Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications

. 2024 Nov 13 ; 124 (21) : 11767-11847. [epub] 20240705

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid38967551

Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.

Zobrazit více v PubMed

Rosa E. A.; Machlis G. E.; Keating K. M. Energy and Society. Annu. Rev. Sociol. 1988, 14, 149–172. 10.1146/annurev.so.14.080188.001053. DOI

U.S. Energy Information Administration: International Energy Outlook 2021 with Projections to 2050. https://www.eia.gov/outlooks/ieo/pdf/IEO2021_Narrative.pdf (Accessed: 2022-07-22).

International Energy Agency: Global EV Outlook 2022. Securing Supplies for an Electric Future. https://iea.blob.core.windows.net/assets/ad8fb04c-4f75-42fc-973a-6e54c8a4449a/GlobalElectricVehicleOutlook2022.pdf (Accessed: 2022-07-22).

Li Y.; Sun Y.; Qin Y.; Zhang W.; Wang L.; Luo M.; Yang H.; Guo S. Recent Advances on Water-Splitting Electrocatalysis Mediated by Noble-Metal-Based Nanostructured Materials. Adv. Energy Mater. 2020, 10, 1903120.10.1002/aenm.201903120. DOI

Liu D.; Li X.; Chen S.; Yan H.; Wang Ch.; Wu Ch.; Haleem Y. A.; Duan S.; Lu J.; Ge B.; Ajayan P. M.; Luo Y.; Jiang J.; Song L. Atomically Dispersed Platinum Supported on Curved Carbon Supports for Efficient Electrocatalytic Hydrogen Evolution. Nat. Energy 2019, 4, 512–518. 10.1038/s41560-019-0402-6. DOI

Gasteiger H. A.; Kocha S. S.; Sompalli B.; Wagner F. T. Activity Benchmarks and Requirements for Pt, Pt-Alloy, and non-Pt Oxygen Reduction Catalysts for PEMFCs. Appl. Catal. B. Environ. 2005, 56, 9–35. 10.1016/j.apcatb.2004.06.021. DOI

Cui X.; Li W.; Ryabchuk P.; Junge K.; Beller M. Bridging Homogeneous and Heterogeneous Catalysis by Heterogeneous Single-Metal-Site Catalysts. Nat. Catal. 2018, 1, 385–397. 10.1038/s41929-018-0090-9. DOI

Li J.; Huang H.; Xue W.; Sun K.; Song X.; Wu Ch.; Nie L.; Li Y.; Liu Ch.; Pan Y.; Jiang H.-L.; Mei D.; Zhong Ch. Self-Adaptive Dual-Metal-Site Pairs in Metal-Organic Frameworks for Selective CO2 Photoreduction to CH4. Nat. Catal. 2021, 4, 719–729. 10.1038/s41929-021-00665-3. DOI

Greiner M. T.; Jones T. E.; Beeg S.; Zwiener L.; Scherzer M.; Girgsdies F.; Piccinin S.; Armbrüster M.; Knop-Gericke A.; Schlögl R. Free-Atom-Like d States in Single-Atom Alloy Catalysts. Nat. Chem. 2018, 10, 1008–1015. 10.1038/s41557-018-0125-5. PubMed DOI

Shan J.; Ye Ch.; Jiang Y.; Jaroniec M.; Zheng Y.; Qiao S.-Z. Metal-Metal Interactions in Correlated Single-Atom Catalysts. Sci. Adv. 2022, 8, eabo076210.1126/sciadv.abo0762. PubMed DOI PMC

Manna K.; Ji P.; Lin Z.; Greene F. X.; Urban A.; Thacker N. C.; Lin W. Chemoselective Single-Site Earth-Abundant Metal Catalysts at Metal-Organic Frameworks Nodes. Nat. Commun. 2016, 7, 12610.10.1038/ncomms12610. PubMed DOI PMC

Zhang Y.; Zhao J.; Wang H.; Xiao B.; Zhang W.; Zhao X.; Lv T.; Thangamuthu M.; Zhang J.; Guo Y.; Ma J.; Tang J.; Huang R.; Liu Q. Single-Atom Cu Anchored Catalysts for Photocatalytic Renewable H2 Production with a Quantum Efficiency of 56%. Nat. Commun. 2022, 13, 58.10.1038/s41467-021-27698-3. PubMed DOI PMC

Bakandritsos A.; Kadam R. G.; Kumar P.; Zoppellaro G.; Medved′ M.; Tucek J.; Montini T.; Tomanec O.; Andryskova P.; Drahos B.; Varma R. S.; Otyepka M.; Gawande M. B.; Fornasiero P.; Zboril R. Single-Atom Catalysis: Mixed-Valence Single-Atom Catalyst Derived from Functionalized Graphene. Adv. Mater. 2019, 31, 1900323.10.1002/adma.201970125. PubMed DOI

Ma L.; Zhu G.; Wang D.; Chen H.; Lv Y.; Zhang Y.; He X.; Pang H. Emerging Metal Single Atoms in Electrocatalysts and Batteries. Adv. Funct. Mater. 2020, 30, 2003870.10.1002/adfm.202003870. DOI

Ding S.; Hülsey M. J.; Pérez-Ramírez J.; Yan N. Transforming Energy with Single-Atom Catalysts. Joule 2019, 3, 2897–2929. 10.1016/j.joule.2019.09.015. DOI

Li W.; Guo Z.; Yang J.; Li Y.; Sun X.; He H.; Li S.; Zhang J. Advanced Strategies for Stabilizing Single-Atom Catalysts for Energy Storage and Conversion. Electrochem. Energy Rev. 2022, 5, 9.10.1007/s41918-022-00169-z. DOI

Ma R.; Wang J.; Tang Y.; Wang J. Design Strategies for Single-Atom Iron Electrocatalysts toward Efficient Oxygen Reduction. J. Phys. Chem. Lett. 2022, 13, 168–174. 10.1021/acs.jpclett.1c03753. PubMed DOI

Wang Y.; Wang D.; Li Y. Rational Design of Single-Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Adv. Mater. 2021, 33, 2008151.10.1002/adma.202008151. PubMed DOI

Bai T.; Li D.; Xiao S.; Ji F.; Zhang S.; Wang Ch.; Lu J.; Gao Q.; Ci L. Recent Progress on Single-Atom Catalysts for Lithium-Air Battery Applications. Energy Environ. Sci. 2023, 16, 1431–1465. 10.1039/D2EE02949A. DOI

Wang Y.; Cui X.; Zhang J.; Qiao J.; Huang H.; Shi J.; Wang G. Advances of Atomically Dispersed Catalysts from Single-Atom to Clusters in Energy Storage and Conversion Applications. Prog. Mater. Sci. 2022, 128, 100964.10.1016/j.pmatsci.2022.100964. DOI

Liu H.; Rong H.; Zhang J. Synergetic Dual-Atom Catalysts: The Next Boom of Atomic Catalysts. ChemSusChem 2022, 15, e20220049810.1002/cssc.202200498. PubMed DOI

Najam T.; Shah S. S. A.; Ibraheem S.; Cai X.; Hussain E.; Suleman S.; Javed M. S.; Tsiakaras P. Single-Atom Catalysis for Zinc-Air/O2 Batteries, Water Electrolyzers and Fuel Cells Applications. Energy Stor. Mater. 2022, 45, 504–540. 10.1016/j.ensm.2021.11.050. DOI

Han Y.; Zhou C.; Wang B.; Li Y.; Zhang L.; Zhang W.; Huang Y.; Zhang R. Rational Design of Advanced Oxygen Electrocatalysts for High-Performance Zinc-Air Batteries. Chem. Catal. 2022, 2, 3357–3394. 10.1016/j.checat.2022.10.002. DOI

Zhou T.; Liang J.; Ye S.; Zhang Q.; Liu J. Fundamental, Application and Opportunities of Single Atom Catalysts for Li-S Batteries. Energy Stor. Mater. 2023, 55, 322–355. 10.1016/j.ensm.2022.12.002. DOI

Huang X. L.; Wang Y.-X.; Chou S.-L.; Dou S. X.; Wang Z. M. Materials Engineering for Adsorption and Catalysis in Room-Temperature Na-S Batteries. Energy Environ. Sci. 2021, 14, 3757–3795. 10.1039/D1EE01349A. DOI

Wang P.; Zhao D.; Yin L. Two-Dimensional Matrices Confining Metal Single Atoms with Enhanced Electrochemical Reaction Kinetics for Energy Storage Applications. Energy Environ. Sci. 2021, 14, 1794–1834. 10.1039/D0EE02651D. DOI

Chen Y.; Ji S.; Chen Ch.; Peng Q.; Wang D.; Li Y. Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications. Joule 2018, 2, 1242–1264. 10.1016/j.joule.2018.06.019. DOI

Nguyen T. N.; Salehi M.; Van Le Q.; Seifitokaldani A.; Dinh C. T. Fundamentals of Electrochemical CO2 Reduction on Single-Metal-Atom Catalysts. ACS Catal. 2020, 10, 10068–10095. 10.1021/acscatal.0c02643. DOI

Li X.; Liu L.; Ren X.; Gao J.; Huang Y.; Liu B. Microenvironment Modulation of Single-Atom Catalysts and Their Roles in Electrochemical Energy Conversion. Sci. Adv. 2020, 6, eabb683310.1126/sciadv.abb6833. PubMed DOI PMC

Wang S.; Wang L.; Wang D.; Li Y. Recent Advances of Single-Atom Catalysts in CO2 Conversion. Energy Environ. Sci. 2023, 16, 2759–2803. 10.1039/D3EE00037K. DOI

Tian Y.; Zeng G.; Rutt A.; Shi T.; Kim H.; Wang J.; Koettgen J.; Sun Y.; Ouyang B.; Chen T.; Lun Z.; Rong Z.; Persson K.; Ceder G. Promises and Challenges of Next-Generation “Beyond Li-ion” Batteries for Electric Vehicles and Grid Decarbonization. Chem. Rev. 2021, 121, 1623–1669. 10.1021/acs.chemrev.0c00767. PubMed DOI

Hu X.; Wang G.; Li J.; Huang J.; Liu Y.; Zhong G.; Yuan J.; Zhan H.; Wen Z. Significant Contribution of Single Atomic Mn Implanted in Carbon Nanosheets to High-Performance Sodium-ion Hybrid Capacitors. Energy Environ. Sci. 2021, 14, 4564–4573. 10.1039/D1EE00370D. DOI

Wang Y.; Chu F.; Zeng J.; Wang Q.; Naren T.; Li Y.; Cheng Y.; Lei Y.; Wu F. Single Atom Catalysts for Fuel Cells and Rechargeable Batteries: Principles, Advances, and Opportunities. ACS Nano 2021, 15, 210–239. 10.1021/acsnano.0c08652. PubMed DOI

Zhang Q.; Guan J. Single-Atom Catalysts for Electrocatalytic Applications. Adv. Funct. Mater. 2020, 30, 2000768.10.1002/adfm.202000768. DOI

Wang A.; Li J.; Zhang T. Heterogeneous Single-Atom Catalysis. Nat. Rev. Chem. 2018, 2, 65–81. 10.1038/s41570-018-0010-1. DOI

Lai W.-H.; Wang H.; Zheng L.; Jiang Q.; Yan Z.-Ch.; Wang L.; Yoshikawa H.; Matsumura D.; Sun Q.; Wang Y.-X.; Gu Q.; Wang J.-Z.; Liu H.-K.; Chou S.-L.; Dou S.-X. General Synthesis of Single-Atom Catalysts for Hydrogen Evolution Reactions and Room-Temperature Na-S Batteries. Angew. Chem., Int. Ed. 2020, 59, 22171–22178. 10.1002/anie.202009400. PubMed DOI

Gawande M. B.; Fornasiero P.; Zbořil R. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal. 2020, 10, 2231–2259. 10.1021/acscatal.9b04217. DOI

Haynes W. M.; Lide D. R.; Bruno T. J.. Handbook of Chemistry and Physics; CRC Press: Boca Raton, 2016; pp 14–17.

Idoine N. E.; Raycraft E. R.; Shaw R. A.; Hobbs S. F.; Deady E. A.; Everett P.; Evans E. J.; Mills A. J.. World Mineral Production 2016–20; British Geological Survey: Keyworth, Nottingham, https://nora.nerc.ac.uk/id/eprint/534464/1/WMP_2016_2020.pdf (Accessed: 2023-12-28).

Li X.; Xu W.; Fang Y.; Hu R.; Yu J.; Liu H.; Zhou W. Single-Atom Catalyst Application in Distributed Renewable Energy Conversion and Storage. SusMat 2023, 3, 160–179. 10.1002/sus2.114. DOI

Gu H.; Yue W.; Hu J.; Niu X.; Tang H.; Qin F.; Li Y.; Yan Q.; Liu X.; Xu W.; Sun Z.; Liu Q.; Yan W.; Zheng L.; Wang Y.; Wang H.; Li X.; Zhang L.; Xia G.; Chen W. Asymetrically Coordinated Cu-N1C2 Separator Coating for Lithium-Sulfur Batteries. Adv. Energy Mater. 2023, 13, 2204014.10.1002/aenm.202204014. DOI

Yang X. Y.; Fan H. Q.; Hu F. L.; Chen S. M.; Yan K.; Ma L. T. Aqueous Zinc Batteries with Ultra-Fast Redox Kinetics and High Iodine Utilization Enabled by Iron Single Atom Catalysts. Nano-Micro Letters 2023, 15, 126.10.1007/s40820-023-01093-7. PubMed DOI PMC

Armand M.; Tarascon J.-M. Building Better Batteries. Nature 2008, 451, 652–657. 10.1038/451652a. PubMed DOI

Choi N.-S.; Chen Z.; Freunberger S. A.; Ji X.; Sun Y.-K.; Amine K.; Yushin G.; Nazar L. F.; Cho J.; Bruce P. G. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors. Angew. Chem., Int. Ed. 2012, 51, 9994–1002. 10.1002/anie.201201429. PubMed DOI

Geng P.; Zheng S.; Tang H.; Zhu R.; Zhang L.; Cao S.; Xue H.; Pang H. Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage. Adv. Energy Mater. 2018, 8, 1703259.10.1002/aenm.201703259. DOI

Masias A.; Marcicki J.; Paxton W. A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications. ACS Energy Lett. 2021, 6, 621–630. 10.1021/acsenergylett.0c02584. DOI

Li T.; Yu D.; Liu J.; Wang F. Atomic Pt Promoted N-Doped Carbon as Novel Negative Electrode for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 37559–37566. 10.1021/acsami.9b10533. PubMed DOI

Li Q.; Yuan M.; Ji Y.; Chen X.; Wang Y.; Gao X.; Li H.; He H.; Chen H.; Tan Q.; Xu G.; Zhong Z.; Su F. Atomically Dispersed Sn Incorporated into Carbon Matrix for Stable Electrochemical Lithium Storage. Chem. Eng. J. 2022, 437, 135340.10.1016/j.cej.2022.135340. DOI

Duffner F.; Kronemeyer N.; Tübke J.; Leker J.; Winter M.; Schmuch R. Post-Lithium-Ion Battery Cell Production and Its Compatibility with Lithium-Ion Cell Production Infrastructure. Nat. Energy 2021, 6, 123–134. 10.1038/s41560-020-00748-8. DOI

El Kharbachi A.; Zavorotynska O.; Latroche M.; Cuevas F.; Yartys V.; Fichtner M. Exploits, Advances and Challenges Benefiting beyond Li-Ion Battery Technologies. J. Alloys Compd. 2020, 817, 153261.10.1016/j.jallcom.2019.153261. DOI

Ponrouch A.; Bitenc J.; Dominko R.; Lindahl N.; Johansson P.; Palacin M. R. Multivalent Rechargeable Batteries. Energy Storage Mater. 2019, 20, 253–262. 10.1016/j.ensm.2019.04.012. DOI

Fu J.; Liang R.; Liu G.; Yu A.; Bai Z.; Yang L.; Chen Z. Recent Progress in Electrically Rechargeable Zinc-Air Batteries. Adv. Mater. 2019, 31, 1805230.10.1002/adma.201805230. PubMed DOI

Seh Z. W.; Sun Y.; Zhang Q.; Cui Y. Designing High-Energy Lithium-Sulfur Batteries. Chem. Soc. Rev. 2016, 45, 5605–5634. 10.1039/C5CS00410A. PubMed DOI

Kwak W.-J.; Rosy; Sharon D.; Xia C.; Kim H.; Johnson L. R.; Bruce P. G.; Nazar L. F.; Sun Y.-K.; Frimer A. A.; Noked M.; Freunberger S. A.; Aurbach D. Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future. Chem. Rev. 2020, 120, 6626–6683. 10.1021/acs.chemrev.9b00609. PubMed DOI

Xie J.; Zhou Z.; Wang Y. Metal-CO2 Batteries at the Crossroad to Practical Energy Storage and CO2 Recycle. Adv. Funct. Mater. 2020, 30, 1908285.10.1002/adfm.201908285. DOI

Lin D.; Liu Y.; Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries. Nat. Nanotechnol. 2017, 12, 194–206. 10.1038/nnano.2017.16. PubMed DOI

Zheng J.; Kim M. S.; Tu Z.; Choudhury S.; Tang T.; Archer L. A. Regulating Electrodeposition Morphology of Lithium: Towards Commercially Relevant Secondary Li Metal Batteries. Chem. Soc. Rev. 2020, 49, 2701–2750. 10.1039/C9CS00883G. PubMed DOI

Weber R.; Genovese M.; Louli A. J.; Hames S.; Martin C.; Hill I. G.; Dahn J. R. Long Cycle Life and Dendrite-Free Lithium Morphology in Anode-Free Lithium Pouch Cells Enabled by a Dual-Salt Liquid Electrolyte. Nat. Energy 2019, 4, 683–689. 10.1038/s41560-019-0428-9. DOI

Zhang R.; Chen X.-R.; Chen X.; Cheng X.-B.; Zhang X.-Q.; Yan C.; Zhang Q. Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew. Chem., Int. Ed. 2017, 56, 7764–7768. 10.1002/anie.201702099. PubMed DOI

Sun Y.; Zhou J.; Ji H.; Liu J.; Qian T.; Yan C. Single-Atom Iron as Lithiophilic Site to Minimize Lithium Nucleation Overpotential for Stable Lithium Metal Full Battery. ACS Appl. Mater. Interfaces 2019, 11, 32008–32014. 10.1021/acsami.9b10551. PubMed DOI

Liu H.; Chen X.; Cheng X.-B.; Li B.-Q.; Zhang R.; Wang B.; Chen X.; Zhang Q. Uniform Lithium Nucleation Guided by Atomically Dispersed Lithiophilic CoNx Sites for Safe Lithium Metal Batteries. Small Methods 2019, 3, 1800354.10.1002/smtd.201800354. DOI

Aalund R.; Diao W.; Kong L.; Pecht M. Understanding the Non-Collision Related Battery Safety Risks in Electric Vehicles a Case Study in Electric Vehicle Recalls and the LG Chem Battery. IEEE Access 2021, 9, 89527–89532. 10.1109/ACCESS.2021.3090304. DOI

Sun P.; Bisschop R.; Niu H.; Huang X. A Review of Battery Fires in Electric Vehicles. Fire Technol. 2020, 56, 1361–1410. 10.1007/s10694-019-00944-3. DOI

Mallick S.; Gayen D. Thermal Behaviour and Thermal Runaway Propagation in Lithium-Ion Battery Systems-A Critical Review. J. Energy Storage 2023, 62, 106894.10.1016/j.est.2023.106894. DOI

Diaz L. B.; He X.; Hu Z.; Restuccia F.; Marinescu M.; Barreras J. V.; Patel Y.; Offer G.; Rein G. Meta-Review of Fire Safety of Lithium-Ion Batteries: Industry Challenges and Research Contributions. J. Electrochem. Soc. 2020, 167, 090559.10.1149/1945-7111/aba8b9. DOI

Gas vs. Electric Car Fires [2024 Findings]. AutoinsuranceEZ, https://www.autoinsuranceez.com/gas-vs-electric-car-fires/ (Accessed: 2023-05-16).

