An Adaptive Palladium Single-Atom Catalyst Enabling Reactivity Switching between Borylation and C-C Coupling
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40407185
PubMed Central
PMC12147128
DOI
10.1021/jacs.4c17943
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The development of single-atom catalysts (SACs) with site-specific and tunable catalytic functionalities remains a highly desirable yet challenging goal in catalysis. In this study, we report a SAC featuring anisotropic coordination cavities synthesized via a one-step polymerization of 2,6-diaminopyridine and cyanuric chloride. These cavities provide a robust framework for anchoring isolated Pd single atoms with exceptional stability. The unique broken symmetry of the catalyst's local structure enables precise control over reaction pathways, allowing reactivity to be switched between distinct catalytic outcomes. Specifically, under tailored reaction conditions, the catalyst can either halt at the borylation step or proceed seamlessly to Suzuki coupling in a self-cascade process. Mechanistic studies unveil the pivotal role of Pd single atoms in driving key steps, including oxidative addition, base exchange, and reductive elimination. Furthermore, green metrics demonstrate the process's sustainability, with minimized waste generation and reduced reliance on hazardous reagents in the self-cascade transformation. This work establishes an innovative benchmark in the field of single-atom catalysis: by enabling complex, multistep transformations via strategic activation of multiple functional groups, this catalyst exemplifies the potential of self-cascade processes to revolutionize synthetic chemistry via catalysis engineering.
Department of Materials Science University of Milan Bicocca Via Roberto Cozzi 55 20125 Milano Italy
Institute of Physics University of Graz Universitätsplatz 5 8010 Graz Austria
Zobrazit více v PubMed
Liu L., Corma A.. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem. Rev. 2023;123(8):4855–4933. doi: 10.1021/acs.chemrev.2c00733. PubMed DOI PMC
Wu S.-M., Schmuki P.. Single Atom Cocatalysts in Photocatalysis. Adv. Mater. 2025;37(7):2414889. doi: 10.1002/adma.202414889. PubMed DOI PMC
Saptal V. B., Ruta V., Bajada M. A., Vilé G.. Single-Atom Catalysis in Organic Synthesis. Angew. Chem., Int. Ed. 2023;62(34):e202219306. doi: 10.1002/anie.202219306. PubMed DOI
Liang X., Fu N., Yao S., Li Z., Li Y.. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J. Am. Chem. Soc. 2022;144(40):18155–18174. doi: 10.1021/jacs.1c12642. PubMed DOI
Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y.. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020;120(21):11900–11955. doi: 10.1021/acs.chemrev.9b00818. PubMed DOI
Samantaray M. K., D’Elia V., Pump E., Falivene L., Harb M., Ould Chikh S., Cavallo L., Basset J.-M.. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem. Rev. 2020;120(2):734–813. doi: 10.1021/acs.chemrev.9b00238. PubMed DOI
Bajada M. A., Sanjosé-Orduna J., Di Liberto G., Tosoni S., Pacchioni G., Noël T., Vilé G.. Interfacing Single-Atom Catalysis with Continuous-Flow Organic Electrosynthesis. Chem. Soc. Rev. 2022;51(10):3898–3925. doi: 10.1039/D2CS00100D. PubMed DOI
Samantaray M. K., Pump E., Bendjeriou-Sedjerari A., D’Elia V., Pelletier J. D. A., Guidotti M., Psaro R., Basset J.-M.. Surface Organometallic Chemistry in Heterogeneous Catalysis. Chem. Soc. Rev. 2018;47(22):8403–8437. doi: 10.1039/C8CS00356D. PubMed DOI
Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T.. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem. Rev. 2020;120(21):11986–12043. doi: 10.1021/acs.chemrev.0c00797. PubMed DOI
Jia H., Liao Q., Liu W., Cipriano L. A., Jiang H., Dixneuf P. H., Vilé G., Zhang M.. Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to γ-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst. J. Am. Chem. Soc. 2024;146(46):31647–31655. doi: 10.1021/jacs.4c09827. PubMed DOI
Gawande M. B., Fornasiero P., Zbořil R.. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal. 2020;10(3):2231–2259. doi: 10.1021/acscatal.9b04217. DOI
Qin R., Liu K., Wu Q., Zheng N.. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem. Rev. 2020;120(21):11810–11899. doi: 10.1021/acs.chemrev.0c00094. PubMed DOI
Copéret C.. Single-Sites and Nanoparticles at Tailored Interfaces Prepared via Surface Organometallic Chemistry from Thermolytic Molecular Precursors. Acc. Chem. Res. 2019;52(6):1697–1708. doi: 10.1021/acs.accounts.9b00138. PubMed DOI
P S., John J., Rajan T. P. D., Anilkumar G. M., Yamaguchi T., Pillai S. C., Hareesh U. S.. Graphitic Carbon Nitride (g-C3N4) Based Heterogeneous Single Atom Catalysts: Synthesis, Characterisation and Catalytic Applications. J. Mater. Chem. A. 2023;11(16):8599–8646. doi: 10.1039/D2TA09776A. DOI
Pelletier J. D. A., Basset J.-M.. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts. Acc. Chem. Res. 2016;49(4):664–677. doi: 10.1021/acs.accounts.5b00518. PubMed DOI
Kumar P., Singh G., Guan X., Lee J., Bahadur R., Ramadass K., Kumar P., Kibria Md. G., Vidyasagar D., Yi J., Vinu A.. Multifunctional Carbon Nitride Nanoarchitectures for Catalysis. Chem. Soc. Rev. 2023;52(21):7602–7664. doi: 10.1039/D3CS00213F. PubMed DOI
Rocha G. F. S. R., da Silva M. A. R., Rogolino A., Diab G. A. A., Noleto L. F. G., Antonietti M., Teixeira I. F.. Carbon Nitride Based Materials: More than Just a Support for Single-Atom Catalysis. Chem. Soc. Rev. 2023;52(15):4878–4932. doi: 10.1039/D2CS00806H. PubMed DOI
Peralta R. A., Huxley M. T., Evans J. D., Fallon T., Cao H., He M., Zhao X. S., Agnoli S., Sumby C. J., Doonan C. J.. Highly Active Gas Phase Organometallic Catalysis Supported Within Metal–Organic Framework Pores. J. Am. Chem. Soc. 2020;142(31):13533–13543. doi: 10.1021/jacs.0c05286. PubMed DOI
Witzke R. J., Chapovetsky A., Conley M. P., Kaphan D. M., Delferro M.. Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catal. 2020;10(20):11822–11840. doi: 10.1021/acscatal.0c03350. DOI
Iemhoff A., Vennewald M., Palkovits R.. Single-Atom Catalysts on Covalent Triazine Frameworks: At the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew. Chem., Int. Ed. 2023;62(7):e202212015. doi: 10.1002/anie.202212015. PubMed DOI PMC
Sádaba I., López Granados M., Riisager A., Taarning E.. Deactivation of Solid Catalysts in Liquid Media: The Case of Leaching of Active Sites in Biomass Conversion Reactions. Green Chem. 2015;17(8):4133–4145. doi: 10.1039/C5GC00804B. DOI
Shende V. S., Saptal V. B., Bhanage B. M.. Recent Advances Utilized in the Recycling of Homogeneous Catalysis. Chem. Rec. 2019;19(9):2022–2043. doi: 10.1002/tcr.201800205. PubMed DOI
