Selective Electrocatalytic Nitrogen Reduction: Challenges and Perspectives. Energy Environ. Sci. 2021, 14, 1176.10.1039/D0EE03596C. DOI
Liu X.; Jiao Y.; Zheng Y.; Jaroniec M.; Qiao S. Z. Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition metal Single-Atom Catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672. 10.1021/jacs.9b03811. PubMed DOI
Choi Ch.; Back S.; Kim N. Y.; Lim J.; Kim Y. H.; Jung Y. Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline. ACS Catal. 2018, 8, 7517–7525. 10.1021/acscatal.8b00905. DOI
Zhu Y.; Sokolowski J.; Song X.; He Y.; Mei Y.; Wu G. Engineering Local Coordination Environments of Atomically Dispersed and Heteroatom-Coordinated Single Metal Site Electrocatalysts for Clean Energy-Conversion. Adv. Energy Mater. 2020, 10, 1902844.10.1002/aenm.201902844. DOI
Qian S. J.; Cao H.; Chen J. W.; Chen J. Ch.; Wang Y. G.; Li J. Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction. ACS Catal. 2022, 12, 11530–11540. 10.1021/acscatal.2c03186. DOI
Chen Z. W.; Lu Z.; Chen L. X.; Jiang M.; Chen D.; Singh Ch. V. Machine-Learning-Accelerated Discovery of Single-Atom Catalysts Based on Bidirectional Activation Mechanism. Chem. Catal. 2021, 1, 183–195. 10.1016/j.checat.2021.03.003. DOI
Zhang S.; Lu S.; Zhang P.; Tian J.; Shi L.; Ling C.; Zhou Q.; Wang J. Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning. Energy Environ. Mater. 2023, 6, 12304.10.1002/eem2.12304. DOI
Wu T.; Melander M. M.; Honkala K. Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction. ACS Catal. 2022, 12, 2505–2512. 10.1021/acscatal.1c05820. DOI
Yuan S.; Meng G.; Liu D.; Zhao W.; Zhu H.; Chi Y.; Ren H.; Guo W. Synergy of Substrate Chemical Environments and Single-Atom Catalysts Promotes Catalytic Performance: Nitrogen Reduction on Chiral and Defected Carbon Nanotubes. ACS Appl. Mater. Interfaces 2022, 14, 52544–52552. 10.1021/acsami.2c17280. PubMed DOI
Quan Ch.; Xiao S.; Yi Y.; Sun D.; Ji S.; Zhou S.; Yang J.; Niu X.; Li X. Explore the Underlying Mechanism of Graphitic C3N5-Hosted Single-Atom Catalyst for Electrocatalytic Nitrogen Fixation. Int. J. Hydrogen Energy 2022, 47, 22035–22044. 10.1016/j.ijhydene.2022.04.298. DOI
Wang J.; Zhang Z.; Li Y.; Qu Y.; Li Y.; Li W.; Zhao M. Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent-Organic Frameworks for Efficient Nitrogen Fixation. ACS Appl. Mater. Interfaces 2022, 14, 1024–1033. 10.1021/acsami.1c20373. PubMed DOI
Zang W.; Yang T.; Zou H.; Xi S.; Zhang H.; Liu X.; Kou Z.; Du Y.; Feng Y.; Shen L.; Duan L.; Wang J.; Pennycook S. Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catal. 2019, 9, 10166–10173. 10.1021/acscatal.9b02944. DOI
Chen Y.; Guo R.; Peng X.; Wang X.; Liu X.; Ren J.; He J.; Zhuo L.; Sun J.; Liu Y.; Wu Y.; Luo J. Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites. ACS Nano 2020, 14, 6938–6946. 10.1021/acsnano.0c01340. PubMed DOI
Liu W.; Han L.; Wang H.-T.; Zhao X.; Boscoboinik J.; Liu X.; Pao C.; Sun J.; Zhuo L.; Luo J.; Ren J.; Pong W.; Xin H. FeMo Sub-Nanoclusters/Single Atoms for Neutral Ammonia Electrosynthesis. Nano Energy 2020, 77, 105078.10.1016/j.nanoen.2020.105078. DOI
Tao H.; Choi C.; Ding L.; Jiang Z.; Han Z.; Jia M.; Fan Q.; Gao Y.; Wang H.; Robertson A.; Hong S.; Jung Y.; Liu S.; Sun Z. Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. Chem. 2019, 5, 204–214. 10.1016/j.chempr.2018.10.007. DOI