Qin G.; Jia Z.; Li A.; Sun S.; Liu Z.; Zhuang C.-l.; Chen J. Nitrogen-Rich Carbon/SiO2 Nanotubes Composites Prepared by Self-Assembly as High-Performance Anode Lithium-Ion Battery. Int. J. Hydrogen Energy 2024, 49, 39–50. 10.1016/j.ijhydene.2023.09.201. DOI

Mayyas A.; Steward D.; Mann M. The Case for Recycling: Overview and Challenges in the Material Supply Chain for Automotive Li-Ion Batteries. Sustain. Mater. Technol. 2019, 19, e0008710.1016/j.susmat.2018.e00087. DOI

Shu X.; Yang M.; Tan D.; Hui K. S.; Hui K. N.; Zhang J. Recent Advances in the Field of Carbon-based Cathode Electrocatalysts for Zn-air Batteries. Mater. Adv. 2021, 2, 96–114. 10.1039/D0MA00745E. DOI

Ortiz-Medina J.; Wang Z.; Cruz-Silva R.; Morelos-Gomez A.; Wang F.; Yao X.; Terrones M.; Endo M. Defect Engineering and Surface Functionalization of Nanocarbons for Metal-Free Catalysis. Adv. Mater. 2019, 31, 1805717.10.1002/adma.201805717. PubMed DOI

Liu D.; Dai L.; Lin X.; Chen J.-F.; Zhang J.; Feng X.; Müllen K.; Zhu X.; Dai S. Chemical Approaches to Carbon-Based Metal-Free Catalysts. Adv. Mater. 2019, 31, 1804863.10.1002/adma.201804863. PubMed DOI

Zhang Y.-Z.; Wang Y.; Cheng T.; Lai W.-Y.; Pang H.; Huang W. Flexible Supercapacitors Based on Paper Substrates: A New Paradigm for Low-Cost Energy Storage. Chem. Soc. Rev. 2015, 44, 5181–5199. 10.1039/C5CS00174A. PubMed DOI

Wang H.-F.; Tang C.; Zhang Q. A Review of Precious-Metal-Free Bifunctional Oxygen Electrocatalysts: Rational Design and Applications in Zn-Air Batteries. Adv. Funct. Mater. 2018, 28, 1803329.10.1002/adfm.201803329. DOI

Chen X.; Zhou Z.; Karahan H. E.; Shao Q.; Wei L.; Chen Y. Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc-Air Batteries. Small 2018, 14, 1801929.10.1002/smll.201801929. PubMed DOI

Li Y.; Lu J. Metal-Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice?. ACS Energy Lett. 2017, 2, 1370–1377. 10.1021/acsenergylett.7b00119. DOI

Wang H.-F.; Xu Q. Materials Design for Rechargeable Metal-Air Batteries. Matter 2019, 1, 565–595. 10.1016/j.matt.2019.05.008. DOI

Kraytsberg A.; Ein-Eli Y. The Impact of Nano-Scaled Materials on Advanced Metal-Air Battery Systems. Nano Energy 2013, 2, 468–480. 10.1016/j.nanoen.2012.11.016. DOI

Lei X.; Liu B.; Koudakan P. A.; Pan H.; Qian Y.; Wang G. Single-Atom Catalyst Cathodes for Lithium-Oxygen Batteries: A Review. Nano Futures 2022, 6, 012002.10.1088/2399-1984/ac3ec1. DOI

Xia C.; Kwok C. Y.; Nazar L. F. A High-Energy-Density Lithium-Oxygen Battery Based on a Reversible Four-Electron Conversion to Lithium Oxide. Science 2018, 361, 777–781. 10.1126/science.aas9343. PubMed DOI

Shu C.; Wang J.; Long J.; Liu H.-K.; Dou S.-X. Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions. Adv. Mater. 2019, 31, 1804587.10.1002/adma.201804587. PubMed DOI

Qiao Y.; Jiang K.; Deng H.; Zhou H. A High-Energy-Density and Long-Life Lithium-Ion Battery via Reversible Oxide-Peroxide Conversion. Nat. Catal. 2019, 2, 1035–1044. 10.1038/s41929-019-0362-z. DOI

Zhang J.; Zhao Z.; Xia Z.; Dai L. A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Nat. Nanotechnol. 2015, 10, 444–452. 10.1038/nnano.2015.48. PubMed DOI

Asadi M.; Sayahpour B.; Abbasi P.; Ngo A. T.; Karis K.; Jokisaari J. R.; Liu C.; Narayanan B.; Gerard M.; Yasaei P.; Hu X.; Mukherjee A.; Lau K. Ch.; Assary R. S.; Khalili-Araghi F.; Klie R. F.; Curtiss L. A.; Salehi-Khojin A. A Lithium-Oxygen Battery with a Long Cycle Life in an Air-Like Atmosphere. Nature 2018, 555, 502–506. 10.1038/nature25984. PubMed DOI

Mu X.; Xia Ch.; Gao B.; Guo S. Two-Dimensional Mo-Based Compounds for the Li-O2 Batteries: Catalytic Performance and Electronic Structure Studies. Energy Stor. Mater. 2021, 41, 650–655. 10.1016/j.ensm.2021.06.036. DOI

Sadighi Z.; Liu J.; Zhao L.; Ciucci F.; Kim J.-K. Metallic MoS2 Nanosheets: Multifunctional Electrocatalyst for the ORR, OER and Li-O2 Batteries. Nanoscale 2018, 10, 22549–22559. 10.1039/C8NR07106C. PubMed DOI

Li D.; Zhao L.; Xia Q.; Wang J.; Liu X.; Xu H.; Chou S. Activating MoS2 Nanoflakes via Sulfur Defect Engineering Wrapped on CNTs for Stable and Efficient Li-O2 Batteries. Adv. Funct. Mater. 2022, 32, 2108153.10.1002/adfm.202108153. DOI

Shui J.-L.; Karan N. K.; Balasubramanian M.; Li S.-Y.; Liu D.-J. Fe/N/C Composite in Li-O2 Battery: Studies of Catalytic Structure and Activity Toward Oxygen Evolution Reaction. J. Am. Chem. Soc. 2012, 134, 16654–16661. 10.1021/ja3042993. PubMed DOI

Débart A.; Paterson A. J.; Bao J.; Bruce P. J. α-MnO2 Nanowires: A Catalyst for the O2 Electrode in Rechargeable Lithium Batteries. Angew. Chem., Int. Ed. Engl. 2008, 47, 4521–4524. 10.1002/anie.200705648. PubMed DOI

Song L.-N.; Zhang W.; Wang Y.; Ge X.; Zou L.-C.; Wang H.-F.; Wang X.-X.; Liu Q.-C.; Li F.; Xu J.-J. Tuning Lithium-Peroxide Formation and Decomposition Routes with Single-Atom Catalysts for Lithium-Oxygen Batteries. Nat. Commun. 2020, 11, 2191.10.1038/s41467-020-15712-z. PubMed DOI PMC

Wang P.; Ren Y.; Wang R.; Zhang P.; Ding M.; Li C.; Zhao D.; Qian Z.; Zhang Z.; Zhang L.; Yin L. Atomically Dispersed Cobalt Catalyst Anchored on Nitrogen-Doped Carbon Nanosheets for Lithium-Oxygen Batteries. Nat. Commun. 2020, 11, 1576.10.1038/s41467-020-15416-4. PubMed DOI PMC

Lian Z.; Lu Y.; Ma S.; Li Z.; Liu Q. Metal Atom-Doped Co3O4 Nanosheets for Li-O2 Battery Catalyst: Study on the Difference of Catalytic Activity. Chem. Eng. J. 2022, 445, 136852.10.1016/j.cej.2022.136852. DOI

Sun W.; Wang F.; Zhang B.; Zhang M.; KüPers V.; Ji X.; Theile C.; Bieker P.; Xu K.; Wang C.; Winter M. A Rechargeable Zinc-Air Battery Based on Zinc Peroxide Chemistry. Science 2021, 371, 46–51. 10.1126/science.abb9554. PubMed DOI

Yu H.; Fisher A.; Cheng D.; Cao D. Cu, N-Codoped Hierarchical Porous Carbons as Electrocatalysts for Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2016, 8, 21431–21439. 10.1021/acsami.6b04189. PubMed DOI

Zhang Y.; Geng H.; Wei W.; Ma J.; Chen L.; Li C. C. Challenges and Recent Progress in the Design of Advanced Electrode Materials for Rechargeable Mg Batteries. Energy Storage Mater. 2019, 20, 118–138. 10.1016/j.ensm.2018.11.033. DOI

Guan C.; Sumboja A.; Wu H.; Ren W.; Liu X.; Zhang H.; Liu Z.; Cheng C.; Pennycook S. J.; Wang J. Hollow Co3O4 Nanosphere Embedded in Carbon Arrays for Stable and Flexible Solid-State Zinc-Air Batteries. Adv. Mater. 2017, 29, 1704117.10.1002/adma.201704117. PubMed DOI

Fu J.; Cano Z. P.; Park M. G.; Yu A.; Fowler M.; Chen Z. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives. Adv. Mater. 2017, 29, 1604685.10.1002/adma.201604685. PubMed DOI

Mainar A. R.; Iruin E.; Colmenares L. C.; Kvasha A.; de Meatza I.; Bengoechea M.; Leonet O.; Boyano I.; Zhang Z.; Blazquez J. A. An Overview of Progress in Electrolytes for Secondary Zinc-Air Batteries and Other Storage Systems Based on Zinc. J. Energy Storage 2018, 15, 304–328. 10.1016/j.est.2017.12.004. DOI

Martinez U.; Komini Babu S.; Holby E. F.; Chung H. T.; Yin X.; Zelenay P. Progress in the Development of Fe-Based PGM-Free Electrocatalysts for the Oxygen Reduction Reaction. Adv. Mater. 2019, 31, 1806545.10.1002/adma.201806545. PubMed DOI

Zhang H.; Hwang S.; Wang M.; Feng Z.; Karakalos S.; Luo L.; Qiao Z.; Xie X.; Wang C.; Su D.; Shao Y.; Wu G. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. 10.1021/jacs.7b06514. PubMed DOI

Qu Y.; Wang L.; Li Z.; Li P.; Zhang Q.; Lin Y.; Zhou F.; Wang H.; Yang Z.; Hu Y.; Zhu M.; Zhao X.; Han X.; Wang C.; Xu Q.; Gu L.; Luo J.; Zheng L.; Wu Y. Ambient Synthesis of Single-Atom Catalysts from Bulk Metal via Trapping of Atoms by Surface Dangling Bonds. Adv. Mater. 2019, 31, 1904496.10.1002/adma.201904496. PubMed DOI

Chen J.; Li H.; Fan C.; Meng Q.; Tang Y.; Qiu X.; Fu G.; Ma T. Dual Single-Atomic Ni-N4 and Fe-N4 Sites Constructing Janus Hollow Graphene for Selective Oxygen Electrocatalysis. Adv. Mater. 2020, 32, 2003134.10.1002/adma.202003134. PubMed DOI

Jose V.; Hu H.; Edison E.; Manalastas W. Jr; Ren H.; Kidkhunthod P.; Sreejith S.; Jayakumar A.; Nsanzimana J. M. V.; Srinivasan M.; Choi J.; Lee J.-M. Modulation of Single Atomic Co and Fe Sites on Hollow Carbon Nanospheres as Oxygen Electrodes for Rechargeable Zn-Air Batteries. Small Methods 2021, 5, 2000751.10.1002/smtd.202000751. PubMed DOI

Han J.; Bao H.; Wang J.-Q.; Zheng L.; Sun S.; Wang Z. L.; Sun C. 3D N-Doped Ordered Mesoporous Carbon Supported Single-Atom Fe-N-C Catalysts with Superior Performance for Oxygen Reduction Reaction and Zinc-Air Battery. Appl. Catal. B: Environ. 2021, 280, 119411.10.1016/j.apcatb.2020.119411. DOI

Chen P.; Zhou T.; Xing L.; Xu K.; Tong Y.; Xie H.; Zhang L.; Yan W.; Chu W.; Wu C.; Xie Y. Atomically Dispersed Iron-Nitrogen Species as Electrocatalysts for Bifunctional Oxygen Evolution and Reduction Reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614. 10.1002/anie.201610119. PubMed DOI

Yang S.; Yu Y.; Dou M.; Zhang Z.; Dai L.; Wang F. Two-Dimensional Conjugated Aromatic Networks as High-Site-Density and Single-Atom Electrocatalysts for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2019, 58, 14724–14730. 10.1002/anie.201908023. PubMed DOI

Chen G.; Liu P.; Liao Z.; Sun F.; He Y.; Zhong H.; Zhang T.; Zschech E.; Chen M.; Wu G.; Zhang J.; Feng X. Zinc-Mediated Template Synthesis of Fe-N-C Electrocatalysts with Densely Accessible Fe-Nx Active Sites for Efficient Oxygen Reduction. Adv. Mater. 2020, 32, 1907399.10.1002/adma.201907399. PubMed DOI

Zhang X.; Han X.; Jiang Z.; Xu J.; Chen L.; Xue Y.; Nie A.; Xie Z.; Kuang Q.; Zheng L. Atomically Dispersed Hierarchically Ordered Porous Fe-N-C Electrocatalyst for High Performance Electrocatalytic Oxygen Reduction in Zn-Air Battery. Nano Energy 2020, 71, 104547.10.1016/j.nanoen.2020.104547. DOI

Yang Y.; Yang Y.; Pei Z.; Wu K.-H.; Tan C.; Wang H.; Wei L.; Mahmood A.; Yan C.; Dong J.; Zhao S.; Chen Y. Recent Progress of Carbon-Supported Single-Atom Catalysts for Energy Conversion and Storage. Matter 2020, 3, 1442–1476. 10.1016/j.matt.2020.07.032. DOI

Pan Y.; Liu S.; Sun K.; Chen X.; Wang B.; Wu K.; Cao X.; Cheong W.-C.; Shen R.; Han A.; Chen Z.; Zheng L.; Luo J.; Lin Y.; Liu Y.; Wang D.; Peng Q.; Zhang Q.; Chen C.; Li Y. A Bimetallic Zn/Fe Polyphthalocyanine-Derived Single-Atom Fe-N4 Catalytic Site: A Superior Trifunctional Catalyst for Overall Water Splitting and Zn-Air Batteries. Angew. Chem., Int. Ed. 2018, 57, 8614–8618. 10.1002/anie.201804349. PubMed DOI

Han J.; Meng X.; Lu L.; Bian J.; Li Z.; Sun C. Single-Atom Fe-Nx-C as an Efficient Electrocatalyst for Zinc-Air Batteries. Adv. Funct. Mater. 2019, 29, 1808872.10.1002/adfm.201808872. DOI

Chen Y.; Ji S.; Zhao S.; Chen W.; Dong J.; Cheong W.-C.; Shen R.; Wen X.; Zheng L.; Rykov A. I.; Cai S.; Tang H.; Zhuang Z.; Chen C.; Peng Q.; Wang D.; Li Y. Enhanced Oxygen Reduction with Single-Atomic-Site Iron Catalysts for a Zinc-Air Battery and Hydrogen-Air Fuel Cell. Nat. Commun. 2018, 9, 5422.10.1038/s41467-018-07850-2. PubMed DOI PMC

Yuan K.; Lützenkirchen-Hecht D.; Li L.; Shuai L.; Li Y.; Cao R.; Qiu M.; Zhuang X.; Leung M. K. H.; Chen Y.; Scherf U. Boosting Oxygen Reduction of Single Iron Active Sites via Geometric and Electronic Engineering: Nitrogen and Phosphorus Dual Coordination. J. Am. Chem. Soc. 2020, 142, 2404–2412. 10.1021/jacs.9b11852. PubMed DOI

Li H.; Tang Z.; Liu Z.; Zhi C. Evaluating Flexibility and Wearability of Flexible Energy Storage Devices. Joule 2019, 3, 613–619. 10.1016/j.joule.2019.01.013. DOI

Zhang Z.; Zhao X.; Xi S.; Zhang L.; Chen Z.; Zeng Z.; Huang M.; Yang H.; Liu B.; Pennycook S. J.; Chen P. Atomically Dispersed Cobalt Trifunctional Electrocatalysts with Tailored Coordination Environment for Flexible Rechargeable Zn-Air Battery and Self-Driven Water Splitting. Adv. Energy Mater. 2020, 10, 2002896.10.1002/aenm.202002896. DOI

Han Y.; Duan H.; Zhou C.; Meng H.; Jiang Q.; Wang B.; Yan W.; Zhang R. Stabilizing Cobalt Single Atoms via Flexible Carbon Membranes as Bifunctional Electrocatalysts for Binder-Free Zinc-Air Batteries. Nano Lett. 2022, 22, 2497–2505. 10.1021/acs.nanolett.2c00278. PubMed DOI

