An Adaptive Palladium Single-Atom Catalyst Enabling Reactivity Switching between Borylation and C-C Coupling

. 2025 Jun 04 ; 147 (22) : 18524-18540. [epub] 20250523

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40407185

The development of single-atom catalysts (SACs) with site-specific and tunable catalytic functionalities remains a highly desirable yet challenging goal in catalysis. In this study, we report a SAC featuring anisotropic coordination cavities synthesized via a one-step polymerization of 2,6-diaminopyridine and cyanuric chloride. These cavities provide a robust framework for anchoring isolated Pd single atoms with exceptional stability. The unique broken symmetry of the catalyst's local structure enables precise control over reaction pathways, allowing reactivity to be switched between distinct catalytic outcomes. Specifically, under tailored reaction conditions, the catalyst can either halt at the borylation step or proceed seamlessly to Suzuki coupling in a self-cascade process. Mechanistic studies unveil the pivotal role of Pd single atoms in driving key steps, including oxidative addition, base exchange, and reductive elimination. Furthermore, green metrics demonstrate the process's sustainability, with minimized waste generation and reduced reliance on hazardous reagents in the self-cascade transformation. This work establishes an innovative benchmark in the field of single-atom catalysis: by enabling complex, multistep transformations via strategic activation of multiple functional groups, this catalyst exemplifies the potential of self-cascade processes to revolutionize synthetic chemistry via catalysis engineering.

Zobrazit více v PubMed

Liu L., Corma A.. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem. Rev. 2023;123(8):4855–4933. doi: 10.1021/acs.chemrev.2c00733. PubMed DOI PMC

Wu S.-M., Schmuki P.. Single Atom Cocatalysts in Photocatalysis. Adv. Mater. 2025;37(7):2414889. doi: 10.1002/adma.202414889. PubMed DOI PMC

Saptal V. B., Ruta V., Bajada M. A., Vilé G.. Single-Atom Catalysis in Organic Synthesis. Angew. Chem., Int. Ed. 2023;62(34):e202219306. doi: 10.1002/anie.202219306. PubMed DOI

Liang X., Fu N., Yao S., Li Z., Li Y.. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J. Am. Chem. Soc. 2022;144(40):18155–18174. doi: 10.1021/jacs.1c12642. PubMed DOI

Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y.. Chemical Synthesis of Single Atomic Site Catalysts. Chem. Rev. 2020;120(21):11900–11955. doi: 10.1021/acs.chemrev.9b00818. PubMed DOI

Samantaray M. K., D’Elia V., Pump E., Falivene L., Harb M., Ould Chikh S., Cavallo L., Basset J.-M.. The Comparison between Single Atom Catalysis and Surface Organometallic Catalysis. Chem. Rev. 2020;120(2):734–813. doi: 10.1021/acs.chemrev.9b00238. PubMed DOI

Bajada M. A., Sanjosé-Orduna J., Di Liberto G., Tosoni S., Pacchioni G., Noël T., Vilé G.. Interfacing Single-Atom Catalysis with Continuous-Flow Organic Electrosynthesis. Chem. Soc. Rev. 2022;51(10):3898–3925. doi: 10.1039/D2CS00100D. PubMed DOI

Samantaray M. K., Pump E., Bendjeriou-Sedjerari A., D’Elia V., Pelletier J. D. A., Guidotti M., Psaro R., Basset J.-M.. Surface Organometallic Chemistry in Heterogeneous Catalysis. Chem. Soc. Rev. 2018;47(22):8403–8437. doi: 10.1039/C8CS00356D. PubMed DOI

Lang R., Du X., Huang Y., Jiang X., Zhang Q., Guo Y., Liu K., Qiao B., Wang A., Zhang T.. Single-Atom Catalysts Based on the Metal–Oxide Interaction. Chem. Rev. 2020;120(21):11986–12043. doi: 10.1021/acs.chemrev.0c00797. PubMed DOI