Han L.; Liu X.; Chen J.; Lin R.; Liu H.; Lü F.; Bak S.; Liang Z.; Zhao S.; Stavitski E.; Luo J.; Adzic R.-R.; Xin H. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angew. Chem. 2019, 131, 2343–2347. 10.1002/ange.201811728. PubMed DOI
Zhang R.; Jiao L.; Yang W.; Wan G.; Jiang H. Single-Atom Catalysts Templated by Metal-Organic Frameworks for Electrochemical Nitrogen Reduction. J. Mater. Chem. A 2019, 7, 26371–26377. 10.1039/C9TA10206J. DOI
Gu Y.; Xi B.; Tian W.; Zhang H.; Fu Q.; Xiong S. Boosting Selective Nitrogen Reduction via Geometric Coordination Engineering on Single-Tungsten-Atom Catalysts. Adv. Mater. 2021, 33, 2100429.10.1002/adma.202100429. PubMed DOI
Sahoo S. K.; Heske J.; Antonietti M.; Qin Q.; Oschatz M.; Kühne T. D. Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS Appl. Energy Mater. 2020, 3, 10061–10069. 10.1021/acsaem.0c01740. PubMed DOI PMC
Li Y.; Ji Y.; Zhao Y.; Chen J.; Zheng S.; Sang X.; Yang B.; Li Z.; Lei L.; Wen Z.; Feng X.; Hou Y. Local Spin-State Tuning of Iron Single-Atom Electrocatalyst by S-Coordinated Doping for Kinetics-Boosted Ammonia Synthesis. Adv. Mater. 2022, 34, 2202240.10.1002/adma.202202240. PubMed DOI
Guo M.; Fang L.; Zhang L.; Li M.; Cong M.; Guan X.; Shi Ch.; Gu Ch. L.; Liu X.; Wang Y.; Ding X. Pulsed Electrocatalysis Enabling High Overall Nitrogen Fixation Performance for Atomically Dispersed Fe on TiO2. Angew. Chem., Int. Ed. 2023, 62, e20221763510.1002/anie.202217635. PubMed DOI
Guo X.; Gu J.; Lin S.; Zhang S.; Chen Z.; Huang S. Tackling the Activity and Selectivity Challenges of Electrocatalysts Toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721. 10.1021/jacs.9b13349. PubMed DOI
Lv Ch.; Qian Y.; Yan Ch.; Ding Y.; Liu Y.; Chen G.; Yu G. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250. 10.1002/anie.201806386. PubMed DOI
Zhang H.; Cui Ch.; Luo Z. MoS2-Supported Fe2 Clusters Catalyzing Nitrogen Reduction Reaction to Produce Ammonia. J. Phys. Chem. C 2020, 124, 6260–6266. 10.1021/acs.jpcc.0c00486. DOI
Zhao M.; Sun J.; Luo T.; Yan Y.; Huang W.; Lee J.-M. π-Conjugated Macrocycles Confined Dual Single-Atom Catalysts on Graphitized Bubbles for Oxygen Reduction, Evolution, and Batteries. Small 2024, 20, 2309351.10.1002/smll.202309351. PubMed DOI
Ren L.; Sun K.; Wang Y.; Kumar A.; Liu J.; Lu X.; Zhao Y.; Zhu Q.; Liu W.; Xu H.; Sun X. Tandem Catalysis inside Double-Shelled Nanocages with Separated and Tunable Atomic Catalyst Sites for High Performance Lithium-Sulfur Batteries. Adv. Mater. 2024, 36, 2310547.10.1002/adma.202310547. PubMed DOI
Wu S.; Wang Ch.; Liang H.; Nong W.; Zeng Z.; Li Y.; Wang Ch. High-Throughput Calculations for Screening d- and p-Block Single-Atom Catalysts toward Li2S/Na2S Decomposition Guided by Facile Descriptor beyond Bronsted-Evans-Polanyi Relationship. Small 2024, 20, 2305161.10.1002/smll.202305161. PubMed DOI
Wang Ch.; Yin Q.; Liu S.; Wang J.; Fan W.; Liu Z.; Liu F.; Liu Y.; Wang H. Research Progress of Single-Atom Coating and its Application Prospect in Protective Coatings. J. Ind. Eng. Chem. 2023, 128, 66–80. 10.1016/j.jiec.2023.07.060. DOI
Zhang L.; Yang X.; Yuan Q.; Wei Z.; Ding J.; Chu T.; Rong Ch.; Zhang Q.; Ye Z.; Xuan F.-Z.; Zhai Y.; Zhang B.; Yang X. Elucidating the Structure-Stability Relationship of Cu Single-Atom Catalysts Using operando Surface-Enhanced Infrared Absorption Spectroscopy. Nat. Commun. 2023, 14, 8311.10.1038/s41467-023-44078-1. PubMed DOI PMC