Wang Q.; Feng Q.; Lei Y.; Tang S.; Xu L.; Xiong Y.; Fang G.; Wang Y.; Yang P.; Liu J.; Liu W.; Xiong X. Quasi-Solid-State Zn-air Batteries with an Atomically Dispersed Cobalt Electrocatalyst and Organohydrogel Electrolyte. Nat. Commun. 2022, 13, 3689.10.1038/s41467-022-31383-4. PubMed DOI PMC

Niu W.-J.; Sun Q.-Q.; He J.-Z.; Chen J.-L.; Gu B.; Liu M.-J.; Chung C.-C.; Wu Y.; Chueh Y.-L. Zeolitic Imidazolate Framework-Derived Copper Single Atom Anchored on Nitrogen-Doped Porous Carbon as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction toward Zn-Air Battery. Chem. Mater. 2022, 34, 4104–4114. 10.1021/acs.chemmater.2c00350. DOI

Sarkar S.; Biswas A.; Siddharthan E. E.; Thapa R.; Dey R. S. Strategic Modulation of Target-Specific Isolated Fe, Co Single-Atom Active Sites for Oxygen Electrocatalysis Impacting High Power Zn-Air Battery. ACS Nano 2022, 16, 7890–7903. 10.1021/acsnano.2c00547. PubMed DOI

Melchionna M.; Fornasiero P.; Prato M.; Bonchio M. Electrocatalytic CO2 Reduction: Role of the Cross-Talk at Nano-Carbon Interfaces. Energy Environ. Sci. 2021, 14, 5816–5833. 10.1039/D1EE00228G. DOI

Osgood H.; Devaguptapu S. V.; Xu H.; Cho J.; Wu G. Transition Metal (Fe, Co, Ni, and Mn) Oxides for Oxygen Reduction and Evolution Bifunctional Catalysts in Alkaline Media. Nano Today 2016, 11, 601–625. 10.1016/j.nantod.2016.09.001. DOI

Ren S.; Duan X.; Liang S.; Zhang M.; Zheng H. Bifunctional Electrocatalysts for Zn-Air Batteries: Recent Developments and Future Perspectives. J. Mater. Chem. A 2020, 8, 6144–6182. 10.1039/C9TA14231B. DOI

Sun X.; Hou Z.; He P.; Zhou H. Recent Advances in Rechargeable Li-CO2 Batteries. Energy Fuels 2021, 35, 9165–9186. 10.1021/acs.energyfuels.1c00635. DOI

Takechi K.; Shiga T.; Asaoka T. A Li-O2/CO2 Battery. Chem. Commun. 2011, 47, 3463–3465. 10.1039/c0cc05176d. PubMed DOI

Li S.; Dong Y.; Zhou J.; Liu Y.; Wang J.; Gao X.; Han Y.; Qi P.; Wang B. Carbon Dioxide in the Cage: Manganese Metal-Organic Frameworks for High Performance CO2 Electrodes in Li-CO2 Batteries. Energy Environ. Sci. 2018, 11, 1318–1325. 10.1039/C8EE00415C. DOI

Xie J.; Wang Y. Recent Development of CO2 Electrochemistry from Li-CO2 Batteries to Zn-CO2 Batteries. Acc. Chem. Res. 2019, 52, 1721–1729. 10.1021/acs.accounts.9b00179. PubMed DOI

Xu S.-M.; Ren Z.-C.; Liu X.; Liang X.; Wang K.-X.; Chen J.-S. Carbonate Decomposition: Low-Overpotential Li-CO2 Battery Based on Interlayer-Confined Monodisperse Catalyst. Energy Storage Mater. 2018, 15, 291–298. 10.1016/j.ensm.2018.05.015. DOI

Xie Z.; Zhang X.; Zhang Z.; Zhou Z. Metal-CO2 Batteries on the Road: CO2 from Contamination Gas to Energy Source. Adv. Mater. 2017, 29, 1605891.10.1002/adma.201605891. PubMed DOI

Xing Y.; Yang Y.; Li D.; Luo M.; Chen N.; Ye Y.; Qian J.; Li L.; Yang D.; Wu F.; Chen R.; Guo S. Crumpled Ir Nanosheets Fully Covered on Porous Carbon Nanofibers for Long-Life Rechargeable Lithium-CO2 Batteries. Adv. Mater. 2018, 30, 1803124.10.1002/adma.201803124. PubMed DOI

Qie L.; Lin Y.; Connell J. W.; Xu J.; Dai L. Highly Rechargeable Lithium-CO2 Batteries with a Boron- and Nitrogen-Codoped Holey-Graphene Cathode. Angew. Chem., Int. Ed. 2017, 56, 6970–6974. 10.1002/anie.201701826. PubMed DOI

Yin W.; Grimaud A.; Azcarate I.; Yang C.; Tarascon J.-M. Electrochemical Reduction of CO2 Mediated by Quinone Derivatives: Implication for Li-CO2 Battery. J. Phys. Chem. C 2018, 122, 6546–6554. 10.1021/acs.jpcc.8b00109. DOI

Wei Y.-S.; Zhang M.; Zou R.; Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem. Rev. 2020, 120, 12089–12174. 10.1021/acs.chemrev.9b00757. PubMed DOI

Liu Y.; Zhao S.; Wang D.; Chen B.; Zhang Z.; Sheng J.; Zhong X.; Zou X.; Jiang S. P.; Zhou G.; Cheng H.-M. Toward an Understanding of the Reversible Li-CO2 Batteries over Metal-N4 -Functionalized Graphene Electrocatalysts. ACS Nano 2022, 16, 1523–1532. 10.1021/acsnano.1c10007. PubMed DOI

Zhang B.; Jiao Y.; Chao D.; Ye C.; Wang Y.; Davey K.; Liu H.; Dou S.; Qiao S. Targeted Synergy between Adjacent Co Atoms on Graphene Oxide as an Efficient New Electrocatalyst for Li-CO2 Batteries. Adv. Funct. Mater. 2019, 29, 1904206.10.1002/adfm.201904206. DOI

Hu C.; Gong L.; Xiao Y.; Yuan Y.; Bedford N. M.; Xia Z.; Ma L.; Wu T.; Lin Y.; Connell J. W.; Shahbazian-Yassar R.; Lu J.; Amine K.; Dai L. High-Performance, Long-Life, Rechargeable Li-CO2 Batteries Based on a 3D Holey Graphene Cathode Implanted with Single Iron Atoms. Adv. Mater. 2020, 32, 1907436.10.1002/adma.201907436. PubMed DOI

Zhang Y.; Zhong R.-L.; Lu M.; Wang J.-H.; Jiang C.; Gao G.-K.; Dong L.-Z.; Chen Y.; Li S.-L.; Lan Y.-Q. Single Metal Site and Versatile Transfer Channel Merged into Covalent Organic Frameworks Facilitate High-Performance Li-CO2 Batteries. ACS Cent. Sci. 2021, 7, 175–182. 10.1021/acscentsci.0c01390. PubMed DOI PMC

Rogge S. M. J.; Bavykina A.; Hajek J.; Garcia H.; Olivos-Suarez A. I.; Sepulveda-Escribano A.; Vimont A.; Clet G.; Bazin P.; Kapteijn F.; Daturi M.; Ramos-Fernandez E. V.; Llabres i Xamena F. X.; Van Speybroeck V.; Gascon J. Metal-Organic and Covalent Organic Frameworks as Single-Site Catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. 10.1039/C7CS00033B. PubMed DOI PMC

Cheng J.; Bai Y.; Lian Y.; Ma Y.; Yin Z.; Wei L.; Sun H.; Su Y.; Gu Y.; Kuang P.; Zhong J.; Peng Y.; Wang H.; Deng Z. Homogenizing Li2CO3 Nucleation and Growth through High-Density Single-Atomic Ru Loading toward Reversible Li-CO2 Reaction. ACS Appl. Mater. Interfaces 2022, 14, 18561–18569. 10.1021/acsami.2c02249. PubMed DOI

Yang S.; Qiao Y.; He P.; Liu Y.; Cheng Z.; Zhu J.; Zhou H. A Reversible Lithium-CO2 Battery with Ru Nanoparticles as a Cathode Catalyst. Energy Environ. Sci. 2017, 10, 972–978. 10.1039/C6EE03770D. DOI

Wang T.; Sang X.; Zheng W.; Yang B.; Yao S.; Lei C.; Li Z.; He Q.; Lu J.; Lei L.; Dai L.; Hou Y. Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO2 Electroreduction and High-Performance Zn-CO2 Batteries. Adv. Mater. 2020, 32, 2002430.10.1002/adma.202002430. PubMed DOI

Zeng Z.; Gan L. Y.; Yang H. B.; Su X.; Gao J.; Liu W.; Matsumoto H.; Gong J.; Zhang J.; Cai W.; Zhang Z.; Yan Y.; Liu B.; Chen P. Orbital Coupling of Hetero-Diatomic Nickel-Iron Site for Bifunctional Electrocatalysis of CO2 Reduction and Oxygen Evolution. Nat. Commun. 2021, 12, 4088.10.1038/s41467-021-24052-5. PubMed DOI PMC

Jeoung J.-H.; Dobbek H. Carbon Dioxide Activation at the Ni, Fe-Cluster of Anaerobic Carbon Monoxide Dehydrogenase. Science 2007, 318, 1461–1464. 10.1126/science.1148481. PubMed DOI

Jiao L.; Zhu J.; Zhang Y.; Yang W.; Zhou S.; Li A.; Xie C.; Zheng X.; Zhou W.; Yu S.-H.; Jiang H.-L. Non-Bonding Interaction of Neighboring Fe and Ni Single-Atom Pairs on MOF-Derived N-Doped Carbon for Enhanced CO2 Electroreduction. J. Am. Chem. Soc. 2021, 143, 19417–19424. 10.1021/jacs.1c08050. PubMed DOI

Jiao L.; Jiang H.-L. Metal-Organic-Framework-Based Single-Atom Catalysts for Energy Applications. Chem. 2019, 5, 786–804. 10.1016/j.chempr.2018.12.011. DOI

Fei H.; Dong J.; Feng Y.; Allen Ch. S.; Wan Ch.; Volosskiy B.; Li M.; Zhao Z.; Wang Y.; Sun H.; An P.; Chen W.; Guo Z.; Lee Ch.; Chen D.; Shakir I.; Liu M.; Hu T.; Li Y.; Kirkland A. I.; Duan X.; Huang Y. General Synthesis and Definitive Structural Identification of MN4C4 Single-Atom Catalysts with Tunable Electrocatalytic Activities. Nat. Catal. 2018, 1, 63–72. 10.1038/s41929-017-0008-y. DOI

Gelman D.; Shvartsev B.; Ein-Eli Y. Aluminum-Air Battery Based on an Ionic Liquid Electrolyte. J. Mater. Chem. A 2014, 2, 20237–20242. 10.1039/C4TA04721D. DOI

Girishkumar G.; McCloskey B.; Luntz A. C.; Swanson S.; Wilcke W. Lithium-Air Battery: Promise and Challenges. J. Phys. Chem. Lett. 2010, 1, 2193–2203. 10.1021/jz1005384. DOI

Faegh E.; Ng B.; Hayman D.; Mustain W. E. Practical Assessment of the Performance of Aluminium Battery Technologies. Nat. Energy 2021, 6, 21–29. 10.1038/s41560-020-00728-y. DOI

Egan D. R.; Ponce de León C.; Wood R. J. K.; Jones R. L.; Stokes K. R.; Walsh F. C. Developments in Electrode Materials and Electrolytes for Aluminium-Air Batteries. J. Power Sources 2013, 236, 293–310. 10.1016/j.jpowsour.2013.01.141. DOI

Ryu J.; Park M.; Cho J. Advanced Technologies for High-Energy Aluminum-Air Batteries. A comprehensive review. Adv. Mater. 2019, 31, 1804784.10.1002/adma.201804784. PubMed DOI

Chen L. D.; Nørskov J. K.; Luntz A. C. Al-Air Batteries: Fundamental Thermodynamic Limitations from First-Principles Theory. J. Phys. Chem. Lett. 2015, 6, 175–179. 10.1021/jz502422v. PubMed DOI

Liu Y.; Sun Q.; Li W.; Adair K. R.; Li J.; Sun X. A Comprehensive Review on Recent Progress in Aluminum-Air Batteries. Green Energy Environ. 2017, 2, 246–277. 10.1016/j.gee.2017.06.006. DOI

Olabi A. G.; Sayed E. T.; Wilberforce T.; Jamal A.; Alami A. H.; Elsaid K.; Rahman S. M. A.; Shah S. K.; Abdelkareem M. A. Metal-Air Batteries-A Review. Energies 2021, 14, 7373.10.3390/en14217373. DOI

He T.; Zhang Y.; Chen Y.; Zhang Z.; Wang H.; Hu Y.; Liu M.; Pao C.-W.; Chen J.-L.; Chang L. Y.; Sun Z.; Xiang J.; Zhang Y.; Chen S. Single Iron Atoms Stabilized by Microporous Defects of Biomass-Derived Carbon Aerogels as High-Performance Cathode Electrocatalysts for Aluminum-Air Batteries. J. Mater. Chem. A 2019, 7, 20840–20846. 10.1039/C9TA05981D. DOI

Sanchis-Gual R.; Seijas-Da Silva A.; Coronado-Puchau M.; Otero T. F.; Abellán G.; Coronado E. Improving the Onset Potential and Tafel Slope Determination of Earth-Abundant Water Oxidation Electrocatalysts. Electrochim. Acta 2021, 388, 138613.10.1016/j.electacta.2021.138613. DOI

Zhao L.; Zhang Y.; Huang L.-B.; Liu X.-Z.; Zhang Q.-H.; He C.; Wu Z.-Y.; Zhang L.-J.; Wu J.; Yang W.; Gu L.; Hu J.-S.; Wan L.-J. Cascade Anchoring Strategy for General Mass Production of High-Loading Single-Atomic Metal-Nitrogen Catalysts. Nat. Commun. 2019, 10, 1278.10.1038/s41467-019-09290-y. PubMed DOI PMC

Chen K.; Liu K.; An P.; Li H.; Lin Y.; Hu J.; Jia C.; Fu J.; Li H.; Liu H.; Lin Z.; Li W.; Li J.; Lu Y.-R.; Chan T.-S.; Zhang N.; Liu M. Iron Phthalocyanine with Coordination Induced Electronic Localization to Boost Oxygen Reduction Reaction. Nat. Commun. 2020, 11, 4173.10.1038/s41467-020-18062-y. PubMed DOI PMC

Cao R.; Thapa R.; Kim H.; Xu X.; Gyu Kim M.; Li Q.; Park N.; Liu M.; Cho J. Promotion of Oxygen Reduction by a Bio-Inspired Tethered Iron Phthalocyanine Carbon Nanotube-Based Catalyst. Nat. Commun. 2013, 4, 2076.10.1038/ncomms3076. PubMed DOI

Wang Y.; Yu B.; Liu K.; Yang X.; Liu M.; Chan T.-S.; Qiu X.; Li J.; Li W. Co Single-Atoms on Ultrathin N-Doped Porous Carbon via a Biomass Complexation Strategy for High Performance Metal-Air Batteries. J. Mater. Chem. A 2020, 8, 2131–2139. 10.1039/C9TA12171D. DOI

Fetrow Ch. J.; Carugati C.; Zhou X.-D.; Wei S. Electrochemistry of Metal-CO2 Batteries: Opportunities and Challenges. Energy Stor. Mater. 2022, 45, 911–933. 10.1016/j.ensm.2021.12.035. DOI

Wan W.; Zhao Y.; Wei S.; Triana C. A.; Li J.; Arcifa A.; Allen Ch. S.; Cao R.; Patzke G. R. Mechanistic Insight into the Active Centers of Single/Dual-Atom Ni/Fe-based Oxygen Electrocatalysts. Nat. Commun. 2021, 12, 5589.10.1038/s41467-021-25811-0. PubMed DOI PMC

Yin Y.-X.; Xin S.; Guo Y.-G.; Wan L.-J. Lithium-Sulfur Batteries: Electrochemistry, Materials, and Prospects. Angew. Chem., Int. Ed. 2013, 52, 13186–13200. 10.1002/anie.201304762. PubMed DOI

Betz J.; Bieker G.; Meister P.; Placke T.; Winter M.; Schmuch R. Theoretical versus Practical Energy: A Plea for More Transparency in the Energy Calculation of Different Rechargeable Battery Systems. Adv. Energy Mater. 2019, 9, 1803170.10.1002/aenm.201803170. DOI

Manthiram A.; Fu Y.; Su Y.-S. Challenges and Prospects of Lithium-Sulfur Batteries. Acc. Chem. Res. 2013, 46, 1125–1134. 10.1021/ar300179v. PubMed DOI

Larcher D.; Tarascon J.-M. Towards Greener and More Sustainable Batteries for Electrical Energy Storage. Nat. Chem. 2015, 7, 19–29. 10.1038/nchem.2085. PubMed DOI

Tantis I.; Bakandritsos A.; Zaoralová D.; Medved′ M.; Jakubec P.; Havláková J.; Zbořil R.; Otyepka M. Covalently Interlinked Graphene Sheets with Sulfur-Chains Enable Superior Lithium-Sulfur Battery Cathodes at Full-Mass Level. Adv. Funct. Mater. 2021, 31, 2101326.10.1002/adfm.202101326. DOI

Lim W.-G.; Kim S.; Jo C.; Lee J. A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757. 10.1002/anie.201902413. PubMed DOI

Xu R.; Lu J.; Amine K. Progress in Mechanistic Understanding and Characterization Techniques of Li-S Batteries. Adv. Energy Mater. 2015, 5, 1500408.10.1002/aenm.201500408. DOI

Lang S.-Y.; Xiao R.-J.; Gu L.; Guo Y.-G.; Wen R.; Wan L.-J. Interfacial Mechanism in Lithium-Sulfur Batteries: How Salts Mediate the Structure Evolution and Dynamics. J. Am. Chem. Soc. 2018, 140, 8147–8155. 10.1021/jacs.8b02057. PubMed DOI

Yang Y.; Wang Z.; Jiang T.; Dong C.; Mao Z.; Lu C.; Sun W.; Sun K. A Heterogenized Ni-Doped Zeolitic Imidazolate Framework to Guide Efficient Trapping and Catalytic Conversion of Polysulfides for Greatly Improved Lithium-Sulfur Batteries. J. Mater. Chem. A 2018, 6, 13593–13598. 10.1039/C8TA05176C. DOI

Pang Q.; Kundu D.; Cuisinier M.; Nazar L. F. Surface-Enhanced Redox Chemistry of Polysulphides on a Metallic and Polar Host for Lithium-Sulphur Batteries. Nat. Commun. 2014, 5, 4759.10.1038/ncomms5759. PubMed DOI