Hammond C.. Intensification Studies of Heterogeneous Catalysts: Probing and Overcoming Catalyst Deactivation during Liquid Phase Operation. Green Chem. 2017;19(12):2711–2728. doi: 10.1039/C7GC00163K. DOI
Kramer S., Bennedsen N. R., Kegnæs S.. Porous Organic Polymers Containing Active Metal Centers as Catalysts for Synthetic Organic Chemistry. ACS Catal. 2018;8(8):6961–6982. doi: 10.1021/acscatal.8b01167. DOI
Xu L.-H., Liu W., Liu K.. Single Atom Environmental Catalysis: Influence of Supports and Coordination Environments. Adv. Funct. Mater. 2023;33(50):2304468. doi: 10.1002/adfm.202304468. DOI
Li Z., Ji S., Liu Y., Cao X., Tian S., Chen Y., Niu Z., Li Y.. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem. Rev. 2020;120(2):623–682. doi: 10.1021/acs.chemrev.9b00311. PubMed DOI
Kwak M., Bok J., Lee B.-H., Kim J., Seo Y., Kim S., Choi H., Ko W., Hooch Antink W., Lee C. W., Yim G. H., Seung H., Park C., Lee K.-S., Kim D.-H., Hyeon T., Yoo D.. Ni Single Atoms on Carbon Nitride for Visible-Light-Promoted Full Heterogeneous Dual Catalysis. Chem. Sci. 2022;13(29):8536–8542. doi: 10.1039/D2SC02174A. PubMed DOI PMC
Bhadra M., Sasmal H. S., Basu A., Midya S. P., Kandambeth S., Pachfule P., Balaraman E., Banerjee R.. Predesigned Metal-Anchored Building Block for In Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis. ACS Appl. Mater. Interfaces. 2017;9(15):13785–13792. doi: 10.1021/acsami.7b02355. PubMed DOI
Ding S.-Y., Gao J., Wang Q., Zhang Y., Song W.-G., Su C.-Y., Wang W.. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011;133(49):19816–19822. doi: 10.1021/ja206846p. PubMed DOI
Vijeta A., Casadevall C., Roy S., Reisner E.. Visible-Light Promoted C–O Bond Formation with an Integrated Carbon Nitride–Nickel Heterogeneous Photocatalyst. Angew. Chem., Int. Ed. 2021;60(15):8494–8499. doi: 10.1002/anie.202016511. PubMed DOI PMC
Kim S., Bok J., Lee B.-H., Choi H., Seo Y., Kim J., Kim J., Ko W., Lee K.-S., Cho S.-P., Hyeon T., Yoo D.. Orthogonal Dual Photocatalysis of Single Atoms on Carbon Nitrides for One-Pot Relay Organic Transformation. ACS Nano. 2023;17(21):21470–21479. doi: 10.1021/acsnano.3c06314. PubMed DOI
Jia J., Bu X., Yang X.. A Cobalt Covalent Organic Framework: A Dual-Functional Atomic-Level Catalyst for Visible-Light-Driven C–H Annulation of Amides with Alkynes. J. Mater. Chem. A. 2022;10(21):11514–11523. doi: 10.1039/D2TA01325H. DOI
Han W.-K., Liu Y., Feng J.-D., Yan X., Pang H., Gu Z.-G.. Engineering a Molecular Ruthenium Catalyst into Three-Dimensional Metal Covalent Organic Frameworks for Efficient Water Oxidation. Chem. Sci. 2023;14(42):11768–11774. doi: 10.1039/D3SC03681B. PubMed DOI PMC
Vardhan H., Al-Enizi A. M., Nafady A., Pan Y., Yang Z., Gutiérrez H. R., Han X., Ma S.. Single-Pore versus Dual-Pore Bipyridine-Based Covalent–Organic Frameworks: An Insight into the Heterogeneous Cata-lytic Activity for Selective C-H Functionalization. Small. 2021;17(22):2003970. doi: 10.1002/smll.202003970. PubMed DOI
Bajada M. A., Di Liberto G., Tosoni S., Ruta V., Mino L., Allasia N., Sivo A., Pacchioni G., Vilé G.. Light-Driven C–O Coupling of Carboxylic Acids and Alkyl Halides over a Ni Single-Atom Catalyst. Nat. Synth. 2023;2(11):1092–1103. doi: 10.1038/s44160-023-00341-3. DOI
Samudrala K. K., Conley M. P.. A Supported Ziegler-Type Organohafnium Site Metabolizes Polypropylene. J. Am. Chem. Soc. 2023;145(45):24447–24451. doi: 10.1021/jacs.3c05940. PubMed DOI PMC