Jia H., Liao Q., Liu W., Cipriano L. A., Jiang H., Dixneuf P. H., Vilé G., Zhang M.. Reductive Coupling of N-Heteroarenes and 1,2-Dicarbonyls for Direct Access to γ-Amino Acids, Esters, and Ketones Using a Heterogeneous Single-Atom Iridium Catalyst. J. Am. Chem. Soc. 2024;146(46):31647–31655. doi: 10.1021/jacs.4c09827. PubMed DOI

Gawande M. B., Fornasiero P., Zbořil R.. Carbon-Based Single-Atom Catalysts for Advanced Applications. ACS Catal. 2020;10(3):2231–2259. doi: 10.1021/acscatal.9b04217. DOI

Qin R., Liu K., Wu Q., Zheng N.. Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chem. Rev. 2020;120(21):11810–11899. doi: 10.1021/acs.chemrev.0c00094. PubMed DOI

Copéret C.. Single-Sites and Nanoparticles at Tailored Interfaces Prepared via Surface Organometallic Chemistry from Thermolytic Molecular Precursors. Acc. Chem. Res. 2019;52(6):1697–1708. doi: 10.1021/acs.accounts.9b00138. PubMed DOI

P S., John J., Rajan T. P. D., Anilkumar G. M., Yamaguchi T., Pillai S. C., Hareesh U. S.. Graphitic Carbon Nitride (g-C3N4) Based Heterogeneous Single Atom Catalysts: Synthesis, Characterisation and Catalytic Applications. J. Mater. Chem. A. 2023;11(16):8599–8646. doi: 10.1039/D2TA09776A. DOI

Pelletier J. D. A., Basset J.-M.. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts. Acc. Chem. Res. 2016;49(4):664–677. doi: 10.1021/acs.accounts.5b00518. PubMed DOI

Kumar P., Singh G., Guan X., Lee J., Bahadur R., Ramadass K., Kumar P., Kibria Md. G., Vidyasagar D., Yi J., Vinu A.. Multifunctional Carbon Nitride Nanoarchitectures for Catalysis. Chem. Soc. Rev. 2023;52(21):7602–7664. doi: 10.1039/D3CS00213F. PubMed DOI

Rocha G. F. S. R., da Silva M. A. R., Rogolino A., Diab G. A. A., Noleto L. F. G., Antonietti M., Teixeira I. F.. Carbon Nitride Based Materials: More than Just a Support for Single-Atom Catalysis. Chem. Soc. Rev. 2023;52(15):4878–4932. doi: 10.1039/D2CS00806H. PubMed DOI

Peralta R. A., Huxley M. T., Evans J. D., Fallon T., Cao H., He M., Zhao X. S., Agnoli S., Sumby C. J., Doonan C. J.. Highly Active Gas Phase Organometallic Catalysis Supported Within Metal–Organic Framework Pores. J. Am. Chem. Soc. 2020;142(31):13533–13543. doi: 10.1021/jacs.0c05286. PubMed DOI

Witzke R. J., Chapovetsky A., Conley M. P., Kaphan D. M., Delferro M.. Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catal. 2020;10(20):11822–11840. doi: 10.1021/acscatal.0c03350. DOI

Iemhoff A., Vennewald M., Palkovits R.. Single-Atom Catalysts on Covalent Triazine Frameworks: At the Crossroad between Homogeneous and Heterogeneous Catalysis. Angew. Chem., Int. Ed. 2023;62(7):e202212015. doi: 10.1002/anie.202212015. PubMed DOI PMC

Sádaba I., López Granados M., Riisager A., Taarning E.. Deactivation of Solid Catalysts in Liquid Media: The Case of Leaching of Active Sites in Biomass Conversion Reactions. Green Chem. 2015;17(8):4133–4145. doi: 10.1039/C5GC00804B. DOI

Shende V. S., Saptal V. B., Bhanage B. M.. Recent Advances Utilized in the Recycling of Homogeneous Catalysis. Chem. Rec. 2019;19(9):2022–2043. doi: 10.1002/tcr.201800205. PubMed DOI