Huang W.; Lin Z.; Liu H.; Na R.; Tian J.; Shan Z. Enhanced Polysulfide Redox Kinetics Electro-Catalyzed by Cobalt Phthalocyanine for Advanced Lithium-Sulfur Batteries. J. Mater. Chem. A 2018, 6, 17132–17141. 10.1039/C8TA04890H. DOI

Zhang J.; Li Z.; Chen Y.; Gao S.; Lou X. W. D. Nickel-Iron Layered Double Hydroxide Hollow Polyhedrons as a Superior Sulfur Host for Lithium-Sulfur Batteries. Angew. Chem., Int. Ed. 2018, 57, 10944–10948. 10.1002/anie.201805972. PubMed DOI

Liang X.; Hart C.; Pang Q.; Garsuch A.; Weiss T.; Nazar L. F. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries. Nat. Commun. 2015, 6, 5682.10.1038/ncomms6682. PubMed DOI

Zhuang Z.; Kang Q.; Wang D.; Li Y. Single-Atom Catalysis Enables Long-Life, High-Energy Lithium-Sulfur Batteries. Nano Res. 2020, 13, 1856–1866. 10.1007/s12274-020-2827-4. DOI

Wang P.; Xi B.; Huang M.; Chen W.; Feng J.; Xiong S. Emerging Catalysts to Promote Kinetics of Lithium-Sulfur Batteries. Adv. Energy Mater. 2021, 11, 2002893.10.1002/aenm.202002893. DOI

Xiao R.; Chen K.; Zhang X.; Yang Z.; Hu G.; Sun Z.; Cheng H.-M.; Li F. Single-Atom Catalysts for Metal-Sulfur Batteries: Current Progress and Future Perspectives. J. Energy Chem. 2021, 54, 452–466. 10.1016/j.jechem.2020.06.018. DOI

Zhou L.; Danilov D. L.; Qiao F.; Wang J.; Li H.; Eichel R.-A.; Notten P. H. L. Sulfur Reduction Reaction in Lithium-Sulfur Batteries: Mechanisms, Catalysts, and Characterization. Adv. Energy Mater. 2022, 12, 2202094.10.1002/aenm.202270183. DOI

Zhou G.; Zhao S.; Wang T.; Yang S.-Z.; Johannessen B.; Chen H.; Liu C.; Ye Y.; Wu Y.; Peng Y.; Liu C.; Jiang S. P.; Zhang Q.; Cui Y. Theoretical Calculation Guided Design of Single-Atom Catalysts toward Fast Kinetic and Long-Life Li-S Batteries. Nano Lett. 2020, 20, 1252–1261. 10.1021/acs.nanolett.9b04719. PubMed DOI

Wang C.; Song H.; Yu C.; Ullah Z.; Guan Z.; Chu R.; Zhang Y.; Zhao L.; Li Q.; Liu L. Iron Single-Atom Catalyst Anchored on Nitrogen-Rich MOF-Derived Carbon Nanocage to Accelerate Polysulfide Redox Conversion for Lithium Sulfur Batteries. J. Mater. Chem. A 2020, 8, 3421–3430. 10.1039/C9TA11680J. DOI

Wang J.; Jia L.; Zhong J.; Xiao Q.; Wang C.; Zang K.; Liu H.; Zheng H.; Luo J.; Yang J.; Fan H.; Duan W.; Wu Y.; Lin H.; Zhang Y. Single-Atom Catalyst Boosts Electrochemical Conversion Reactions in Batteries. Energy Storage Mater. 2019, 18, 246–252. 10.1016/j.ensm.2018.09.006. DOI

Yu M.; Zhou S.; Wang Z.; Wang Y.; Zhang N.; Wang S.; Zhao J.; Qiu J. Accelerating Polysulfide Redox Conversion on Bifunctional Electrocatalytic Electrode for Stable Li-S Batteries. Energy Storage Mater. 2019, 20, 98–107. 10.1016/j.ensm.2018.11.028. DOI

Liu Z.; Zhou L.; Ge Q.; Chen R.; Ni M.; Utetiwabo W.; Zhang X.; Yang W. Atomic Iron Catalysis of Polysulfide Conversion in Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2018, 10, 19311–19317. 10.1021/acsami.8b03830. PubMed DOI

Zhang Y.; Liu J.; Wang J.; Zhao Y.; Luo D.; Yu A.; Wang X.; Chen Z. Engineering Oversaturated Fe-N5Multifunctional Catalytic Sites for Durable Lithium-Sulfur Batteries. Angew. Chem., Int. Ed. 2021, 60, 26622–26629. 10.1002/anie.202108882. PubMed DOI

Kim J.; Kim S.-J.; Jung E.; Mok D. H.; Paidi V. K.; Lee J.; Lee H. S.; Jeoun Y.; Ko W.; Shin H.; Lee B.-H.; Kim S.-Y.; Kim H.; Kim J. H.; Cho S.-P.; Lee K.-S.; Back S.; Yu S.-H.; Sung Y.-E.; Hyeon T. Atomic Structure Modification of Fe-N-C Catalysts via Morphology Engineering of Graphene for Enhanced Conversion Kinetics of Lithium-Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2110857.10.1002/adfm.202110857. DOI

Du Z.; Chen X.; Hu W.; Chuang C.; Xie S.; Hu A.; Yan W.; Kong X.; Wu X.; Ji H.; Wan L.-J. Cobalt in Nitrogen-Doped Graphene as Single-Atom Catalyst for High-Sulfur Content Lithium-Sulfur Batteries. J. Am. Chem. Soc. 2019, 141, 3977–3985. 10.1021/jacs.8b12973. PubMed DOI

Sun X.; Qiu Y.; Jiang B.; Chen Z.; Zhao Ch.; Zhou H.; Yang L.; Fan L.; Zhang Y.; Zhang N. Isolated Fe-Co Heteronuclear Diatomic Sites as Efficient Bifunctional Catalysts for High-Performance Lithium-Sulfur Batteries. Nat. Commun. 2023, 14, 291.10.1038/s41467-022-35736-x. PubMed DOI PMC

Wang R.; Wu R.; Yan X.; Liu D.; Guo P.; Li W.; Pan H. Implanting Single Zn Atoms Coupled with Metallic Co Nanoparticles into Porous Carbon Nanosheets Grafted with Carbon Nanotubes for High-Performance Lithium-Sulfur Batteries. Adv. Funct. Mater. 2022, 32, 2200424.10.1002/adfm.202200424. DOI

Zhang D.; Wang S.; Hu R.; Gu J.; Cui Y.; Li B.; Chen W.; Liu C.; Shang J.; Yang S. Catalytic Conversion of Polysulfides on Single Atom Zinc Implanted MXene toward High-Rate Lithium-Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2002471.10.1002/adfm.202002471. DOI

Zhang L.; Liu D.; Muhammad Z.; Wan F.; Xie W.; Wang Y.; Song L.; Niu Z.; Chen J. Single Nickel Atoms on Nitrogen-Doped Graphene Enabling Enhanced Kinetics of Lithium-Sulfur Batteries. Adv. Mater. 2019, 31, 1903955.10.1002/adma.201903955. PubMed DOI

Zhang K.; Chen Z.; Ning R.; Xi S.; Tang W.; Du Y.; Liu C.; Ren Z.; Chi X.; Bai M.; Shen C.; Li X.; Wang X.; Zhao X.; Leng K.; Pennycook S. J.; Li H.; Xu H.; Loh K. P.; Xie K. Single-Atom Coated Separator for Robust Lithium-Sulfur Batteries. ACS Appl. Mater. Interfaces 2019, 11, 25147–25154. 10.1021/acsami.9b05628. PubMed DOI

Wu F.; Zhao C.; Chen S.; Lu Y.; Hou Y.; Hu Y.-S.; Maier J.; Yu Y. Multi-Electron Reaction Materials for Sodium-Based Batteries. Mater. Today 2018, 21, 960–973. 10.1016/j.mattod.2018.03.004. DOI

Wang Y.-X.; Zhang B.; Lai W.; Xu Y.; Chou S.-L.; Liu H.-K.; Dou S.-X. Sodium-Sulfur Batteries: Room-Temperature Sodium-Sulfur Batteries: A Comprehensive Review on Research Progress and Cell Chemistry. Adv. Energy Mater. 2017, 7, 1602829.10.1002/aenm.201770140. DOI

Manthiram A.; Yu X. Ambient Temperature Sodium-Sulfur Batteries. Small 2015, 11, 2108–2114. 10.1002/smll.201403257. PubMed DOI

Jayan R.; Islam M. M. Single-Atom Catalysts for Improved Cathode Performance in Na-S Batteries: A Density Functional Theory (DFT) Study. J. Phys. Chem. C 2021, 125, 4458–4467. 10.1021/acs.jpcc.1c00467. DOI

Zhang B.-W.; Sheng T.; Liu Y.-D.; Wang Y.-X.; Zhang L.; Lai W.-H.; Wang L.; Yang J.; Gu Q.-F.; Chou S.-L.; Liu H.-K.; Dou S.-X. Atomic Cobalt as an Efficient Electrocatalyst in Sulfur Cathodes for Superior Room-Temperature Sodium-Sulfur Batteries. Nat. Commun. 2018, 9, 4082.10.1038/s41467-018-06144-x. PubMed DOI PMC

Liu H.; Lai W.-H.; Liang Y.; Liang X.; Yan Z.-C.; Yang H.-L.; Lei Y.-J.; Wei P.; Zhou S.; Gu Q.-F.; Chou S.-L.; Liu H. K.; Dou S. X.; Wang Y.-X. Sustainable S Cathodes with Synergic Electrocatalysis for Room-Temperature Na-S Batteries. J. Mater. Chem. A 2021, 9, 566–574. 10.1039/D0TA08748C. DOI

Xiao F.; Wang H.; Xu J.; Yang W.; Yang X.; Yu D. Y. W.; Rogach A. L. Generating Short-Chain Sulfur Suitable for Efficient Sodium-Sulfur Batteries via Atomic Copper Sites on a N, O-Codoped Carbon Composite. Adv. Energy Mater. 2021, 11, 2100989.10.1002/aenm.202100989. DOI

Ding J.; Zhang H.; Fan W.; Zhong C.; Hu W.; Mitlin D. Review of Emerging Potassium-Sulfur Batteries. Adv. Mater. 2020, 32, 1908007.10.1002/adma.201908007. PubMed DOI

Yi Z.; Jiang S.; Tian J.; Qian Y.; Chen S.; Wei S.; Lin N.; Qian Y. Amidation-Dominated Re-Assembly Strategy for Single-Atom Design/Nano-Engineering: Constructing Ni/S/C Nanotubes with Fast and Stable K-Storage. Angew. Chem., Int. Ed. 2020, 59, 6459–6465. 10.1002/anie.201916370. PubMed DOI

Ye C.; Shan J.; Chao D.; Liang P.; Jiao Y.; Hao J.; Gu Q.; Davey K.; Wang H.; Qiao S.-Z. Catalytic Oxidation of K2S via Atomic Co and Pyridinic N Synergy in Potassium-Sulfur Batteries. J. Am. Chem. Soc. 2021, 143, 16902–16907. 10.1021/jacs.1c06255. PubMed DOI

Eftekhari A. The Rise of Lithium-Selenium Batteries. Sustain. Energy Fuels 2017, 1, 14–29. 10.1039/C6SE00094K. DOI

Abouimrane A.; Dambournet D.; Chapman K. W.; Chupas P. J.; Weng W.; Amine K. A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium-Sulfur as a Positive Electrode. J. Am. Chem. Soc. 2012, 134, 4505–4508. 10.1021/ja211766q. PubMed DOI

Sun K.; Zhao H.; Zhang S.; Yao J.; Xu J. Selenium/Pomelo Peel-Derived Carbon Nanocomposite as Advanced Cathode for Lithium-Selenium Batteries. Ionics 2015, 21, 2477–2484. 10.1007/s11581-015-1451-x. DOI

Li Z.; Yuan L.; Yi Z.; Liu Y.; Huang Y. Confined Selenium within Porous Carbon Nanospheres as Cathode for Advanced Li-Se Batteries. Nano Energy 2014, 9, 229–236. 10.1016/j.nanoen.2014.07.012. DOI

Tian H.; Tian H.; Wang S.; Chen S.; Zhang F.; Song L.; Liu H.; Liu J.; Wang G. High-Power Lithium-Selenium Batteries Enabled by Atomic Cobalt Electrocatalyst in Hollow Carbon Cathode. Nat. Commun. 2020, 11, 5025.10.1038/s41467-020-18820-y. PubMed DOI PMC

Fleischmann S.; Zhang Y.; Wang X.; Cummings P. T.; Wu J.; Simon P.; Gogotsi Y.; Presser V.; Augustyn V. Continuous Transition from Double-Layer to Faradaic Charge Storage in Confined Electrolytes. Nat. Energy 2022, 7, 222–228. 10.1038/s41560-022-00993-z. DOI

Fleischmann S.; Mitchell J. B.; Wang R.; Zhan C.; Jiang D.; Presser V.; Augustyn V. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials. Chem. Rev. 2020, 120, 6738–6782. 10.1021/acs.chemrev.0c00170. PubMed DOI

Simon P.; Gogotsi Y. Perspectives for Electrochemical Capacitors and Related Devices. Nat. Mater. 2020, 19, 1151–1163. 10.1038/s41563-020-0747-z. PubMed DOI

Zhang L. L.; Zhao X. S. Carbon-Based Materials as Supercapacitor Electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531. 10.1039/b813846j. PubMed DOI

Jiao Y.; Pei J.; Chen D.; Yan C.; Hu Y.; Zhang Q.; Chen G. Mixed-Metallic MOF Based Electrode Materials for High Performance Hybrid Supercapacitors. J. Mater. Chem. A 2017, 5, 1094–1102. 10.1039/C6TA09805C. DOI

Wang H.; Casalongue H. S.; Liang Y.; Dai H. Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132, 7472–7477. 10.1021/ja102267j. PubMed DOI

Shan Q. Y.; Guo X. L.; Dong F.; Zhang Y. X. Single Atom (K/Na) Doped Graphitic Carbon Nitride@MnO2 as an Efficient Electrode Material for Supercapacitor. Mater. Lett. 2017, 202, 103–106. 10.1016/j.matlet.2017.05.061. DOI

Lu D.; Zhang X.; Chen H.; Lin J.; Liu Y.; Chang B.; Qiu F.; Han S.; Zhang F. A High Performance Solid-State Asymmetric Supercapacitor Based on Anderson-Type Polyoxometalate-Doped Graphene Aerogel. Res. Chem. Intermed. 2019, 45, 3237–3250. 10.1007/s11164-019-03789-1. DOI

Yu F.; Xiong X.; Zhou L.-Y.; Li J.-L.; Liang J.-Y.; Hu S.-Qi.; Lu W.-T.; Li B.; Zhou H.-C. Hierarchical Nickel/Phosphorus/Nitrogen/Carbon Composites Templated by One Metal-Organic Framework as Highly Efficient Supercapacitor Electrode Materials. J. Mater. Chem. A 2019, 7, 2875–2883. 10.1039/C8TA11568K. DOI

Li Z.; Wang D.; Li H.; Ma M.; Zhang Y.; Yan Z.; Agnoli S.; Zhang G.; Sun X. Single-Atom Zn for Boosting Supercapacitor Performance. Nano Res. 2022, 15, 1715–1724. 10.1007/s12274-021-3839-4. DOI

Muzaffar A.; Ahamed M. B.; Deshmukh K.; Thirumalai J. A Review on Recent Advances in Hybrid Supercapacitors: Design, Fabrication and Applications. Renew. Sust. Energy Rev. 2019, 101, 123–145. 10.1016/j.rser.2018.10.026. DOI

Yuan J.; Hu X.; Liu Y.; Zhong G.; Yu B.; Wen Z. Recent Progress in Sodium/Potassium Hybrid Capacitors. Chem. Commun. 2020, 56, 13933–13949. 10.1039/D0CC05476C. PubMed DOI

Salanne M.; Rotenberg B.; Naoi K.; Kaneko K.; Taberna P.-L.; Grey C. P.; Dunn B.; Simon P. Efficient Storage Mechanisms for Building Better Supercapacitors. Nat. Energy 2016, 1, 16070.10.1038/nenergy.2016.70. DOI

Dong L.; Yang W.; Yang W.; Li Y.; Wu W.; Wang G. Multivalent Metal Ion Hybrid Capacitors: A Review with a Focus on Zinc-Ion Hybrid Capacitors. J. Mater. Chem. A 2019, 7, 13810–13832. 10.1039/C9TA02678A. DOI

Li H.; Lang J.; Lei S.; Chen J.; Wang K.; Liu L.; Zhang T.; Liu W.; Yan X. A High-Performance Sodium-Ion Hybrid Capacitor Constructed by Metal-Organic Framework-Derived Anode and Cathode Materials. Adv. Funct. Mater. 2018, 28, 1800757.10.1002/adfm.201800757. DOI

Hai X.; Xi S.; Mitchell S.; Harrath K.; Xu H.; Akl D. F.; Kong D.; Li J.; Li Z.; Sun T.; Yang H.; Cui Y.; Su Ch.; Zhao X.; Li J.; Pérez-Ramírez J.; Lu J. Scalable Two-Step Annealing Method for Preparing Ultra-High-Density Single-Atom Catalyst Libraries. Nat. Nanotechnol. 2022, 17, 174–181. 10.1038/s41565-021-01022-y. PubMed DOI

Qiao J.; Liu Y.; Hong F.; Zhang J. A Review of Catalysts for the Electroreduction of Carbon Dioxide to Produce Low-Carbon Fuels. Chem. Soc. Rev. 2014, 43, 631–675. 10.1039/C3CS60323G. PubMed DOI

Nitopi S.; Bertheussen E.; Scott S. B.; Liu X.; Engstfeld A. K.; Horch S.; Seger B.; Stephens I. E. L.; Chan K.; Hahn Ch.; Norskov J. K.; Jaramillo T. F.; Chorkendorff I. Progress and Perspectives of Electrochemical CO2 Reduction on Copper in Aqueous Electrolyte. Chem. Rev. 2019, 119, 7610–7672. 10.1021/acs.chemrev.8b00705. PubMed DOI

Long Ch.; Li X.; Guo J.; Shi Y.; Liu S.; Tang Z. Electrochemical Reduction of CO2 over Heterogeneous Catalysts in Aqueous Solution: Recent Progress and Perspectives. Small Methods 2019, 3, 1800369.10.1002/smtd.201800369. DOI