Xu H.-S., Luo Y., See P. Z., Li X., Chen Z., Zhou Y., Zhao X., Leng K., Park I.-H., Li R., Liu C., Chen F., Xi S., Sun J., Loh K. P.. Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs) Angew. Chem., Int. Ed. 2020;59(28):11527–11532. doi: 10.1002/anie.202002724. PubMed DOI
Guan Q., Zhou L.-L., Dong Y.-B.. Metalated Covalent Organic Frameworks: From Synthetic Strategies to Diverse Applications. Chem. Soc. Rev. 2022;51(15):6307–6416. doi: 10.1039/D1CS00983D. PubMed DOI
Almansaf Z., Hu J., Zanca F., Shahsavari H. R., Kampmeyer B., Tsuji M., Maity K., Lomonte V., Ha Y., Mastrorilli P., Todisco S., Benamara M., Oktavian R., Mirjafari A., Moghadam P. Z., Khosropour A. R., Beyzavi H.. Pt(II)-Decorated Covalent Organic Framework for Photocatalytic Difluoroalkylation and Oxidative Cyclization Reactions. ACS Appl. Mater. Interfaces. 2021;13(5):6349–6358. doi: 10.1021/acsami.0c21370. PubMed DOI PMC
Lin S., Diercks C. S., Zhang Y.-B., Kornienko N., Nichols E. M., Zhao Y., Paris A. R., Kim D., Yang P., Yaghi O. M., Chang C. J.. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science. 2015;349(6253):1208–1213. doi: 10.1126/science.aac8343. PubMed DOI
Zhou W., Deng W.-Q., Lu X.. Metallosalen Covalent Organic Frameworks for Heterogeneous Catalysis. Interdiscip. Mater. 2024;3(1):87–112. doi: 10.1002/idm2.12140. DOI
Li L.-H., Feng X.-L., Cui X.-H., Ma Y.-X., Ding S.-Y., Wang W.. Salen-Based Covalent Organic Framework. J. Am. Chem. Soc. 2017;139(17):6042–6045. doi: 10.1021/jacs.7b01523. PubMed DOI
Zhao X., Pachfule P., Thomas A.. Covalent Organic Frameworks (COFs) for Electrochemical Applications. Chem. Soc. Rev. 2021;50(12):6871–6913. doi: 10.1039/D0CS01569E. PubMed DOI
Lang R., Xi W., Liu J.-C., Cui Y.-T., Li T., Lee A. F., Chen F., Chen Y., Li L., Li L., Lin J., Miao S., Liu X., Wang A.-Q., Wang X., Luo J., Qiao B., Li J., Zhang T.. Non-Defect-Stabilized Thermally Stable Single-Atom Catalyst. Nat. Commun. 2019;10(1):234. doi: 10.1038/s41467-018-08136-3. PubMed DOI PMC
Zhao H., Liu X., Zeng C., Liu W., Tan L.. Thermochemical CO2 Reduction to Methanol over Metal-Based Single-Atom Catalysts (SACs): Outlook and Challenges for Development. J. Am. Chem. Soc. 2024;146(34):23649–23662. doi: 10.1021/jacs.4c08523. PubMed DOI
Kaiser S. K., Chen Z., Faust Akl D., Mitchell S., Pérez-Ramírez J.. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020;120(21):11703–11809. doi: 10.1021/acs.chemrev.0c00576. PubMed DOI
Kment S. ˇ., Bakandritsos A., Tantis I., Kmentová H., Zuo Y., Henrotte O., Naldoni A., Otyepka M., Varma R. S., Zbořil R.. Single-Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem. Rev. 2024;124(21):11767–11847. doi: 10.1021/acs.chemrev.4c00155. PubMed DOI PMC
Abdel-Mageed A. M., Rungtaweevoranit B., Parlinska-Wojtan M., Pei X., Yaghi O. M., Behm R. J.. Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal–Organic Framework. J. Am. Chem. Soc. 2019;141(13):5201–5210. doi: 10.1021/jacs.8b11386. PubMed DOI
Pachfule P., Kandambeth S., Díaz Díaz D., Banerjee R.. Highly Stable Covalent Organic Framework–Au Nanoparticles Hybrids for Enhanced Activity for Nitrophenol Reduction. Chem. Commun. 2014;50(24):3169–3172. doi: 10.1039/C3CC49176E. PubMed DOI
Dong J., Han X., Liu Y., Li H., Cui Y.. Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angew. Chem., Int. Ed. 2020;59(33):13722–13733. doi: 10.1002/anie.202004796. PubMed DOI