Hammond C.. Intensification Studies of Heterogeneous Catalysts: Probing and Overcoming Catalyst Deactivation during Liquid Phase Operation. Green Chem. 2017;19(12):2711–2728. doi: 10.1039/C7GC00163K. DOI

Kramer S., Bennedsen N. R., Kegnæs S.. Porous Organic Polymers Containing Active Metal Centers as Catalysts for Synthetic Organic Chemistry. ACS Catal. 2018;8(8):6961–6982. doi: 10.1021/acscatal.8b01167. DOI

Xu L.-H., Liu W., Liu K.. Single Atom Environmental Catalysis: Influence of Supports and Coordination Environments. Adv. Funct. Mater. 2023;33(50):2304468. doi: 10.1002/adfm.202304468. DOI

Li Z., Ji S., Liu Y., Cao X., Tian S., Chen Y., Niu Z., Li Y.. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem. Rev. 2020;120(2):623–682. doi: 10.1021/acs.chemrev.9b00311. PubMed DOI

Kwak M., Bok J., Lee B.-H., Kim J., Seo Y., Kim S., Choi H., Ko W., Hooch Antink W., Lee C. W., Yim G. H., Seung H., Park C., Lee K.-S., Kim D.-H., Hyeon T., Yoo D.. Ni Single Atoms on Carbon Nitride for Visible-Light-Promoted Full Heterogeneous Dual Catalysis. Chem. Sci. 2022;13(29):8536–8542. doi: 10.1039/D2SC02174A. PubMed DOI PMC

Bhadra M., Sasmal H. S., Basu A., Midya S. P., Kandambeth S., Pachfule P., Balaraman E., Banerjee R.. Predesigned Metal-Anchored Building Block for In Situ Generation of Pd Nanoparticles in Porous Covalent Organic Framework: Application in Heterogeneous Tandem Catalysis. ACS Appl. Mater. Interfaces. 2017;9(15):13785–13792. doi: 10.1021/acsami.7b02355. PubMed DOI

Ding S.-Y., Gao J., Wang Q., Zhang Y., Song W.-G., Su C.-Y., Wang W.. Construction of Covalent Organic Framework for Catalysis: Pd/COF-LZU1 in Suzuki–Miyaura Coupling Reaction. J. Am. Chem. Soc. 2011;133(49):19816–19822. doi: 10.1021/ja206846p. PubMed DOI

Vijeta A., Casadevall C., Roy S., Reisner E.. Visible-Light Promoted C–O Bond Formation with an Integrated Carbon Nitride–Nickel Heterogeneous Photocatalyst. Angew. Chem., Int. Ed. 2021;60(15):8494–8499. doi: 10.1002/anie.202016511. PubMed DOI PMC

Kim S., Bok J., Lee B.-H., Choi H., Seo Y., Kim J., Kim J., Ko W., Lee K.-S., Cho S.-P., Hyeon T., Yoo D.. Orthogonal Dual Photocatalysis of Single Atoms on Carbon Nitrides for One-Pot Relay Organic Transformation. ACS Nano. 2023;17(21):21470–21479. doi: 10.1021/acsnano.3c06314. PubMed DOI

Jia J., Bu X., Yang X.. A Cobalt Covalent Organic Framework: A Dual-Functional Atomic-Level Catalyst for Visible-Light-Driven C–H Annulation of Amides with Alkynes. J. Mater. Chem. A. 2022;10(21):11514–11523. doi: 10.1039/D2TA01325H. DOI

Han W.-K., Liu Y., Feng J.-D., Yan X., Pang H., Gu Z.-G.. Engineering a Molecular Ruthenium Catalyst into Three-Dimensional Metal Covalent Organic Frameworks for Efficient Water Oxidation. Chem. Sci. 2023;14(42):11768–11774. doi: 10.1039/D3SC03681B. PubMed DOI PMC

Vardhan H., Al-Enizi A. M., Nafady A., Pan Y., Yang Z., Gutiérrez H. R., Han X., Ma S.. Single-Pore versus Dual-Pore Bipyridine-Based Covalent–Organic Frameworks: An Insight into the Heterogeneous Cata-lytic Activity for Selective C-H Functionalization. Small. 2021;17(22):2003970. doi: 10.1002/smll.202003970. PubMed DOI