Huang Y.; Rehman F.; Tamtaji M.; Li X.; Huang Y.; Zhang T.; Luo Z. Mechanistic Understanding and Design of Non-Noble Metal-Based Single-Atom Catalysts Supported on Two-Dimensional Materials for CO2 Electroreduction. J. Mater. Chem. A 2022, 10, 5813–5834. 10.1039/D1TA08337F. DOI

Handoko A. D.; Wei F.; Jenndy; Yeo B. S.; Seh Z. W. Understanding Heterogeneous Electrocatalytic Carbon Dioxide Reduction Through Operando Techniques. Nat. Catal. 2018, 1, 922–934. 10.1038/s41929-018-0182-6. DOI

Gu J.; Hsu Ch.-S.; Bai L.; Chen H. M.; Hu X. Atomically dispersed Fe3+ Sites Catalyze Efficient CO2 Electroreduction to CO. Science 2019, 364, 1091–1094. 10.1126/science.aaw7515. PubMed DOI

Pan F.; Zhang H.; Liu K.; Cullen D.; More K.; Wang M.; Feng Z.; Wang G.; Wu G.; Li Y. Unveiling Active Sites of CO2 Reduction on Nitrogen-Coordinated and Atomically Dispersed Iron and Cobalt Catalysts. ACS Catal. 2018, 8, 3116–3122. 10.1021/acscatal.8b00398. DOI

Fei H.; Dong J.; Chen D.; Hu T.; Duan X.; Shakir I.; Huang Y.; Duan X. Single Atom Electrocatalysts Supported on Graphene or Graphene-Like Carbons. Chem. Soc. Rev. 2019, 48, 5207–5241. 10.1039/C9CS00422J. PubMed DOI

Wang Y.; Wang Q.; Wu J.; Zhao X.; Xiong Y.; Luo F.; Lei Y. Asymmetric Atomic Sites Make Different: Recent Progress in Electrocatalytic CO2 Reduction. Nano Energy 2022, 103, 107815.10.1016/j.nanoen.2022.107815. DOI

Xu Y.; Li F.; Xu A.; Edwards J. P.; Hung S.-F.; Gabardo C. M.; O’Brien C. P.; Liu S.; Wang X.; Li Y.; Wicks L.; Miao R. K.; Liu Y.; Li J.; Huang J. E.; Abed J.; Wang Y.; Sargent E. H.; Sinton D. Low Coordination Number Copper Catalysts for Electrochemical CO2 Methanation in a Membrane Electrode Assembly. Nat. Commun. 2021, 12, 2932.10.1038/s41467-021-23065-4. PubMed DOI PMC

Abdinejad M.; Tang K.; Dao C.; Saedy S.; Burdyny T. Immobilization Strategies for Porphyrin-Based Molecular Catalysts for the Electroreduction of CO2. J. Mater. Chem. A 2022, 10, 7626–7636. 10.1039/D2TA00876A. PubMed DOI PMC

Inglis J. L.; MacLean B. J.; Pryce M. T.; Vos J. G. Electrocatalytic Pathways Towards Sustainable Fuel Production from Water and CO2. Coord. Chem. Rev. 2012, 256, 2571–2600. 10.1016/j.ccr.2012.05.002. DOI

Weng Z.; Jiang J.; Wu Y.; Wu Z.; Guo X.; Materna K. L.; Liu W.; Batista V. S.; Brudvig G. W.; Wang H. Electrochemical CO2 Reduction to Hydrocarbons on a Heterogeneous Molecular Cu Catalyst in Aqueous Solution. J. Am. Chem. Soc. 2016, 138, 8076–8079. 10.1021/jacs.6b04746. PubMed DOI

Wu Y.; Jiang Z.; Lu X.; Liang Y.; Wang H. Domino Electroreduction of CO2 to Methanol on a Molecular Catalyst. Nature 2019, 575, 639–642. 10.1038/s41586-019-1760-8. PubMed DOI

Shen J.; Kortlever R.; Kas R.; Birdja Y. Y.; Diaz-Morales O.; Kwon Y.; Ledezma-Yanez I.; Schouten K. J. P.; Mul G.; Koper M. T. M. Electrocatalytic Reduction of Carbon Dioxide to Carbon Monoxide and Methane at an Immobilized Cobalt Protoporphyrin. Nat. Commun. 2015, 6, 8177.10.1038/ncomms9177. PubMed DOI PMC

Niu K.; Xu Y.; Wang H.; Ye R.; Xin H. L.; Lin F.; Tian C.; Lum Y.; Bustillo K. C.; Doeff M. M.; Koper M. T. M.; Ager J.; Xu R.; Zheng H. A Spongy Nickel-Organic CO2 Reduction Photocatalyst for Nearly 100% Selective CO Production. Sci. Adv. 2017, 3, e170092110.1126/sciadv.1700921. PubMed DOI PMC

Wu Y.; Jiang J.; Weng Z.; Wang M.; Broere D. L. J.; Zhong Y.; Brudvig G. W.; Feng Z.; Wang H. Electroreduction of CO2 Catalyzed by a Heterogenized Zn-Porphyrin Complex with a Redox-Innocent Metal Center. ACS Cent. Sci. 2017, 3, 847–852. 10.1021/acscentsci.7b00160. PubMed DOI PMC

Meng D.-L.; Zhang M.-D.; Si D.-H.; Mao M.-J.; Hou Y.; Huang Y.-B.; Cao R. Highly Selective Tandem Electroreduction of CO2 to Ethylene over Atomically Isolated Nickel-Nitrogen Site/Copper Nanoparticle Catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492. 10.1002/anie.202111136. PubMed DOI

Benson E. E.; Kubiak C. P.; Sathrum A. J.; Smieja J. M. Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels. Chem. Soc. Rev. 2009, 38, 89–99. 10.1039/B804323J. PubMed DOI

Li M.; Wang H.; Luo W.; Sherrell P. C.; Chen J.; Yang J. Heterogeneous Single-Atom Catalysts for Electrochemical CO2 Reduction Reaction. Adv. Mater. 2020, 32, 2001848.10.1002/adma.202001848. PubMed DOI

Gong L.; Zhang D.; Lin Ch.-Y.; Zhu Y.; Shen Y.; Zhang J.; Han X.; Zhang L.; Xia Z. Catalytic Mechanisms and Design Principles for Single-Atom Catalysts in Highly Efficient CO2 Conversion. Adv. Energy Mater. 2019, 9, 1902625.10.1002/aenm.201902625. DOI

Liu J.; Cai Y.; Song R.; Ding S.; Lyu Z.; Chang Y.-Ch.; Tian H.; Zhang X.; Du D.; Zhu W.; Zhou Y.; Lin Y. Recent Progress on Single-Atom Catalysts for CO2 Electroreduction. Mater. Today 2021, 48, 95–114. 10.1016/j.mattod.2021.02.005. DOI

Guan J. Effect of Coordination Surroundings of Isolated Metal Sites on Electrocatalytic Performances. J. Power Sources 2021, 506, 230143.10.1016/j.jpowsour.2021.230143. DOI

Wang Y.; Liu Y.; Liu W.; Wu J.; Li Q.; Feng Q.; Chen Z.; Xiong X.; Wang D.; Lei Y. Regulating the Coordination Structure of Metal Single Atoms for Efficient Electrocatalytic CO2 Reduction. Energy Environ. Sci. 2020, 13, 4609–4624. 10.1039/D0EE02833A. DOI

Yang H. B.; Hung S.-F.; Liu S.; Yuan K.; Miao S.; Zhang L.; Huang X.; Wang H.-Y.; Cai W.; Chen R.; Gao J.; Yang X.; Chen W.; Huang Y.; Chen H. M.; Li Ch. M.; Zhang T.; Liu B. Atomically Dispersed Ni(I) as the Active Site for Electrochemical CO2 Reduction. Nat. Energy 2018, 3, 140–147. 10.1038/s41560-017-0078-8. DOI

Ju W.; Bagger A.; Hao G.-P.; Varela A. S.; Sinev I.; Bon V.; Roldan Cuenya B.; Kaskel S.; Rossmeisl J.; Strasser P. Understanding Activity and Selectivity of Metal-Nitrogen-Doped Carbon Catalysts for Electrochemical Reduction of CO2. Nat. Commun. 2017, 8, 944.10.1038/s41467-017-01035-z. PubMed DOI PMC

Hossain M. D.; Huang Y.; Yu T. H.; Goddard W. A. III; Luo Z. Reaction Mechanism and Kinetics for CO2 Reduction on Nickel Single Atom Catalysts from Quantum Mechanics. Nat. Commun. 2020, 11, 2256.10.1038/s41467-020-16119-6. PubMed DOI PMC

Liu S.; Yang H. B.; Hung S.-F.; Ding J.; Cai W.; Liu L.; Gao J.; Li X.; Ren X.; Kuang Z.; Huang Y.; Zhang T.; Liu B. Elucidating the Electrocatalytic CO2 Reduction Reaction over a Model Single-Atom Nickel Catalyst. Angew. Chem., Int. Ed. 2020, 59, 798–803. 10.1002/anie.201911995. PubMed DOI

Zhao X.; Liu Y. Unveiling the Active Structure of Single Nickel Atom Catalysis: Critical Roles of Charge Capacity and Hydrogen Bonding. J. Am. Chem. Soc. 2020, 142, 5773–5777. 10.1021/jacs.9b13872. PubMed DOI

Yang H.; Shang L.; Zhang Q.; Shi R.; Waterhouse G. I. N.; Gu L.; Zhang T. A Universal Ligand Mediated Method for Large Scale Synthesis of Transition Metal Single Atom Catalysts. Nat. Commun. 2019, 10, 4585.10.1038/s41467-019-12510-0. PubMed DOI PMC

Song Z.; Zhang L.; Doyle-Davis K.; Fu X.; Luo J.-L.; Sun X. Recent Advances in MOF-Derived Single Atom Catalysts for Electrochemical Applications. Adv. Energy Mater. 2020, 10, 2001561.10.1002/aenm.202001561. DOI

Zhang H.; Li J.; Xi S.; Du Y.; Hai X.; Wang J.; Xu H.; Wu G.; Zhang J.; Lu J.; Wang J. A Graphene-Supported Single-Atom FeN5 Catalytic Site for Efficient Electrochemical CO2 Reduction. Angew. Chem., Int. Ed. 2019, 58, 14871–14876. 10.1002/anie.201906079. PubMed DOI

Pan F.; Deng W.; Justiniano C.; Li Y. Identification of Champion Transition Metals Centers in Metal and Nitrogen-Codoped Carbon Catalysts for CO2 Reduction. Appl. Catal. B: Environ. 2018, 226, 463–472. 10.1016/j.apcatb.2018.01.001. DOI

Zheng W.; Yang J.; Chen H.; Hou Y.; Wang Q.; Gu M.; He F.; Xia Y.; Xia Z.; Li Z.; Yang B.; Lei L.; Yuan Ch.; He Q.; Qiu M.; Feng X. Atomically Defined Undercoordinated Active Sites for Highly Efficient CO2 Electroreduction. Adv. Funct. Mater. 2020, 30, 1907658.10.1002/adfm.201907658. DOI

Li X.; Bi W.; Chen M.; Sun Y.; Ju H.; Yan W.; Zhu J.; Wu X.; Chu W.; Wu C.; Xie Y. Exclusive Ni-N4 Sites Realize Near-Unity CO Selectivity for Electrochemical CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 14889–14892. 10.1021/jacs.7b09074. PubMed DOI

Zhang E.; Wang T.; Yu K.; Liu J.; Chen W.; Li A.; Rong H.; Lin R.; Ji S.; Zheng X.; Wang Y.; Zheng L.; Chen Ch.; Wang D.; Zhang J.; Li Y. Bismuth Single Atoms Resulting from Transformation of Metal-Organic Frameworks and Their Use as Electrocatalysts for CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 16569–16573. 10.1021/jacs.9b08259. PubMed DOI

Hu X.-M.; Hval H. H.; Bjerglund E. T.; Dalgaard K. J.; Madsen M. R.; Pohl M.-M.; Welter E.; Lamagni P.; Buhl K. B.; Bremholm M.; Beller M.; Pedersen S. U.; Skrydstrup T.; Daasbjerg K. Selective CO2 Reduction to CO in Water using Earth-Abundant Metal and Nitrogen-Doped Carbon Electrocatalysts. ACS Catal. 2018, 8, 6255–6264. 10.1021/acscatal.8b01022. DOI

Mochizuki S.; Ogiwara N.; Takayanagi M.; Nagaoka M.; Kitagawa S.; Uemura T. Sequence-Regulated Copolymerization Based on Periodic Covalent Positioning of Monomers Along One-Dimensional Nanochannels. Nat. Commun. 2018, 9, 329.10.1038/s41467-017-02736-1. PubMed DOI PMC

Huan T. N.; Ranjbar N.; Rousse G.; Sougrati M.; Zitolo A.; Mougel V.; Jaouen F.; Fontecave M. Electrochemical Reduction of CO2 Catalyzed by Fe-N-C Materials: A Structure-Selectivity Study. ACS Catal. 2017, 7, 1520–1525. 10.1021/acscatal.6b03353. DOI

Zhao C.; Dai X.; Yao T.; Chen W.; Wang X.; Wang J.; Yang J.; Wei S.; Wu Y.; Li Y. Ionic Exchange of Metal-Organic Frameworks to Access Single Nickel Sites for Efficient Electroreduction of CO2. J. Am. Chem. Soc. 2017, 139, 8078–8081. 10.1021/jacs.7b02736. PubMed DOI

Zhang Y.; Qi K.; Li J.; Karamoko B. A.; Lajaunie L.; Godiard F.; Oliviero E.; Cui X.; Wang Y.; Zhang Y.; Wu H.; Wang W.; Voiry D. 2.6% cm–-2 Single-Pass CO2-to-CO Conversion Using Ni Single Atoms Supported on Ultra-Thin Carbon Nanosheets in a Flow Electrolyzer. ACS Catal. 2021, 11, 12701–12711. 10.1021/acscatal.1c03231. DOI

Wang X.; Chen Z.; Zhao X.; Yao T.; Chen W.; You R.; Zhao C.; Wu G.; Wang J.; Huang W.; Yang J.; Hong X.; Wei S.; Wu Y.; Li Y. Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948. 10.1002/anie.201712451. PubMed DOI

Varela A. S.; Ranjbar Sahraie N.; Steinberg J.; Ju W.; Oh H.-S.; Strasser P. Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons. Angew. Chem., Int. Ed. 2015, 54, 10758–10762. 10.1002/anie.201502099. PubMed DOI

Jiang K.; Siahrostami S.; Zheng T.; Hu Y.; Hwang S.; Stavitski E.; Peng Y.; Dynes J.; Gangisetty M.; Su D.; Attenkofer K.; Wang H. Isolated Ni Single Atoms in Graphene Nanosheets for High-Performance CO2 Reduction. Energy Environ. Sci. 2018, 11, 893–903. 10.1039/C7EE03245E. DOI

Yan C.; Li H.; Ye Y.; Wu H.; Cai F.; Si R.; Xiao J.; Miao S.; Xie S.; Yang F.; Li Y.; Wang G.; Bao X. Coordinatively Unsaturated Nickel-Nitrogen Sites Towards Selective and High-Rate CO2 Electroreduction. Energy Environ. Sci. 2018, 11, 1204–1210. 10.1039/C8EE00133B. DOI

Cheng Y.; Zhao S.; Li H.; He S.; Veder J.-P.; Johannessen B.; Xiao J.; Lu S.; Pan J.; Chisholm M. F.; Yang S. Z.; Liu Ch.; Chen J. G.; Jiang S. P. Unsaturated Edge-Anchored Ni Single Atoms on Porous Microwave Exfoliated Graphene Oxide for Electrochemical CO2. Appl. Catal. B: Environ. 2019, 243, 294–303. 10.1016/j.apcatb.2018.10.046. DOI

Zheng T.; Jiang K.; Ta N.; Hu Y.; Zeng J.; Liu J.; Wang H. Large-Scale and Highly Selective CO2 Electrocatalytic Reduction on Nickel Single-Atom Catalyst. Joule 2019, 3, 265–278. 10.1016/j.joule.2018.10.015. DOI

Xia C.; Qiu Y.; Xia Y.; Zhu P.; King G.; Zhang X.; Wu Z.; Kim J. Y.; Cullen D. A.; Zheng D.; Li P.; Shakouri M.; Heredia E.; Cui P.; Alshareef H. N.; Hu Y.; Wang H.. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 2021, 13, 887, Figure 270.10.1038/s41557-021-00734-x PubMed DOI

Han S.-G.; Ma D.-D.; Zhou S.-H.; Zhang K.; Wei W.-B.; Du Y.; Wu X.-T.; Xu Q.; Zou R.; Zhu Q.-L. Fluorine-Tuned Single-Atom Catalysts with Dense Surface Ni-N4 Sites on Ultrathin Carbon Nanosheets for Efficient CO2 Electroreduction. Appl. Catal. B: Environ. 2021, 283, 119591.10.1016/j.apcatb.2020.119591. DOI

Cao X.; Zhao L.; Wulan B.; Tan D.; Chen Q.; Ma J.; Zhang J. Atomic Bridging Structure of Nickel-Nitrogen-Carbon for Highly Efficient Electrocatalytic Reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e20211391810.1002/anie.202113918. PubMed DOI

Chen Z.; Huang A.; Yu K.; Cui T.; Zhuang Z.; Liu S.; Li J.; Tu R.; Sun K.; Tan X.; Zhang J.; Liu D.; Zhang Y.; Jiang P.; Pan Y.; Chen Ch.; Peng Q.; Li Y. Fe1N4-O1 Site with Axial Fe-O Coordination for Highly Selective CO2 Reduction Over a Wide Potential Range. Energy Environ. Sci. 2021, 14, 3430–3437. 10.1039/D1EE00569C. DOI

Sun X.; Tuo Y.; Ye C.; Chen C.; Lu Q.; Li G.; Jiang P.; Chen S.; Zhu P.; Ma M.; Zhang J.; Bitter J. H.; Wang D.; Li Y. Phosphorus Induced Electron Localization of Single Iron Sites for Boosted CO2 Electroreduction Reaction. Angew. Chem., Int. Ed. 2021, 60, 23614–23618. 10.1002/anie.202110433. PubMed DOI