Chen H., Liu W., Laemont A., Krishnaraj C., Feng X., Rohman F., Meledina M., Zhang Q., Van Deun R., Leus K., Van Der Voort P.. A Visible-Light-Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur–Carbon Cross-Coupling Dual Catalyst. Angew. Chem., Int. Ed. 2021;60(19):10820–10827. doi: 10.1002/anie.202101036. PubMed DOI
Liu G., Liu S., Lai C., Qin L., Zhang M., Li Y., Xu M., Ma D., Xu F., Liu S., Dai M., Chen Q.. Strategies for Enhancing the Photocatalytic and Electrocatalytic Efficiency of Covalent Triazine Frameworks for CO2 Reduction. Small. 2024;20(22):2307853. doi: 10.1002/smll.202307853. PubMed DOI
Alsudairy Z., Brown N., Campbell A., Ambus A., Brown B., Smith-Petty K., Li X.. Covalent Organic Frameworks in Heterogeneous Catalysis: Recent Advances and Future Perspective. Mater. Chem. Front. 2023;7(16):3298–3331. doi: 10.1039/D3QM00188A. DOI
Dong J., Han X., Liu Y., Li H., Cui Y.. Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angew. Chem., Int. Ed. 2020;59(33):13722–13733. doi: 10.1002/anie.202004796. PubMed DOI
Jati A., Dey K., Nurhuda M., Addicoat M. A., Banerjee R., Maji B.. Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. J. Am. Chem. Soc. 2022;144(17):7822–7833. doi: 10.1021/jacs.2c01814. PubMed DOI
Yan R., Mishra B., Traxler M., Roeser J., Chaoui N., Kumbhakar B., Schmidt J., Li S., Thomas A., Pachfule P.. A Thiazole-Linked Covalent Organic Framework for Lithium-Sulfur Batteries. Angew. Chem., Int. Ed. 2023;62:e202302276. doi: 10.1002/anie.202302276. PubMed DOI
Roy M., Mishra B., Maji S., Sinha A., Dutta S., Mondal S., Banerjee A., Pachfule P., Adhikari D.. Covalent Organic Framework Catalyzed Amide Synthesis Directly from Alcohol Under Red Light Excitation. Angew. Chem., Int. Ed. 2024;63:e202410300. doi: 10.1002/anie.202410300. PubMed DOI
Basak A., Karmakar A., Dutta S., Roy D., Paul S., Nishiyama Y., Pathak B., Kundu S., Banerjee R.. Metal-Free Electrocatalytic Alkaline Water Splitting by Porous Macrocyclic Proton Sponges. Angew. Chem., Int. Ed. 2025;64:e202419377. doi: 10.1002/anie.202419377. PubMed DOI
Park J. H., Lee C. H., Ju J.-M., Lee J.-H., Seol J., Lee S. U., Kim J.-H.. Bifunctional Covalent Organic Framework-Derived Electrocatalysts with Modulated p-Band Centers for Rechargeable Zn–Air Batteries. Adv. Funct. Mater. 2021;31:2101727. doi: 10.1002/adfm.202101727. DOI
Li Z., Ren Q., Wang X., Chen W., Leng L., Zhang M., Horton J. H., Liu B., Xu Q., Wu W., Wang J.. Highly Active and Stable Palladium Single-Atom Catalyst Achieved by a Thermal Atomization Strategy on an SBA-15 Molecular Sieve for Semi-Hydrogenation Reactions. ACS Appl. Mater. Interfaces. 2021;13:2530–2537. doi: 10.1021/acsami.0c17570. PubMed DOI
Zhang R., Liu Z., Zheng S., Wang L., Zhang L., Qiao Z.-A.. Pyridinic Nitrogen Sites Dominated Coordinative Engineering of Subnanometric Pd Clusters for Efficient Alkynes’ Semihydrogenation. Adv. Mater. 2023;35:2209635. doi: 10.1002/adma.202209635. PubMed DOI
Mou K., Meng F., Zhang Z., Li X., Li M., Jiao Y., Wang Z., Bai X., Zhang F.. Pyridazine-Promoted Construction of Vinylene-Linked Covalent Organic Frameworks with Exceptional Capability of Stepwise Water Harvesting. Angew. Chem., Int. Ed. 2024;63:e202402446. doi: 10.1002/anie.202402446. PubMed DOI
Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition, Wiley, 2004.