Ren X.; Zhao J.; Li X.; Shao J.; Pan B.; Salamé A.; Boutin E.; Groizard T.; Wang S.; Ding J.; Zhang X.; Huang W.-Y.; Zeng W.-J.; Liu Ch.; Li Y.; Hung S.-F.; Huang Y.; Robert M.; Liu B. In-situ Spectroscopic Probe of the Intrinsic Structure Feature of Single-Atom Center in Electrochemical CO/CO2 Reduction to Methanol. Nat. Commun. 2023, 14, 3401.10.1038/s41467-023-39153-6. PubMed DOI PMC
Hsu Ch.-S.; Wang J.; Chu Y.-Ch.; Chen J.-H.; Chien Ch.-Y.; Lin K.-H.; Tsai L. D.; Chen H.-Ch.; Liao Y.-F.; Hiraoka N.; Cheng Y.-Ch.; Chen H. M. Activating Dynamic Atomic-Configuration for Single-Site Electrocatalyst in Electrochemical CO2 Reduction. Nat. Commun. 2023, 14, 5245.10.1038/s41467-023-40970-y. PubMed DOI PMC
Liang X.; Fu N.; Yao S.; Li Z.; Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174. 10.1021/jacs.1c12642. PubMed DOI
Zhang J.; Pan Y.; Feng D.; Cui L.; Zhao S.; Hu J.; Wang S.; Qin Y. Mechanistic Insight into the Synergy Between Platinum Single Atom and Cluster Dual Active Sites Boosting Photocatalytic Hydrogen Evolution. Adv. Mater. 2023, 35, 2300902.10.1002/adma.202300902. PubMed DOI
Zang Y.; Lu D.-Q.; Wang K.; Li B.; Peng P.; Lan Y.-Q.; Zang S.-Q. A Pyrolysis-Free Ni/Fe Bimetallic Electrocatalyst for Overall Water Splitting. Nat. Commun. 2023, 14, 1792.10.1038/s41467-023-37530-9. PubMed DOI PMC
Zhang L.; Dong Y.; Li L.; Wei L.; Su J.; Guo L. Enhanced Oxygen Reduction Activity and Stability of Double-Layer Nitrogen-Doped Carbon Catalyst with Abundant Fe-Co Dual-Atom Sites. Nano Energy 2023, 117, 108854.10.1016/j.nanoen.2023.108854. DOI
Kuai L.; Chen Z.; Liu S.; Kan E.; Yu N.; Ren Y.; Fang C.; Li X.; Li Y.; Geng B. Titania Supported Synergistic Palladium Single Atoms and Nanoparticles for Room Temperature Ketone and Aldehydes Hydrogenation. Nat. Commun. 2020, 11, 48.10.1038/s41467-019-13941-5. PubMed DOI PMC
Wang X.; Sang X.; Dong Ch.-L.; Yao S.; Shuai L.; Lu J.; Yang B.; Li Z.; Lei L.; Qiu M.; Dai L.; Hou Y. Proton Capture Strategy for Enhancing Electrochemical CO2 Reduction on Atomically Dispersed Metal-Nitrogen Active Sites. Angew. Chem., Int. Ed. 2021, 60, 11959–11965. 10.1002/anie.202100011. PubMed DOI
Yao Z.; Lum Y.; Johnston A.; Mejia-Mendoza L. M.; Zhou X.; Wen Y.; Aspuru-Guzik A.; Sargent E. H.; Seh Z. W. Machine Learning for a Sustainable Energy Future. Nat. Rev. Mater. 2023, 8, 202–215. 10.1038/s41578-022-00490-5. PubMed DOI PMC
Mou T.; Pillai H. S.; Wang S.; Wan M.; Han X.; Schweitzer N. M.; Che F.; Xin H. Bridging the Complexity Gap in Computational Heterogeneous Catalysis with Machine Learning. Nat. Catal. 2023, 6, 122–136. 10.1038/s41929-023-00911-w. DOI
Abolhasani M.; Kumacheva E. The Rise of Self-Driving Labs in Chemical and Materials Sciences. Nat. Synth. 2023, 2, 483–492. 10.1038/s44160-022-00231-0. DOI
Seh Z. W.; Jiao K.; Castelli I. E. Artificial Intelligence and Machine Learning in Energy Storage and Conversion. Energy Adv. 2023, 2, 1237–1238. 10.1039/D3YA90022C. DOI
Ramesh A. S.; Vigneshwar S.; Vickram S.; Manikandan S.; Subbaiya R.; Karmegam N.; Kim W. Artificial Intelligence Driven Hydrogen and Battery Technologies-A Review. Fuel 2023, 337, 126862.10.1016/j.fuel.2022.126862. DOI
Liao V. S.; Cohen M.; Wang Y. F.; Vlachos D. G. Deducing Subnanometer Cluster Size and Shape Distributions of Heterogeneous Supported Catalysts. Nat. Commun. 2023, 14, 1965.10.1038/s41467-023-37664-w. PubMed DOI PMC
Single Atom Cocatalysts in Photocatalysis