Pan Y.; Lin R.; Chen Y.; Liu S.; Zhu W.; Cao X.; Chen W.; Wu K.; Cheong W.-Ch.; Wang Y.; Zheng L.; Luo J.; Lin Y.; Liu Y.; Liu Ch.; Li J.; Lu Q.; Chen X.; Wang D.; Peng Q.; Chen Ch.; Li Y. Design of Single-Atom Co-N5 Catalytic Site: A Robust Electrocatalyst for CO2 Reduction with Nearly 100% CO Selectivity and Remarkable Stability. J. Am. Chem. Soc. 2018, 140, 4218–4221. 10.1021/jacs.8b00814. PubMed DOI

Wang C.; Liu Y.; Ren H.; Guan Q.; Chou S.; Li W. Diminishing the Uncoordinated N Species in Co-N-C Catalysts toward Highly Efficient Electrochemical CO2 Reduction. ACS Catal. 2022, 12, 2513–2521. 10.1021/acscatal.1c05029. DOI

Yang H.; Lin Q.; Wu Y.; Li G.; Hu Q.; Chai X.; Ren X.; Zhang Q.; Liu J.; He C. Highly Efficient Utilization of Single Atoms via Constructing 3D and Free-Standing Electrodes for CO2 Reduction with Ultrahigh Current Density. Nano Energy 2020, 70, 104454.10.1016/j.nanoen.2020.104454. DOI

Zhang B.; Zhang J.; Shi J.; Tan D.; Liu L.; Zhang F.; Lu C.; Su Z.; Tan X.; Cheng X.; Han B.; Zheng L.; Zhang J. Manganese Acting as a High-Performance Heterogeneous Electrocatalyst in Carbon Dioxide Reduction. Nat. Commun. 2019, 10, 2980.10.1038/s41467-019-10854-1. PubMed DOI PMC

Wang S.; Zhou P.; Zhou L.; Lv F.; Sun Y.; Zhang Q.; Gu L.; Yang H.; Guo S. A Unique Gas-Migration, Trapping, and Emitting Strategy for High-Loading Single Atomic Cd Sites for Carbon Dioxide Electroreduction. Nano Lett. 2021, 21, 4262–4269. 10.1021/acs.nanolett.1c00432. PubMed DOI

Wang Q.; Liu K.; Fu J.; Cai C.; Li H.; Long Y.; Chen S.; Liu B.; Li H.; Li W.; Qiu X.; Zhang N.; Hu J.; Pan H.; Liu M. Atomically Dispersed s-Block Magnesium Sites for Electroreduction of CO2 to CO. Angew. Chem., Int. Ed. 2021, 60, 25241–25245. 10.1002/anie.202109329. PubMed DOI

Chen S.; Wang B.; Zhu J.; Wang L.; Ou H.; Zhang Z.; Liang X.; Zheng L.; Zhou L.; Su Y.-Q.; Wang D.; Li Y. Lewis Acid Site-Promoted Single-Atomic Cu Catalyzes Electrochemical CO2 Methanation. Nano Lett. 2021, 21, 7325–7331. 10.1021/acs.nanolett.1c02502. PubMed DOI

Han L.; Song S.; Liu M.; Yao S.; Liang Z.; Cheng H.; Ren Z.; Liu W.; Lin R.; Qi G.; Liu X.; Wu Q.; Luo J.; Xin H. L. Stable and Efficient Single-Atom Zn Catalyst for CO2 Reduction to CH4. J. Am. Chem. Soc. 2020, 142, 12563–12567. 10.1021/jacs.9b12111. PubMed DOI

Jiang Z.; Wang T.; Pei J.; Shang H.; Zhou D.; Li H.; Dong J.; Wang Y.; Cao R.; Zhuang Z.; Chen W.; Wang D.; Zhang J.; Li Y. Discovery of Main Group Single Sb-N4 Active Sites for CO2 Electroreduction to Formate with High Efficiency. Energy Environ. Sci. 2020, 13, 2856–2863. 10.1039/D0EE01486A. DOI

Zhang M.; Wei W.; Zhou S.; Ma D.-D.; Cao A.; Wu X.-T.; Zhu Q.-L. Engineering a Conductive Network of Atomically Thin Bismuthene with Rich Defects Enables CO2 Reduction to Formate with Industry-Compatible Current Densities and Stability. Energy Environ. Sci. 2021, 14, 4998–5008. 10.1039/D1EE01495A. DOI

Yang H.; Wu Y.; Li G.; Lin Q.; Hu Q.; Zhang Q.; Liu J.; He C. Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO2 Electroreduction to Methanol. J. Am. Chem. Soc. 2019, 141, 12717–12723. 10.1021/jacs.9b04907. PubMed DOI

Karapinar D.; Huan N. T.; Ranjbar Sahraie N.; Li J.; Wakerley D.; Touati N.; Zanna S.; Taverna D.; Galvão Tizei L. H.; Zitolo A.; Jaouen F.; Mougel V.; Fontecave M. Electroreduction of CO2 on Single-Site Copper-Nitrogen-Doped Carbon Material: Selective Formation of Ethanol and Reversible Restructuration of the Metal Sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103. 10.1002/anie.201907994. PubMed DOI

Zhao K.; Nie X.; Wang H.; Chen S.; Quan X.; Yu H.; Choi W.; Zhang G.; Kim B.; Chen J. G. Selective Electroreduction of CO2 to Acetone by Single Copper Atoms Anchored on N-Doped Porous Carbon. Nat. Commun. 2020, 11, 2455.10.1038/s41467-020-16381-8. PubMed DOI PMC

Chang Q.; Liu Y.; Lee J.-H.; Ologunagba D.; Hwang S.; Xie Z.; Kattel S.; Lee J. H.; Chen J. G. Metal-Coordinated Phthalocyanines as Platform Molecules for Understanding Isolated Metal Sites in the Electrochemical Reduction of CO2. J. Am. Chem. Soc. 2022, 144, 16131–16138. 10.1021/jacs.2c06953. PubMed DOI

Xiong Z.; Lei Z.; Li Y.; Dong L.; Zhao Y.; Zhang J. A Review on Modification of Facet-Engineered TiO2 for Photocatalytic CO2 Reduction. J. Photochem. Photobiol. C 2018, 36, 24–47. 10.1016/j.jphotochemrev.2018.07.002. DOI

Wang J.; Huang X.; Xi S.; Lee J.-M.; Wang C.; Du Y.; Wang X. Linkage Effect in the Heterogenization of Cobalt Complexes by Doped Graphene for Electrocatalytic CO2 Reduction. Angew. Chem., Int. Ed. 2019, 58, 13532–13539. 10.1002/anie.201906475. PubMed DOI

Han J.; An P.; Liu S.; Zhang X.; Wang D.; Yuan Y.; Guo J.; Qiu X.; Hou K.; Shi L.; Zhang Y.; Zhao S.; Long Ch.; Tang Z. Reordering d Orbital Energies of Single-Site Catalysts for CO2 Electroreduction. Angew. Chem., Int. Ed. 2019, 58, 12711–12716. 10.1002/anie.201907399. PubMed DOI

Bahmanpour A. M.; Signorile M.; Kröcher O. Recent Progress in Syngas Production via Catalytic CO2 Hydrogenation Reaction. Appl. Catal. B. Environ. 2021, 295, 120319.10.1016/j.apcatb.2021.120319. DOI

De Luna P.; Hahn Ch.; Higgins D.; Jaffer S. A.; Jaramillo T. F.; Sargent E. H. What Would It Take for Renewably Powered Electrosynhesis to Displace Petrochemical Processes?. Science 2019, 364, 6438.10.1126/science.aav3506. PubMed DOI

Zhang H.; Ming J.; Zhao J.; Gu Q.; Xu Ch.; Ding Z.; Yuan R.; Zhang Z.; Lin H.; Wang X.; Long J. High-Rate, Tunable Syngas Production with Artificial Photosynthetic Cells. Angew. Chem., Int. Ed. 2019, 58, 7718–7722. 10.1002/anie.201902361. PubMed DOI

Lu S.; Shi Y.; Meng N.; Lu S.; Yu Y.; Zhang B. Electrosynthesis of Syngas via the Co-Reduction of CO2 and H2O. Cell Rep. 2020, 1, 100237.10.1016/j.xcrp.2020.100237. DOI

Chu S.; Fan S.; Wang Y.; Rossouw D.; Wang Y.; Botton G. A.; Mi Z. Tunable Syngas Production from CO2 and H2O in an Aqueous Photoelectrochemical Cell. Angew. Chem., Int. Ed. 2016, 55, 14262–14266. 10.1002/anie.201606424. PubMed DOI

Nguyen V. N.; Blum L. Syngas and Synfuels from H2O and CO2: Current Status. Chem. Ing. Technol. 2015, 87, 354–375. 10.1002/cite.201400090. DOI

Hua Y.; Wang J.; Min T.; Gao Z. Electrochemical CO2 Conversion Towards Syngas: Recent Catalysts and Improving Strategies for Ratio-Tunable Syngas. J. Power Sources 2022, 535, 231453.10.1016/j.jpowsour.2022.231453. DOI

Ross M. B.; Li Y.; De Luna P.; Kim D.; Sargent E. H.; Yang P. Electrocatalytic Rate Alignment Enhances Syngas Generation. Joule 2019, 3, 257–264. 10.1016/j.joule.2018.09.013. DOI

Kortlever R.; Shen J.; Schouten K. J. P.; Calle-Vallejo F.; Koper M. T. M. Catalysts and Reaction Pathways for the Electrochemical Reduction of Carbon Dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082. 10.1021/acs.jpclett.5b01559. PubMed DOI

Qin B.; Li Y.; Fu H.; Wang H.; Chen S.; Liu Z.; Peng F. Electrochemical Reduction of CO2 into Tunable Syngas Production by Regulating the Crystal Facets of Earth-Abundant Zn Catalyst. ACS Appl. Mater. Interfaces 2018, 10, 20530–20539. 10.1021/acsami.8b04809. PubMed DOI

Wang Z.; Yang J.; Cao J.; Chen W.; Wang G.; Liao F.; Zhou X.; Zhou F.; Li R.; Yu Z. Q.; Zhang G.; Duan X.; Wu Y. Room-Temperature Synthesis of Single Iron Site by Electrofiltration for Photoreduction of CO2 into Tunable Syngas. ACS Nano 2020, 14, 6164–6172. 10.1021/acsnano.0c02162. PubMed DOI

Rong X.; Wang H. J.; Lu X. L.; Si R.; Lu T. B. Controlled Synthesis of a Vacancy-Defect Single-Atom Catalyst for Boosting CO2 Electroreduction. Angew. Chem., Int. Ed. 2020, 59, 1961–1965. 10.1002/anie.201912458. PubMed DOI

He Q.; Liu D.; Lee J. H.; Liu Y.; Xie Z.; Hwang S.; Kattel S.; Song L.; Chen J. G. Electrochemical Conversion of CO2 to Syngas with Controllable CO/H2 Ratios over Co and Ni Single-Atom Catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037. 10.1002/anie.201912719. PubMed DOI

Ni W.; Liu Z.; Guo X.; Zhang Y.; Ma Ch.; Deng Y.; Zhang S. Dual Single-Cobalt Atom-Based Carbon Electrocatalysts for Efficient CO2-to-Syngas Conversion with Industrial Current Densities. Appl. Catal. B. Environ. 2021, 291, 120092.10.1016/j.apcatb.2021.120092. DOI

Peterson A. A.; Abild-Pedersen F.; Studt F.; Rossmeisl J.; Nørskov J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3, 1311–1315. 10.1039/c0ee00071j. DOI

Wang Y.; Chen Z.; Han P.; Du Y.; Gu Z.; Xu X.; Zheng G. Single-Atomic Cu with Multiple Oxygen Vacancies on Ceria for Electrocatalytic CO2 Reduction to CH4. ACS Catal. 2018, 8, 7113–7119. 10.1021/acscatal.8b01014. DOI

He H.; Jagvaral Y. Electrochemical Reduction of CO2 on Graphene Supported Transition Metals - Towards Single Atom Catalysts. Phys. Chem. Chem. Phys. 2017, 19, 11436–11446. 10.1039/C7CP00915A. PubMed DOI

Zhao Z.; Lu G. Cu-Based Single-Atom Catalysts Boost Electroreduction of CO2 to CH3OH: First-Principles Predictions. J. Phys. Chem. C 2019, 123, 4380–4387. 10.1021/acs.jpcc.8b12449. DOI

Cui X.; An W.; Liu X.; Wang H.; Men Y.; Wang J. C2N-Graphene Supported Single-Atom Catalysts for CO2 Electrochemical Reduction Reaction: Mechanistic Insight and Catalyst Screening. Nanoscale 2018, 10, 15262–15272. 10.1039/C8NR04961K. PubMed DOI

Lang R.; Du X.; Huang Y.; Jiang X.; Zhang Q.; Guo Y.; Liu K.; Qiao B.; Wang A.; Zhang T. Single-Atom Catalysts Based on the Metal-Oxide Interaction. Chem. Rev. 2020, 120, 11986–12043. 10.1021/acs.chemrev.0c00797. PubMed DOI

Jasinski R. A. New Fuel Cell Cathode Catalyst. Nature 1964, 201, 1212–1213. 10.1038/2011212a0. DOI

Gupta S.; Tryk D.; Bae I.; Aldred W.; Yeager E. Heat-Treated Polyacrylonitrile-Based Catalysts for Oxygen Electroreduction. J. Appl. Electrochem. 1989, 19, 19–27. 10.1007/BF01039385. DOI

Kim J.; Kim H.-E.; Lee H. Single-Atom Catalysts of Precious Metals for Electrochemical Reactions. ChemSusChem 2018, 11, 104–113. 10.1002/cssc.201701306. PubMed DOI

Zagal J. H.; Koper M. T. M. Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2016, 55, 14510–14521. 10.1002/anie.201604311. PubMed DOI

He H.; Lei Y.; Xiao C.; Chu D.; Chen R.; Wang G. Molecular and Electronic Structures of Transition-Metal Macrocyclic Complexes as Related to Catalyzing Oxygen Reduction Reactions: A Density Functional Theory Study. J. Phys. Chem. C 2012, 116, 16038–16046. 10.1021/jp303312r. DOI

Sun Y.; Silvioli L.; Sahraie N. R.; Ju W.; Li J.; Zitolo A.; Li S.; Bagger A.; Arnarson L.; Wang X.; Moeller T.; Bernsmeier D.; Rossmeisl J.; Jaouen F.; Strasser P. Activity-Selectivity Trends in the Electrochemical Production of Hydrogen Peroxide over Single-Site Metal-Nitrogen-Carbon Catalysts. J. Am. Chem. Soc. 2019, 141, 12372–12381. 10.1021/jacs.9b05576. PubMed DOI

Chen Y.; Li Z.; Zhu Y.; Sun D.; Liu X.; Xu L.; Tang Y. Atomic Fe Dispersed on N-Doped Carbon Hollow Nanospheres for High-Efficiency Electrocatalytic Oxygen Reduction. Adv. Mater. 2019, 31, 1806312.10.1002/adma.201806312. PubMed DOI

Tan X.; Li H.; Zhang W.; Jiang K.; Zhai S.; Zhang W.; Chen N.; Li H.; Li Z. Square-Pyramidal Fe-N4 with Defect-Modulated O-Coordination: Two-Tier Electronic Structure Fine-Tuning for Enhanced Oxygen Reduction. Chem. Catalysis 2022, 2, 816–835. 10.1016/j.checat.2022.01.025. DOI

Zhu Q.-L.; Xia W.; Zheng L.-R.; Zou R.; Liu Z.; Xu Q. Atomically Dispersed Fe/N-Doped Hierarchical Carbon Architectures Derived from a Metal-Organic Framework Composite for Extremely Efficient Electrocatalysis. ACS Energy Lett. 2017, 2, 504–511. 10.1021/acsenergylett.6b00686. DOI

Yin P.; Yao T.; Wu Y.; Zheng L.; Lin Y.; Liu W.; Ju H.; Zhu J.; Hong X.; Deng Z.; Zhou G.; Wei S.; Li Y. Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angew. Chem., Int. Ed. 2016, 55, 10800–10805. 10.1002/anie.201604802. PubMed DOI

Chen Y.; Ji S.; Wang Y.; Dong J.; Chen W.; Li Z.; Shen R.; Zheng L.; Zhuang Z.; Wang D.; Li Y. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2017, 56, 6937–6941. 10.1002/anie.201702473. PubMed DOI

Peng H.; Liu F.; Liu X.; Liao S.; You C.; Tian X.; Nan H.; Luo F.; Song H.; Fu Z.; Huang P. Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived from Polyaniline and Melamine for ORR Application. ACS Catal. 2014, 4, 3797–3805. 10.1021/cs500744x. DOI

Masa J.; Zhao A.; Xia W.; Muhler M.; Schuhmann W. Metal-Free Catalysts for Oxygen Reduction in Alkaline Electrolytes: Influence of the Presence of Co, Fe, Mn and Ni Inclusions. Electrochim. Acta 2014, 128, 271–278. 10.1016/j.electacta.2013.11.026. DOI

Yang J.; Liu W.; Xu M.; Liu X.; Qi H.; Zhang L.; Yang X.; Niu S.; Zhou D.; Liu Y.; Su Y.; Li J. F.; Tian Z. Q.; Zhou W.; Wang A.; Zhang T. Dynamic Behavior of Single-Atom Catalysts in Electrocatalysis: Identification of Cu-N3 as an Active Site for the Oxygen Reduction Reaction. J. Am. Chem. Soc. 2021, 143, 14530–14539. 10.1021/jacs.1c03788. PubMed DOI

Lin Z.; Zhang Q.; Pan J.; Tsounis C.; Esmailpour A. A.; Xi S.; Yang H. Y.; Han Z.; Yun J.; Amal R.; Lu X. Atomic Co Decorated Free-Standing Graphene Electrode Assembly for Efficient Hydrogen Peroxide Production in Acid. Energy Environ. Sci. 2022, 15, 1172–1182. 10.1039/D1EE02884G. DOI

Jiang K.; Back S.; Akey A. J.; Xia C.; Hu Y.; Liang W.; Schaak D.; Stavitski E.; Nørskov J. K.; Siahrostami S.; Wang H. Highly Selective Oxygen Reduction to Hydrogen Peroxide on Transition Metal Single Atom Coordination. Nat. Commun. 2019, 10, 3997.10.1038/s41467-019-11992-2. PubMed DOI PMC

Gao J.; Yang H. b.; Huang X.; Hung S.-F.; Cai W.; Jia C.; Miao S.; Chen H. M.; Yang X.; Huang Y.; Zhang T.; Liu B. Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. Chem. 2020, 6, 658–674. 10.1016/j.chempr.2019.12.008. DOI