Bajada M. A., Di Liberto G., Tosoni S., Ruta V., Mino L., Allasia N., Sivo A., Pacchioni G., Vilé G.. Light-Driven C–O Coupling of Carboxylic Acids and Alkyl Halides over a Ni Single-Atom Catalyst. Nat. Synth. 2023;2(11):1092–1103. doi: 10.1038/s44160-023-00341-3. DOI

Samudrala K. K., Conley M. P.. A Supported Ziegler-Type Organohafnium Site Metabolizes Polypropylene. J. Am. Chem. Soc. 2023;145(45):24447–24451. doi: 10.1021/jacs.3c05940. PubMed DOI PMC

Xu H.-S., Luo Y., See P. Z., Li X., Chen Z., Zhou Y., Zhao X., Leng K., Park I.-H., Li R., Liu C., Chen F., Xi S., Sun J., Loh K. P.. Divergent Chemistry Paths for 3D and 1D Metallo-Covalent Organic Frameworks (COFs) Angew. Chem., Int. Ed. 2020;59(28):11527–11532. doi: 10.1002/anie.202002724. PubMed DOI

Guan Q., Zhou L.-L., Dong Y.-B.. Metalated Covalent Organic Frameworks: From Synthetic Strategies to Diverse Applications. Chem. Soc. Rev. 2022;51(15):6307–6416. doi: 10.1039/D1CS00983D. PubMed DOI

Almansaf Z., Hu J., Zanca F., Shahsavari H. R., Kampmeyer B., Tsuji M., Maity K., Lomonte V., Ha Y., Mastrorilli P., Todisco S., Benamara M., Oktavian R., Mirjafari A., Moghadam P. Z., Khosropour A. R., Beyzavi H.. Pt­(II)-Decorated Covalent Organic Framework for Photocatalytic Difluoroalkylation and Oxidative Cyclization Reactions. ACS Appl. Mater. Interfaces. 2021;13(5):6349–6358. doi: 10.1021/acsami.0c21370. PubMed DOI PMC

Lin S., Diercks C. S., Zhang Y.-B., Kornienko N., Nichols E. M., Zhao Y., Paris A. R., Kim D., Yang P., Yaghi O. M., Chang C. J.. Covalent Organic Frameworks Comprising Cobalt Porphyrins for Catalytic CO2 Reduction in Water. Science. 2015;349(6253):1208–1213. doi: 10.1126/science.aac8343. PubMed DOI

Zhou W., Deng W.-Q., Lu X.. Metallosalen Covalent Organic Frameworks for Heterogeneous Catalysis. Interdiscip. Mater. 2024;3(1):87–112. doi: 10.1002/idm2.12140. DOI

Li L.-H., Feng X.-L., Cui X.-H., Ma Y.-X., Ding S.-Y., Wang W.. Salen-Based Covalent Organic Framework. J. Am. Chem. Soc. 2017;139(17):6042–6045. doi: 10.1021/jacs.7b01523. PubMed DOI

Zhao X., Pachfule P., Thomas A.. Covalent Organic Frameworks (COFs) for Electrochemical Applications. Chem. Soc. Rev. 2021;50(12):6871–6913. doi: 10.1039/D0CS01569E. PubMed DOI

Lang R., Xi W., Liu J.-C., Cui Y.-T., Li T., Lee A. F., Chen F., Chen Y., Li L., Li L., Lin J., Miao S., Liu X., Wang A.-Q., Wang X., Luo J., Qiao B., Li J., Zhang T.. Non-Defect-Stabilized Thermally Stable Single-Atom Catalyst. Nat. Commun. 2019;10(1):234. doi: 10.1038/s41467-018-08136-3. PubMed DOI PMC