Edwards, H. G. M. Spectra-Structure Correlations in Raman Spectroscopy. In Handbook of Vibrational Spectroscopy; Chalmers, J. M. ; Griffiths, P. R. , Eds.; Wiley, 2006.
Luo Q., Wang H., Xiang Q., Lv Y., Yang J., Song L., Cao X., Wang L., Xiao F.-S.. Polymer-Supported Pd Nanoparticles for Solvent-Free Hydrogenation. J. Am. Chem. Soc. 2024;146(38):26379–26386. doi: 10.1021/jacs.4c09241. PubMed DOI
Ouyang Z., Sheng G., Zhong Y., Wang J., Cai J., Deng S., Deng Q.. Palladium Single Atom-Supported Covalent Organic Frameworks for Aqueous-Phase Hydrogenative Hydrogenolysis of Aromatic Aldehydes via Hydrogen Heterolysis. Angew. Chem., Int. Ed. 2025;64:e202418790. doi: 10.1002/anie.202418790. PubMed DOI
Di Liberto G., Giordano L., Pacchioni G.. Predicting the Stability of Single-Atom Catalysts in Electrochemical Reactions. ACS Catal. 2024;14(1):45–55. doi: 10.1021/acscatal.3c04801. DOI
Peterson K. A., Figgen D., Dolg M., Stoll H.. Energy-Consistent Relativistic Pseudopotentials and Correlation Consistent Basis Sets for the 4d Elements Y–Pd. J. Chem. Phys. 2007;126(12):124101. doi: 10.1063/1.2647019. PubMed DOI
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. A. ; Nakatsuji, H. ; Caricato, M. ; Li, X. ; Hratchian, H. P. ; Izmaylov, A. F. ; Bloino, J. ; Zheng, G. ; Sonnenberg, J. L. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Montgomery, J. A. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. ; Heyd, J. J. ; Brothers, E. ; Kudin, K. N. ; Staroverov, V. N. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Rega, N. ; Millam, J. M. ; Klene, M. ; Knox, J. E. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Zakrzewski, V. G. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Dapprich, S. ; Daniels, A. D. ; Farkas, O. ; Foresman, J. B. ; Ortiz, J. V. ; Cioslowski, J. ; Fox, D. J. . Gaussian 09, Revision E.01.
Zanchi C., Lucotti A., Pistaffa M., Ossi P. M., Trusso S., Fontana F., Carminati G., Rizzo S., Tommasini M.. A Raman and SERS Study on the Interactions of Aza[5]Helicene and Aza[6]Helicene with a Nanostructured Gold Surface. Vib. Spectrosc. 2020;111:103180. doi: 10.1016/j.vibspec.2020.103180. DOI
Kresse G., Hafner J.. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B:Condens. Matter Mater. Phys. 1993;47(1):558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Furthmüller J.. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0. DOI
Kresse G., Hafner J.. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B:Condens. Matter Mater. Phys. 1994;49(20):14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B:Condens. Matter Mater. Phys. 1994;50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B:Condens. Matter Mater. Phys. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI
Adamo C., Barone V.. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999;110(13):6158–6170. doi: 10.1063/1.478522. DOI
Perdew J. P., Ernzerhof M., Burke K.. Rationale for Mixing Exact Exchange with Density Functional Approximations. J. Chem. Phys. 1996;105(22):9982–9985. doi: 10.1063/1.472933. DOI
Barlocco I., Cipriano L. A., Di Liberto G., Pacchioni G.. Modeling Hydrogen and Oxygen Evolution Reactions on Single Atom Catalysts with Density Functional Theory: Role of the Functional. Adv. Theory Simul. 2023;6:2200513. doi: 10.1002/adts.202200513. DOI
Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U.. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005;152(3):J23. doi: 10.1149/1.1856988. DOI
Nørskov J. K., Bligaard T., Rossmeisl J., Christensen C. H.. Towards the Computational Design of Solid Catalysts. Nat. Chem. 2009;1(1):37–46. doi: 10.1038/nchem.121. PubMed DOI