Tang C.; Chen L.; Li H.; Li L.; Jiao Y.; Zheng Y.; Xu H.; Davey K.; Qiao S.-Z. Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. J. Am. Chem. Soc. 2021, 143, 7819–7827. 10.1021/jacs.1c03135. PubMed DOI

Wang Y.; Shi R.; Shang L.; Waterhouse G. I. N.; Zhao J.; Zhang Q.; Gu L.; Zhang T. High-Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate N2O2 Coordination in a Three-Phase Flow Cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062. 10.1002/anie.202004841. PubMed DOI

Tang C.; Jiao Y.; Shi B.; Liu J.-N.; Xie Z.; Chen X.; Zhang Q.; Qiao S.-Z. Coordination Tunes Selectivity: Two-Electron Oxygen Reduction on High-Loading Molybdenum Single-Atom Catalysts. Angew. Chem., Int. Ed. 2020, 59, 9171–9176. 10.1002/anie.202003842. PubMed DOI

Yang Q.; Xu W.; Gong S.; Zheng G.; Tian Z.; Wen Y.; Peng L.; Zhang L.; Lu Z.; Chen L. Atomically Dispersed Lewis Acid Sites Boost 2-Electron Oxygen Reduction Activity of Carbon-Based Catalysts. Nat. Commun. 2020, 11, 5478.10.1038/s41467-020-19309-4. PubMed DOI PMC

Yang L.; Zhang X.; Yu L.; Hou J.; Zhou Z.; Lv R. Atomic Fe-N4/C in Flexible Carbon Fiber Membrane as Binder-Free Air Cathode for Zn-Air Batteries with Stable Cycling over 1000 h. Adv. Mater. 2022, 34, 2105410.10.1002/adma.202105410. PubMed DOI

Qu Y.; Li Z.; Chen W.; Lin Y.; Yuan T.; Yang Z.; Zhao C.; Wang J.; Zhao C.; Wang X.; Zhou F.; Zhuang Z.; Wu Y.; Li Y. Direct Transformation of Bulk Copper into Copper Single Sites via Emitting and Trapping of Atoms. Nat. Catal. 2018, 1, 781–786. 10.1038/s41929-018-0146-x. DOI

Wang T.; Cao X.; Qin H.; Shang L.; Zheng S.; Fang F.; Jiao L. P-Block Atomically Dispersed Antimony Catalyst for Highly Efficient Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2021, 60, 21237–21241. 10.1002/anie.202108599. PubMed DOI

Han G.; Zheng Y.; Zhang X.; Wang Z.; Gong Y.; Du C.; Banis M. N.; Yiu Y.-M.; Sham T.-K.; Gu L.; Sun Y.; Wang Y.; Wang J.; Gao Y.; Yin G.; Sun X. High Loading Single-Atom Cu Dispersed on Graphene for Efficient Oxygen Reduction Reaction. Nano Energy 2019, 66, 104088.10.1016/j.nanoen.2019.104088. DOI

Wu H.; Li H.; Zhao X.; Liu Q.; Wang J.; Xiao J.; Xie S.; Si R.; Yang F.; Miao S.; Guo X.; Wang G.; Bao X. Highly Doped and Exposed Cu(I)-N Active Sites Within Graphene Towards Efficient Oxygen Reduction for Zinc-Air Batteries. Energy Environ. Sci. 2016, 9, 3736–3745. 10.1039/C6EE01867J. DOI

Wagh N. K.; Shinde S. S.; Lee C. H.; Jung J.-Y.; Kim D.-H.; Kim S.-H.; Lin C.; Lee S. U.; Lee J.-H. Densely Colonized Isolated Cu-N Single Sites for Efficient Bifunctional Electrocatalysts and Rechargeable Advanced Zn-Air Batteries. Appl. Catal. B: Environ. 2020, 268, 118746.10.1016/j.apcatb.2020.118746. DOI

Cui L.; Cui L.; Li Z.; Zhang J.; Wang H.; Lu S.; Xiang Y. A Copper Single-Atom Catalyst Towards Efficient and Durable Oxygen Reduction for Fuel Cells. J. Mater. Chem. A 2019, 7, 16690–16695. 10.1039/C9TA03518D. DOI

Kattel S.; Wang G. Reaction Pathway for Oxygen Reduction on FeN4 Embedded Graphene. J. Phys. Chem. Lett. 2014, 5, 452–456. 10.1021/jz402717r. PubMed DOI

Liu K.; Kattel S.; Mao V.; Wang G. Electrochemical and Computational Study of Oxygen Reduction Reaction on Nonprecious Transition Metal/Nitrogen Doped Carbon Nanofibers in Acid Medium. J. Phys. Chem. C 2016, 120, 1586–1596. 10.1021/acs.jpcc.5b10334. DOI

Yu D.; Ma Y.; Hu F.; Lin C.-C.; Li L.; Chen H.-Y.; Han X.; Peng S. Dual-Sites Coordination Engineering of Single Atom Catalysts for Flexible Metal-Air Batteries. Adv. Energy Mater. 2021, 11, 2101242.10.1002/aenm.202101242. DOI

Liu M.; Li N.; Cao S.; Wang X.; Lu X.; Kong L.; Xu Y.; Bu X.-H. A “Pre-Constrained Metal Twins” Strategy to Prepare Efficient Dual-Metal-Atom Catalysts for Cooperative Oxygen Electrocatalysis. Adv. Mater. 2022, 34, 2107421.10.1002/adma.202107421. PubMed DOI

Xie X.; Peng L.; Yang H.; Waterhouse G. I. N.; Shang L.; Zhang T. MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts. Adv. Mater. 2021, 33, 2101038.10.1002/adma.202101038. PubMed DOI

Xie X.; Shang L.; Xiong X.; Shi R.; Zhang T. Fe Single-Atom Catalysts on MOF-5 Derived Carbon for Efficient Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells. Adv. Energy Mater. 2022, 12, 2102688.10.1002/aenm.202102688. DOI

Wang X. X.; Cullen D. A.; Pan Y.-T.; Hwang S.; Wang M.; Feng Z.; Wang J.; Engelhard M. H.; Zhang H.; He Y.; Shao Y.; Su D.; More K. L.; Spendelow J. S.; Wu G. Nitrogen-Coordinated Single Cobalt Atom Catalysts for Oxygen Reduction in Proton Exchange Membrane Fuel Cells. Adv. Mater. 2018, 30, 1706758.10.1002/adma.201706758. PubMed DOI

Li J.; Zhang H.; Samarakoon W.; Shan W.; Cullen D. A.; Karakalos S.; Chen M.; Gu D.; More K. L.; Wang G.; Feng Z.; Wang Z.; Wu G. Thermally Driven Structure and Performance Evolution of Atomically Dispersed FeN4 Sites for Oxygen Reduction. Angew. Chem., Int. Ed. 2019, 58, 18971–18980. 10.1002/anie.201909312. PubMed DOI

Wang J.; Huang Z.; Liu W.; Chang C.; Tang H.; Li Z.; Chen W.; Jia C.; Yao T.; Wei S.; Wu Y.; Li Y. Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284. 10.1021/jacs.7b10385. PubMed DOI

Sa Y. J.; Seo D.-J.; Woo J.; Lim J. T.; Cheon J. Y.; Yang S. Y.; Lee J. M.; Kang D.; Shin T. J.; Shin H. S.; Jeong H. Y.; Kim Ch. S.; Kim M. G.; kim T. Y.; Joo S. H. A General Approach to Preferential Formation of Active Fe-Nx Sites in Fe-N/C Electrocatalysts for Efficient Oxygen Reduction Reaction. J. Am. Chem. Soc. 2016, 138, 15046–15056. 10.1021/jacs.6b09470. PubMed DOI

Jin H.; Sultan S.; Ha M.; Tiwari J. N.; Kim M.; Kim K.-S. Simple and Scalable Mechanochemical Synthesis of Noble Metal Catalysts with Single Atoms toward Highly Efficient Hydrogen. Adv. Funct. Mater. 2020, 30, 2000531.10.1002/adfm.202000531. DOI

Wei J.; Zhou M.; Long A.; Xue Y.; Liao H.; Wei Ch.; Xu Z. J. Heterostructured Electrocatalysts for Hydrogen Evolution Reaction Under Alkaline Conditions. Nano-Micro Lett. 2018, 10, 75.10.1007/s40820-018-0229-x. PubMed DOI PMC

Zuo Y.; Rao D.; Li S.; Li T.; Zhu G.; Chen S.; Song L.; Chai Y.; Han H. Atomic Vacancies Control of Pd-Based Catalysts for Enhanced Electrochemical Performance. Adv. Mater. 2018, 30, 1704171.10.1002/adma.201704171. PubMed DOI

Zhao G.; Rui K.; Dou S.; Sun W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291.10.1002/adfm.201803291. DOI

Zhou Z.; Pei Z.; Wei L.; Zhao S.; Jian X.; Chen Y. Electrocatalytic Hydrogen Evolution Under Neutral pH Conditions: Current Understandings, Recent Advances, and Future Prospects. Energy Environ. Sci. 2020, 13, 3185–3206. 10.1039/D0EE01856B. DOI

Anantharaj S.; Noda S.; Jothi V.-R.; Yi S.; Driess M.; Menezes P.-W. Strategies and Perspectives to Catch the Missing Pieces in Energy-Efficient Hydrogen Evolution Reaction in Alkaline Media. Angew.Chem. Int. Ed. 2021, 60, 18981–19006. 10.1002/anie.202015738. PubMed DOI PMC

Zuo Y.; Li T.; Zhang N.; Jing T.; Rao D.; Schmuki P.; Kment Š.; Zbořil R.; Chai Y. Spatially Confined Formation of Single Atoms in Highly Porous Carbon Nitride Nanoreactors. ACS Nano 2021, 15, 7790–7798. 10.1021/acsnano.1c01872. PubMed DOI

Lin Z.; Xiao B.; Wang Z.; Tao W.; Shen S.; Huang L.; Zhang J.; Meng F.; Zhang Q.; Gu L.; Zhong W. Planar-Coordination PdSe2 Nanosheets as Highly Active Electrocatalyst for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2102321.10.1002/adfm.202102321. DOI

Zhu Y.; Lin Q.; Zhong Y.; Tahini H.-A.; Shao Z.; Wang H. Metal Oxide-Based Materials as an Emerging Family of Hydrogen Evolution Electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392. 10.1039/D0EE02485F. DOI

Zhou K.; Wang Z.; Han C.; Ke X.; Wang C.; Jin Y.; Zhang Q.; Liu J.; Wang H.; Yan H. Platinum Single-Atom Catalyst Coupled with Transition Metal/Metal Oxide Heterostructure for Accelerating Alkaline Hydrogen Evolution Reaction. Nat. Commun. 2021, 12, 3783.10.1038/s41467-021-24079-8. PubMed DOI PMC

Zhu C.; Shi Q.; Feng S.; Du D.; Lin Y. Single-Atom Catalysts for Electrochemical Water Splitting. ACS Energy Lett. 2018, 3, 1713–1721. 10.1021/acsenergylett.8b00640. DOI

Wang Z.; Hao X.; Jiang Z.; Sun X.; Xu D.; Wang J.; Zhong H.; Meng F.; Zhang X. C and N Hybrid Coordination Derived Co-C-N Complex as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 15070–15073. 10.1021/jacs.5b09021. PubMed DOI

Sun T.; Zang W.; Yan H.; Li J.; Zhang Z.; Bu Y.; Chen W.; Wang J.; Lu J.; Su C. Engineering the Coordination Environment of Single Cobalt Atoms for Efficient Oxygen Reduction and Hydrogen Evolution Reactions. ACS Catal. 2021, 11, 4498–4509. 10.1021/acscatal.0c05577. DOI

Liu X.; Zheng L.; Han C.; Zong H.; Yang G.; Lin S.; Kumar A.; Jadhav A.-R.; Tran N.; Hwang Y.; Lee J.; Vasimalla S.; Chen Z.; Kim S.; Lee H. Identifying the Activity Origin of a Cobalt Single-Atom Catalyst for Hydrogen Evolution Using Supervised Learning. Adv. Funct. Mater. 2021, 31, 2100547.10.1002/adfm.202100547. DOI

Staszak-Jirkovský J.; Malliakas C.-D.; Lopes P.-P.; Danilovic N.; Kota S.-S.; Chang K.; Genorio B.; Strmcnik D.; Stamenkovic V.-R.; Kanatzidis M.-G.; Markovic N.-M. Design of Active and Stable Co-Mo-Sx Chalcogels as pH-Universal Catalysts for the Hydrogen Evolution Reaction. Nat. Mater. 2016, 15, 197–203. 10.1038/nmat4481. PubMed DOI

Hossain M.-D.; Liu Z.; Zhuang M.; Yan X.; Xu G.; Gadre C.-A.; Tyagi A.; Abidi I.-F.; Sun C.; Wong H.; Guda A.; Hao Y.; Pan X.; Amine K.; Luo Z. Rational Design of Graphene-Supported Single Atom Catalysts for Hydrogen Evolution Reaction. Adv. Energy Mater. 2019, 9, 1803689.10.1002/aenm.201803689. DOI

Cheng Y.; Guo H.; Li X.; Wu X.; Xu X.; Zheng L.; Song R. Rational Design of Ultrahigh Loading Metal Single-Atoms (Co, Ni, Mo) Anchored on In-Situ Pre-Crosslinked Guar Gum Derived N-Doped Carbon Aerogel for Efficient Overall Water Splitting. Chem. Eng. J. 2021, 410, 128359.10.1016/j.cej.2020.128359. DOI

Zhang J.; Liu Y.; Sun C.; Xi P.; Peng S.; Gao D.; Xue D. Accelerated Hydrogen Evolution Reaction in CoS2 by Transition-Metal Doping. ACS Energy Lett. 2018, 3, 779–786. 10.1021/acsenergylett.8b00066. DOI

Luo Y.; Zhang S.; Pan H.; Xiao S.; Guo Z.; Tang L.; Khan U.; Ding B.; Li M.; Cai Z.; Zhao Y.; Lv W.; Feng Q.; Zou X.; Lin J.; Cheng H.; Liu B. Unsaturated Single Atoms on Monolayer Transition Metal Dichalcogenides for Ultrafast Hydrogen Evolution. ACS Nano 2020, 14, 767–776. 10.1021/acsnano.9b07763. PubMed DOI

Xue Y.; Huang B.; Yi Y.; Guo Y.; Zuo Z.; Li Y.; Jia Z.; Liu H.; Li Y. Anchoring Zero Valence Single Atoms of Nickel and iron on Graphdiyne for Hydrogen Evolution. Nat. Commun. 2018, 9, 1460.10.1038/s41467-018-03896-4. PubMed DOI PMC

Zhao Y.; Ling T.; Chen S.; Jin B.; Vasileff A.; Jiao Y.; Song L.; Luo J.; Qiao S. Non-Metal Single-Iodine-Atom Electrocatalysts for the Hydrogen Evolution Reaction. Angew. Chem., Int. Ed. 2019, 58, 12252–12257. 10.1002/anie.201905554. PubMed DOI

Zuo Y.; Rao D.; Ma S.; Li T.; Tsang Y.; Kment S.; Chai Y. Valence Engineering via Dual-Cation and Boron Doping in Pyrite Selenide for Highly Efficient Oxygen Evolution. ACS Nano 2019, 13, 11469–11476. 10.1021/acsnano.9b04956. PubMed DOI

Suen N.; Hung S.; Quan Q.; Zhang N.; Xu Y.; Chen H. Electrocatalysis for the Oxygen Evolution Reaction: Recent Development and Future Perspectives. Chem. Soc. Rev. 2017, 46, 337–365. 10.1039/C6CS00328A. PubMed DOI

Plevová M.; Hnát J.; Bouzek K. Electrocatalysts for the Oxygen Evolution Reaction in Alkaline and Neutral Media. A Comparative Review. J. Pow. Sour. 2021, 507, 230072.10.1016/j.jpowsour.2021.230072. DOI

Zhong L.; Jiang C.; Zheng M.; Peng X.; Liu T.; Xi S.; Chi X.; Zhang Q.; Gu L.; Zhang S.; Shi G.; Zhang L.; Wu K.; Chen Z.; Li T.; Dahbi M.; Alami J.; Amine K.; Lu J. Wood Carbon Based Single-Atom Catalyst for Rechargeable Zn-Air Batteries. ACS Energy Lett. 2021, 6, 3624–3633. 10.1021/acsenergylett.1c01678. DOI

Zhang J.; Zhang M.; Zeng Y.; Chen J.; Qiu L.; Zhou H.; Sun C.; Yu Y.; Zhu C.; Zhu Z. Single Fe Atom on Hierarchically Porous S, N-Codoped Nanocarbon Derived from Porphyra Enable Boosted Oxygen Catalysis for Rechargeable Zn-Air Batteries. Small 2019, 15, 1900307.10.1002/smll.201900307. PubMed DOI

Khan K.; Yan X.; Yu Q.; Bae S.; White J.; Liu J.; Liu T.; Sun C.; Kim J.; Cheng H.; Wang Y.; Liu B.; Amine K.; Pan X.; Luo Z. Stone-Wales Defect-Rich Carbon-Supported Dual-Metal Single Atom Sites for Zn-Air Batteries. Nano Energy 2021, 90, 106488.10.1016/j.nanoen.2021.106488. DOI

Zhu X.; Zhang D.; Chen C.; Zhang Q.; Liu R.; Xia Z.; Dai L.; Amal R.; Lu X. Harnessing the Interplay of Fe-Ni Atom Pairs Embedded in Nitrogen-Doped Carbon for Bifunctional Oxygen Electrocatalysis. Nano Energy 2020, 71, 104597.10.1016/j.nanoen.2020.104597. DOI

Bai L.; Hsu C.-S.; Alexander D.; Chen H.; Hu X. A Cobalt-Iron Double-Atom catalyst for the Oxygen Evolution Reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199. 10.1021/jacs.9b05268. PubMed DOI

Lai W.; Zhang L.; Hua W.; Indris S.; Yan Z.; Hu Z.; Zhang B.; Liu Y.; Wang L.; Liu M.; Liu R.; Wang Y.; Wang J.; Hu Z.; Liu H.; Chou S.; Dou S. General π-Electron-Assisted Strategy for Constructing Transition Metal Single-Atom Electrocatalysts with bi-Functional Active Sites Toward Highly Efficient Water Splitting. Angew. Chem., Int. Ed. 2019, 58, 11868–11873. 10.1002/anie.201904614. PubMed DOI