Zhao H., Liu X., Zeng C., Liu W., Tan L.. Thermochemical CO2 Reduction to Methanol over Metal-Based Single-Atom Catalysts (SACs): Outlook and Challenges for Development. J. Am. Chem. Soc. 2024;146(34):23649–23662. doi: 10.1021/jacs.4c08523. PubMed DOI

Kaiser S. K., Chen Z., Faust Akl D., Mitchell S., Pérez-Ramírez J.. Single-Atom Catalysts across the Periodic Table. Chem. Rev. 2020;120(21):11703–11809. doi: 10.1021/acs.chemrev.0c00576. PubMed DOI

Kment S. ˇ., Bakandritsos A., Tantis I., Kmentová H., Zuo Y., Henrotte O., Naldoni A., Otyepka M., Varma R. S., Zbořil R.. Single-Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem. Rev. 2024;124(21):11767–11847. doi: 10.1021/acs.chemrev.4c00155. PubMed DOI PMC

Abdel-Mageed A. M., Rungtaweevoranit B., Parlinska-Wojtan M., Pei X., Yaghi O. M., Behm R. J.. Highly Active and Stable Single-Atom Cu Catalysts Supported by a Metal–Organic Framework. J. Am. Chem. Soc. 2019;141(13):5201–5210. doi: 10.1021/jacs.8b11386. PubMed DOI

Pachfule P., Kandambeth S., Díaz Díaz D., Banerjee R.. Highly Stable Covalent Organic Framework–Au Nanoparticles Hybrids for Enhanced Activity for Nitrophenol Reduction. Chem. Commun. 2014;50(24):3169–3172. doi: 10.1039/C3CC49176E. PubMed DOI

Dong J., Han X., Liu Y., Li H., Cui Y.. Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angew. Chem., Int. Ed. 2020;59(33):13722–13733. doi: 10.1002/anie.202004796. PubMed DOI

Chen H., Liu W., Laemont A., Krishnaraj C., Feng X., Rohman F., Meledina M., Zhang Q., Van Deun R., Leus K., Van Der Voort P.. A Visible-Light-Harvesting Covalent Organic Framework Bearing Single Nickel Sites as a Highly Efficient Sulfur–Carbon Cross-Coupling Dual Catalyst. Angew. Chem., Int. Ed. 2021;60(19):10820–10827. doi: 10.1002/anie.202101036. PubMed DOI

Liu G., Liu S., Lai C., Qin L., Zhang M., Li Y., Xu M., Ma D., Xu F., Liu S., Dai M., Chen Q.. Strategies for Enhancing the Photocatalytic and Electrocatalytic Efficiency of Covalent Triazine Frameworks for CO2 Reduction. Small. 2024;20(22):2307853. doi: 10.1002/smll.202307853. PubMed DOI

Alsudairy Z., Brown N., Campbell A., Ambus A., Brown B., Smith-Petty K., Li X.. Covalent Organic Frameworks in Heterogeneous Catalysis: Recent Advances and Future Perspective. Mater. Chem. Front. 2023;7(16):3298–3331. doi: 10.1039/D3QM00188A. DOI

Dong J., Han X., Liu Y., Li H., Cui Y.. Metal–Covalent Organic Frameworks (MCOFs): A Bridge Between Metal–Organic Frameworks and Covalent Organic Frameworks. Angew. Chem., Int. Ed. 2020;59(33):13722–13733. doi: 10.1002/anie.202004796. PubMed DOI

Jati A., Dey K., Nurhuda M., Addicoat M. A., Banerjee R., Maji B.. Dual Metalation in a Two-Dimensional Covalent Organic Framework for Photocatalytic C–N Cross-Coupling Reactions. J. Am. Chem. Soc. 2022;144(17):7822–7833. doi: 10.1021/jacs.2c01814. PubMed DOI

Yan R., Mishra B., Traxler M., Roeser J., Chaoui N., Kumbhakar B., Schmidt J., Li S., Thomas A., Pachfule P.. A Thiazole-Linked Covalent Organic Framework for Lithium-Sulfur Batteries. Angew. Chem., Int. Ed. 2023;62:e202302276. doi: 10.1002/anie.202302276. PubMed DOI

Roy M., Mishra B., Maji S., Sinha A., Dutta S., Mondal S., Banerjee A., Pachfule P., Adhikari D.. Covalent Organic Framework Catalyzed Amide Synthesis Directly from Alcohol Under Red Light Excitation. Angew. Chem., Int. Ed. 2024;63:e202410300. doi: 10.1002/anie.202410300. PubMed DOI

Basak A., Karmakar A., Dutta S., Roy D., Paul S., Nishiyama Y., Pathak B., Kundu S., Banerjee R.. Metal-Free Electrocatalytic Alkaline Water Splitting by Porous Macrocyclic Proton Sponges. Angew. Chem., Int. Ed. 2025;64:e202419377. doi: 10.1002/anie.202419377. PubMed DOI

Park J. H., Lee C. H., Ju J.-M., Lee J.-H., Seol J., Lee S. U., Kim J.-H.. Bifunctional Covalent Organic Framework-Derived Electrocatalysts with Modulated p-Band Centers for Rechargeable Zn–Air Batteries. Adv. Funct. Mater. 2021;31:2101727. doi: 10.1002/adfm.202101727. DOI

Li Z., Ren Q., Wang X., Chen W., Leng L., Zhang M., Horton J. H., Liu B., Xu Q., Wu W., Wang J.. Highly Active and Stable Palladium Single-Atom Catalyst Achieved by a Thermal Atomization Strategy on an SBA-15 Molecular Sieve for Semi-Hydrogenation Reactions. ACS Appl. Mater. Interfaces. 2021;13:2530–2537. doi: 10.1021/acsami.0c17570. PubMed DOI

Zhang R., Liu Z., Zheng S., Wang L., Zhang L., Qiao Z.-A.. Pyridinic Nitrogen Sites Dominated Coordinative Engineering of Subnanometric Pd Clusters for Efficient Alkynes’ Semihydrogenation. Adv. Mater. 2023;35:2209635. doi: 10.1002/adma.202209635. PubMed DOI

Mou K., Meng F., Zhang Z., Li X., Li M., Jiao Y., Wang Z., Bai X., Zhang F.. Pyridazine-Promoted Construction of Vinylene-Linked Covalent Organic Frameworks with Exceptional Capability of Stepwise Water Harvesting. Angew. Chem., Int. Ed. 2024;63:e202402446. doi: 10.1002/anie.202402446. PubMed DOI

Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd Edition, Wiley, 2004.

Edwards, H. G. M. Spectra-Structure Correlations in Raman Spectroscopy. In Handbook of Vibrational Spectroscopy; Chalmers, J. M. ; Griffiths, P. R. , Eds.; Wiley, 2006.

Luo Q., Wang H., Xiang Q., Lv Y., Yang J., Song L., Cao X., Wang L., Xiao F.-S.. Polymer-Supported Pd Nanoparticles for Solvent-Free Hydrogenation. J. Am. Chem. Soc. 2024;146(38):26379–26386. doi: 10.1021/jacs.4c09241. PubMed DOI

Ouyang Z., Sheng G., Zhong Y., Wang J., Cai J., Deng S., Deng Q.. Palladium Single Atom-Supported Covalent Organic Frameworks for Aqueous-Phase Hydrogenative Hydrogenolysis of Aromatic Aldehydes via Hydrogen Heterolysis. Angew. Chem., Int. Ed. 2025;64:e202418790. doi: 10.1002/anie.202418790. PubMed DOI

Di Liberto G., Giordano L., Pacchioni G.. Predicting the Stability of Single-Atom Catalysts in Electrochemical Reactions. ACS Catal. 2024;14(1):45–55. doi: 10.1021/acscatal.3c04801. DOI

Peterson K. A., Figgen D., Dolg M., Stoll H.. Energy-Consistent Relativistic Pseudopotentials and Correlation Consistent Basis Sets for the 4d Elements Y–Pd. J. Chem. Phys. 2007;126(12):124101. doi: 10.1063/1.2647019. PubMed DOI

Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Mennucci, B. ; Petersson, G. A. ; Nakatsuji, H. ; Caricato, M. ; Li, X. ; Hratchian, H. P. ; Izmaylov, A. F. ; Bloino, J. ; Zheng, G. ; Sonnenberg, J. L. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R. ; Hasegawa, J. ; Ishida, M. ; Nakajima, T. ; Honda, Y. ; Kitao, O. ; Nakai, H. ; Vreven, T. ; Montgomery, J. A. ; Peralta, J. E. ; Ogliaro, F. ; Bearpark, M. ; Heyd, J. J. ; Brothers, E. ; Kudin, K. N. ; Staroverov, V. N. ; Kobayashi, R. ; Normand, J. ; Raghavachari, K. ; Rendell, A. ; Burant, J. C. ; Iyengar, S. S. ; Tomasi, J. ; Cossi, M. ; Rega, N. ; Millam, J. M. ; Klene, M. ; Knox, J. E. ; Cross, J. B. ; Bakken, V. ; Adamo, C. ; Jaramillo, J. ; Gomperts, R. ; Stratmann, R. E. ; Yazyev, O. ; Austin, A. J. ; Cammi, R. ; Pomelli, C. ; Ochterski, J. W. ; Martin, R. L. ; Morokuma, K. ; Zakrzewski, V. G. ; Voth, G. A. ; Salvador, P. ; Dannenberg, J. J. ; Dapprich, S. ; Daniels, A. D. ; Farkas, O. ; Foresman, J. B. ; Ortiz, J. V. ; Cioslowski, J. ; Fox, D. J. . Gaussian 09, Revision E.01.

Zanchi C., Lucotti A., Pistaffa M., Ossi P. M., Trusso S., Fontana F., Carminati G., Rizzo S., Tommasini M.. A Raman and SERS Study on the Interactions of Aza[5]­Helicene and Aza[6]­Helicene with a Nanostructured Gold Surface. Vib. Spectrosc. 2020;111:103180. doi: 10.1016/j.vibspec.2020.103180. DOI

Kresse G., Hafner J.. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B:Condens. Matter Mater. Phys. 1993;47(1):558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI

Kresse G., Furthmüller J.. Efficiency of Ab-Initio Total Energy Calculations for Metals and Semiconductors Using a Plane-Wave Basis Set. Comput. Mater. Sci. 1996;6(1):15–50. doi: 10.1016/0927-0256(96)00008-0. DOI

Kresse G., Hafner J.. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal–Amorphous-Semiconductor Transition in Germanium. Phys. Rev. B:Condens. Matter Mater. Phys. 1994;49(20):14251–14269. doi: 10.1103/PhysRevB.49.14251. PubMed DOI

Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Blöchl P. E.. Projector Augmented-Wave Method. Phys. Rev. B:Condens. Matter Mater. Phys. 1994;50(24):17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI

Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B:Condens. Matter Mater. Phys. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI

Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI

Adamo C., Barone V.. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model. J. Chem. Phys. 1999;110(13):6158–6170. doi: 10.1063/1.478522. DOI

Perdew J. P., Ernzerhof M., Burke K.. Rationale for Mixing Exact Exchange with Density Functional Approximations. J. Chem. Phys. 1996;105(22):9982–9985. doi: 10.1063/1.472933. DOI

Barlocco I., Cipriano L. A., Di Liberto G., Pacchioni G.. Modeling Hydrogen and Oxygen Evolution Reactions on Single Atom Catalysts with Density Functional Theory: Role of the Functional. Adv. Theory Simul. 2023;6:2200513. doi: 10.1002/adts.202200513. DOI

Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U.. Trends in the Exchange Current for Hydrogen Evolution. J. Electrochem. Soc. 2005;152(3):J23. doi: 10.1149/1.1856988. DOI

Nørskov J. K., Bligaard T., Rossmeisl J., Christensen C. H.. Towards the Computational Design of Solid Catalysts. Nat. Chem. 2009;1(1):37–46. doi: 10.1038/nchem.121. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...