Doan T. L. L.; Nguyen D. C.; Prabhakaran S.; Kim D. H.; Tran D. T.; Kim N. H.; Lee J. H. Single-Atom Co-Decorated MoS2 Nanosheets Assembled on Metal Nitride Nanorod Arrays as an Efficient Bifunctional Electrocatalyst for pH-Universal Water Splitting. Adv. Funct. Mater. 2021, 31, 2100233.10.1002/adfm.202100233. DOI

Wang L.; Duan X.; Liu X.; Gu J.; Si R.; Qiu Y.; Qiu Y.; Shi D.; Chen F.; Sun X.; Lin J.; Sun J. Atomically Dispersed Mo Supported on Metallic Co9S8 Nanoflakes as an Advanced Noble-Metal-Free Bifunctional Water Splitting Catalyst Working in Universal pH Conditions. Adv. Energy Mater. 2020, 10, 1903137.10.1002/aenm.201903137. DOI

Deng Q.; Zhao J.; Wu T.; Chen G.; Hansen H. A.; Vegge T. 2D Transition Metal-TCNQ Sheets as Bifunctional Single-Atom Catalysts for Oxygen Reduction and Evolution Reaction (ORR/OER). J. Catal. 2019, 370, 378–384. 10.1016/j.jcat.2018.12.012. DOI

Liu T.; Wang Y.; Li Y. Two-Dimensional Organometallic Frameworks with Pyridinic Single-Metal-Atom Sites for Bifunctional ORR/OER. Adv. Funct. Mater. 2022, 32, 2207110.10.1002/adfm.202207110. DOI

Chen Z.; Zhao J.; Cabrera C.; Chen Z. Computational Screening of Efficient Single-Atom Catalysts Based on Graphitic Carbon Nitride (g-C3N4) for Nitrogen Electroreduction. Small Methods 2019, 3, 1800368.10.1002/smtd.201800368. DOI

Lv X.; Wei W.; Li F.; Huang B.; Dai Y. Metal-Free B@g-CN: Visible/Infrared Light-Driven Single Atom Photocatalyst Enables Spontaneous Dinitrogen Reduction to Ammonia. Nano Lett. 2019, 19, 6391–6399. 10.1021/acs.nanolett.9b02572. PubMed DOI

Wang X.; Qiu S.; Feng J.; Tong Y.; Zhou F.; Li Q.; Song L.; Chen S.; Wu K.-H.; Su P.; Ye S.; Hou F.; Dou S. X.; Liu H. K.; Lu G. Q. M.; Sun C.; Liu J.; Liang J. Confined Fe-Cu Clusters as Sub-Nanometer Reactors for Efficiently Regulating the Electrochemical Nitrogen Reduction Reaction. Adv. Mater. 2020, 32, 2004382.10.1002/adma.202004382. PubMed DOI

Yan X.; Liu D.; Cao H.; Hou F.; Liang J.; Dou S. X. Nitrogen Reduction to Ammonia on Atomic-Scale Active Sites under Mild Conditions. Small Methods 2019, 3, 1800501.10.1002/smtd.201800501. DOI

Suryanto B. H. R.; Du H. L.; Wang D.; Chen J.; Simonov A. N.; MacFarlane D. R. Challenges and Prospects in the Catalysis of Electroreduction of Nitrogen to Ammonia. Nat. Catal. 2019, 2, 290–296. 10.1038/s41929-019-0252-4. DOI

Ren Y.; Yu C.; Tan X.; Huang H.; Wei Q.; Qiu J. Strategies to Suppress Hydrogen Evolution for Highly Selective Electrocatalytic Nitrogen Reduction: Challenges and Perspectives. Energy Environ. Sci. 2021, 14, 1176.10.1039/D0EE03596C. DOI

Liu X.; Jiao Y.; Zheng Y.; Jaroniec M.; Qiao S. Z. Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition metal Single-Atom Catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672. 10.1021/jacs.9b03811. PubMed DOI

Choi Ch.; Back S.; Kim N. Y.; Lim J.; Kim Y. H.; Jung Y. Suppression of Hydrogen Evolution Reaction in Electrochemical N2 Reduction Using Single-Atom Catalysts: A Computational Guideline. ACS Catal. 2018, 8, 7517–7525. 10.1021/acscatal.8b00905. DOI

Zhu Y.; Sokolowski J.; Song X.; He Y.; Mei Y.; Wu G. Engineering Local Coordination Environments of Atomically Dispersed and Heteroatom-Coordinated Single Metal Site Electrocatalysts for Clean Energy-Conversion. Adv. Energy Mater. 2020, 10, 1902844.10.1002/aenm.201902844. DOI

Qian S. J.; Cao H.; Chen J. W.; Chen J. Ch.; Wang Y. G.; Li J. Critical Role of Explicit Inclusion of Solvent and Electrode Potential in the Electrochemical Description of Nitrogen Reduction. ACS Catal. 2022, 12, 11530–11540. 10.1021/acscatal.2c03186. DOI

Chen Z. W.; Lu Z.; Chen L. X.; Jiang M.; Chen D.; Singh Ch. V. Machine-Learning-Accelerated Discovery of Single-Atom Catalysts Based on Bidirectional Activation Mechanism. Chem. Catal. 2021, 1, 183–195. 10.1016/j.checat.2021.03.003. DOI

Zhang S.; Lu S.; Zhang P.; Tian J.; Shi L.; Ling C.; Zhou Q.; Wang J. Accelerated Discovery of Single-Atom Catalysts for Nitrogen Fixation via Machine Learning. Energy Environ. Mater. 2023, 6, 12304.10.1002/eem2.12304. DOI

Wu T.; Melander M. M.; Honkala K. Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction. ACS Catal. 2022, 12, 2505–2512. 10.1021/acscatal.1c05820. DOI

Yuan S.; Meng G.; Liu D.; Zhao W.; Zhu H.; Chi Y.; Ren H.; Guo W. Synergy of Substrate Chemical Environments and Single-Atom Catalysts Promotes Catalytic Performance: Nitrogen Reduction on Chiral and Defected Carbon Nanotubes. ACS Appl. Mater. Interfaces 2022, 14, 52544–52552. 10.1021/acsami.2c17280. PubMed DOI

Quan Ch.; Xiao S.; Yi Y.; Sun D.; Ji S.; Zhou S.; Yang J.; Niu X.; Li X. Explore the Underlying Mechanism of Graphitic C3N5-Hosted Single-Atom Catalyst for Electrocatalytic Nitrogen Fixation. Int. J. Hydrogen Energy 2022, 47, 22035–22044. 10.1016/j.ijhydene.2022.04.298. DOI

Wang J.; Zhang Z.; Li Y.; Qu Y.; Li Y.; Li W.; Zhao M. Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent-Organic Frameworks for Efficient Nitrogen Fixation. ACS Appl. Mater. Interfaces 2022, 14, 1024–1033. 10.1021/acsami.1c20373. PubMed DOI

Zang W.; Yang T.; Zou H.; Xi S.; Zhang H.; Liu X.; Kou Z.; Du Y.; Feng Y.; Shen L.; Duan L.; Wang J.; Pennycook S. Copper Single Atoms Anchored in Porous Nitrogen-Doped Carbon as Efficient pH-Universal Catalysts for the Nitrogen Reduction Reaction. ACS Catal. 2019, 9, 10166–10173. 10.1021/acscatal.9b02944. DOI

Chen Y.; Guo R.; Peng X.; Wang X.; Liu X.; Ren J.; He J.; Zhuo L.; Sun J.; Liu Y.; Wu Y.; Luo J. Highly Productive Electrosynthesis of Ammonia by Admolecule-Targeting Single Ag Sites. ACS Nano 2020, 14, 6938–6946. 10.1021/acsnano.0c01340. PubMed DOI

Liu W.; Han L.; Wang H.-T.; Zhao X.; Boscoboinik J.; Liu X.; Pao C.; Sun J.; Zhuo L.; Luo J.; Ren J.; Pong W.; Xin H. FeMo Sub-Nanoclusters/Single Atoms for Neutral Ammonia Electrosynthesis. Nano Energy 2020, 77, 105078.10.1016/j.nanoen.2020.105078. DOI

Tao H.; Choi C.; Ding L.; Jiang Z.; Han Z.; Jia M.; Fan Q.; Gao Y.; Wang H.; Robertson A.; Hong S.; Jung Y.; Liu S.; Sun Z. Nitrogen Fixation by Ru Single-Atom Electrocatalytic Reduction. Chem. 2019, 5, 204–214. 10.1016/j.chempr.2018.10.007. DOI

Han L.; Liu X.; Chen J.; Lin R.; Liu H.; Lü F.; Bak S.; Liang Z.; Zhao S.; Stavitski E.; Luo J.; Adzic R.-R.; Xin H. Atomically Dispersed Molybdenum Catalysts for Efficient Ambient Nitrogen Fixation. Angew. Chem. 2019, 131, 2343–2347. 10.1002/ange.201811728. PubMed DOI

Zhang R.; Jiao L.; Yang W.; Wan G.; Jiang H. Single-Atom Catalysts Templated by Metal-Organic Frameworks for Electrochemical Nitrogen Reduction. J. Mater. Chem. A 2019, 7, 26371–26377. 10.1039/C9TA10206J. DOI

Gu Y.; Xi B.; Tian W.; Zhang H.; Fu Q.; Xiong S. Boosting Selective Nitrogen Reduction via Geometric Coordination Engineering on Single-Tungsten-Atom Catalysts. Adv. Mater. 2021, 33, 2100429.10.1002/adma.202100429. PubMed DOI

Sahoo S. K.; Heske J.; Antonietti M.; Qin Q.; Oschatz M.; Kühne T. D. Electrochemical N2 Reduction to Ammonia Using Single Au/Fe Atoms Supported on Nitrogen-Doped Porous Carbon. ACS Appl. Energy Mater. 2020, 3, 10061–10069. 10.1021/acsaem.0c01740. PubMed DOI PMC

Li Y.; Ji Y.; Zhao Y.; Chen J.; Zheng S.; Sang X.; Yang B.; Li Z.; Lei L.; Wen Z.; Feng X.; Hou Y. Local Spin-State Tuning of Iron Single-Atom Electrocatalyst by S-Coordinated Doping for Kinetics-Boosted Ammonia Synthesis. Adv. Mater. 2022, 34, 2202240.10.1002/adma.202202240. PubMed DOI

Guo M.; Fang L.; Zhang L.; Li M.; Cong M.; Guan X.; Shi Ch.; Gu Ch. L.; Liu X.; Wang Y.; Ding X. Pulsed Electrocatalysis Enabling High Overall Nitrogen Fixation Performance for Atomically Dispersed Fe on TiO2. Angew. Chem., Int. Ed. 2023, 62, e20221763510.1002/anie.202217635. PubMed DOI

Guo X.; Gu J.; Lin S.; Zhang S.; Chen Z.; Huang S. Tackling the Activity and Selectivity Challenges of Electrocatalysts Toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721. 10.1021/jacs.9b13349. PubMed DOI

Lv Ch.; Qian Y.; Yan Ch.; Ding Y.; Liu Y.; Chen G.; Yu G. Defect Engineering Metal-Free Polymeric Carbon Nitride Electrocatalyst for Effective Nitrogen Fixation under Ambient Conditions. Angew. Chem., Int. Ed. 2018, 57, 10246–10250. 10.1002/anie.201806386. PubMed DOI

Zhang H.; Cui Ch.; Luo Z. MoS2-Supported Fe2 Clusters Catalyzing Nitrogen Reduction Reaction to Produce Ammonia. J. Phys. Chem. C 2020, 124, 6260–6266. 10.1021/acs.jpcc.0c00486. DOI

Zhao M.; Sun J.; Luo T.; Yan Y.; Huang W.; Lee J.-M. π-Conjugated Macrocycles Confined Dual Single-Atom Catalysts on Graphitized Bubbles for Oxygen Reduction, Evolution, and Batteries. Small 2024, 20, 2309351.10.1002/smll.202309351. PubMed DOI

Ren L.; Sun K.; Wang Y.; Kumar A.; Liu J.; Lu X.; Zhao Y.; Zhu Q.; Liu W.; Xu H.; Sun X. Tandem Catalysis inside Double-Shelled Nanocages with Separated and Tunable Atomic Catalyst Sites for High Performance Lithium-Sulfur Batteries. Adv. Mater. 2024, 36, 2310547.10.1002/adma.202310547. PubMed DOI

Wu S.; Wang Ch.; Liang H.; Nong W.; Zeng Z.; Li Y.; Wang Ch. High-Throughput Calculations for Screening d- and p-Block Single-Atom Catalysts toward Li2S/Na2S Decomposition Guided by Facile Descriptor beyond Bronsted-Evans-Polanyi Relationship. Small 2024, 20, 2305161.10.1002/smll.202305161. PubMed DOI

Wang Ch.; Yin Q.; Liu S.; Wang J.; Fan W.; Liu Z.; Liu F.; Liu Y.; Wang H. Research Progress of Single-Atom Coating and its Application Prospect in Protective Coatings. J. Ind. Eng. Chem. 2023, 128, 66–80. 10.1016/j.jiec.2023.07.060. DOI

Zhang L.; Yang X.; Yuan Q.; Wei Z.; Ding J.; Chu T.; Rong Ch.; Zhang Q.; Ye Z.; Xuan F.-Z.; Zhai Y.; Zhang B.; Yang X. Elucidating the Structure-Stability Relationship of Cu Single-Atom Catalysts Using operando Surface-Enhanced Infrared Absorption Spectroscopy. Nat. Commun. 2023, 14, 8311.10.1038/s41467-023-44078-1. PubMed DOI PMC

Ren X.; Zhao J.; Li X.; Shao J.; Pan B.; Salamé A.; Boutin E.; Groizard T.; Wang S.; Ding J.; Zhang X.; Huang W.-Y.; Zeng W.-J.; Liu Ch.; Li Y.; Hung S.-F.; Huang Y.; Robert M.; Liu B. In-situ Spectroscopic Probe of the Intrinsic Structure Feature of Single-Atom Center in Electrochemical CO/CO2 Reduction to Methanol. Nat. Commun. 2023, 14, 3401.10.1038/s41467-023-39153-6. PubMed DOI PMC

Hsu Ch.-S.; Wang J.; Chu Y.-Ch.; Chen J.-H.; Chien Ch.-Y.; Lin K.-H.; Tsai L. D.; Chen H.-Ch.; Liao Y.-F.; Hiraoka N.; Cheng Y.-Ch.; Chen H. M. Activating Dynamic Atomic-Configuration for Single-Site Electrocatalyst in Electrochemical CO2 Reduction. Nat. Commun. 2023, 14, 5245.10.1038/s41467-023-40970-y. PubMed DOI PMC

Liang X.; Fu N.; Yao S.; Li Z.; Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J. Am. Chem. Soc. 2022, 144, 18155–18174. 10.1021/jacs.1c12642. PubMed DOI

Zhang J.; Pan Y.; Feng D.; Cui L.; Zhao S.; Hu J.; Wang S.; Qin Y. Mechanistic Insight into the Synergy Between Platinum Single Atom and Cluster Dual Active Sites Boosting Photocatalytic Hydrogen Evolution. Adv. Mater. 2023, 35, 2300902.10.1002/adma.202300902. PubMed DOI

Zang Y.; Lu D.-Q.; Wang K.; Li B.; Peng P.; Lan Y.-Q.; Zang S.-Q. A Pyrolysis-Free Ni/Fe Bimetallic Electrocatalyst for Overall Water Splitting. Nat. Commun. 2023, 14, 1792.10.1038/s41467-023-37530-9. PubMed DOI PMC

Zhang L.; Dong Y.; Li L.; Wei L.; Su J.; Guo L. Enhanced Oxygen Reduction Activity and Stability of Double-Layer Nitrogen-Doped Carbon Catalyst with Abundant Fe-Co Dual-Atom Sites. Nano Energy 2023, 117, 108854.10.1016/j.nanoen.2023.108854. DOI

Kuai L.; Chen Z.; Liu S.; Kan E.; Yu N.; Ren Y.; Fang C.; Li X.; Li Y.; Geng B. Titania Supported Synergistic Palladium Single Atoms and Nanoparticles for Room Temperature Ketone and Aldehydes Hydrogenation. Nat. Commun. 2020, 11, 48.10.1038/s41467-019-13941-5. PubMed DOI PMC

Wang X.; Sang X.; Dong Ch.-L.; Yao S.; Shuai L.; Lu J.; Yang B.; Li Z.; Lei L.; Qiu M.; Dai L.; Hou Y. Proton Capture Strategy for Enhancing Electrochemical CO2 Reduction on Atomically Dispersed Metal-Nitrogen Active Sites. Angew. Chem., Int. Ed. 2021, 60, 11959–11965. 10.1002/anie.202100011. PubMed DOI

Yao Z.; Lum Y.; Johnston A.; Mejia-Mendoza L. M.; Zhou X.; Wen Y.; Aspuru-Guzik A.; Sargent E. H.; Seh Z. W. Machine Learning for a Sustainable Energy Future. Nat. Rev. Mater. 2023, 8, 202–215. 10.1038/s41578-022-00490-5. PubMed DOI PMC

Mou T.; Pillai H. S.; Wang S.; Wan M.; Han X.; Schweitzer N. M.; Che F.; Xin H. Bridging the Complexity Gap in Computational Heterogeneous Catalysis with Machine Learning. Nat. Catal. 2023, 6, 122–136. 10.1038/s41929-023-00911-w. DOI

Abolhasani M.; Kumacheva E. The Rise of Self-Driving Labs in Chemical and Materials Sciences. Nat. Synth. 2023, 2, 483–492. 10.1038/s44160-022-00231-0. DOI

Seh Z. W.; Jiao K.; Castelli I. E. Artificial Intelligence and Machine Learning in Energy Storage and Conversion. Energy Adv. 2023, 2, 1237–1238. 10.1039/D3YA90022C. DOI

Ramesh A. S.; Vigneshwar S.; Vickram S.; Manikandan S.; Subbaiya R.; Karmegam N.; Kim W. Artificial Intelligence Driven Hydrogen and Battery Technologies-A Review. Fuel 2023, 337, 126862.10.1016/j.fuel.2022.126862. DOI

Liao V. S.; Cohen M.; Wang Y. F.; Vlachos D. G. Deducing Subnanometer Cluster Size and Shape Distributions of Heterogeneous Supported Catalysts. Nat. Commun. 2023, 14, 1965.10.1038/s41467-023-37664-w. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Single Atom Cocatalysts in Photocatalysis

. 2025 Feb ; 37 (7) : e2414889. [epub] 20241229

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace