Origin, genetic structure and evolutionary potential of the natural hybrid Ranunculus circinatus × R. fluitans
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37270656
PubMed Central
PMC10239522
DOI
10.1038/s41598-023-36253-7
PII: 10.1038/s41598-023-36253-7
Knihovny.cz E-resources
- MeSH
- Amplified Fragment Length Polymorphism Analysis MeSH
- Biological Evolution MeSH
- Genome MeSH
- Hybridization, Genetic MeSH
- Humans MeSH
- Ploidies MeSH
- Ranunculus * genetics MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Understanding the genetic variability of hybrids provides information on their current and future evolutionary role. In this paper, we focus on the interspecific hybrid Ranunculus circinatus × R. fluitans that forms spontaneously within the group Ranuculus L. sect. Batrachium DC. (Ranunculaceae Juss.). Genome-wide DNA fingerprinting using amplified fragment length polymorphisms (AFLP) was employed to determine the genetic variation among 36 riverine populations of the hybrid and their parental species. The results demonstrate a strong genetic structure of R. circinatus × R. fluitans within Poland (Central Europe), which is attributed to independent hybridization events, sterility of hybrid individuals, vegetative propagation, and isolation through geographical distance within populations. The hybrid R. circinatus × R. fluitans is a sterile triploid, but, as we have shown in this study, it may participate in subsequent hybridization events, resulting in a ploidy change that can lead to spontaneous fertility recovery. The ability to produce unreduced female gametes of the hybrid R. circinatus × R. fluitans and the parental species R. fluitans is an important evolutionary mechanism in Ranunculus sect. Batrachium that could give rise to new taxa.
Institute of Botany Czech Academy of Sciences Zámek 1 252 43 Průhonice Czech Republic
Institute of Botany Faculty of Biology Jagiellonian University Gronostajowa 3 30 387 Kraków Poland
See more in PubMed
Arnold ML. Evolution Through Genetic Exchange. Oxford University Press; 2006.
Abbott RJ, et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI
Goulet BE, Roda F, Hopkins R. Hybridization in plants: Old ideas. New Tech. Plant Physiol. 2017;173:65–78. doi: 10.1104/pp.16.01340. PubMed DOI PMC
Abbott RJ. Plant invasions, hybridization and the evolution of new plant taxa. Trends Ecol. Evol. 1992;7:401–405. doi: 10.1016/0169-5347(92)90020-C. PubMed DOI
Rieseberg LH. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 1997;28:359–389. doi: 10.1146/annurev.ecolsys.28.1.359. DOI
Mallet J. Hybrid speciation. Nature. 2007;446:279–283. doi: 10.1038/nature05706. PubMed DOI
Rieseberg, L. H. & Wendel, J. F. In Hybrid Zones and the Evolutionary Process (ed. Harrison, R. G.) 70–109 (Oxford University Press, 1993).
Hamilton JA, Miller JM. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv. Biol. 2015;30:33–41. doi: 10.1111/cobi.12574. PubMed DOI
Suarez-Gonzalez A, Lexer C, Cronk QCB. Adaptive introgression: A plant perspective. Biol. Lett. 2018;14:20170688. doi: 10.1098/rsbl.2017.0688. PubMed DOI PMC
Grant PR, Grant BR. Evolutionary biology: Speciation undone. Nature. 2014;507:178–179. doi: 10.1038/507178b. PubMed DOI
Todesco M, et al. Hybridization and extinction. Evol. Appl. 2016;9:892–908. doi: 10.1111/eva.12367. PubMed DOI PMC
Cook CDK. Hybridization in the evolution of Batrachium. Taxon. 1970;19:161–166. doi: 10.2307/1217948. DOI
Wiegleb G, Bobrov AA, Zalewska-Gałosz J. A taxonomic account of Ranunculus section Batrachium (Ranunculaceae) Phytotaxa. 2017;319:1–55. doi: 10.11646/phytotaxa.319.1.1. DOI
Bobrov AA, Zalewska-Gałosz J, Jopek M, Movergoz EA. Ranunculus schmalhausenii (section Batrachium, Ranunculaceae), a neglected water crowfoot endemic to Fennoscandia—A case of rapid hybrid speciation in postglacial environment of North Europe. Phytotaxa. 2015;233:101–138. doi: 10.11646/phytotaxa.233.2.1. DOI
Zalewska-Gałosz J, Jopek M, Ilnicki T. Hybridization in Batrachium group: Controversial delimitation between heterophyllous Ranunculus penicillatus and the hybrid Ranunculus fluitans × R. peltatus. Aquat. Bot. 2015;120:160–168. doi: 10.1016/j.aquabot.2014.03.002. DOI
Koutecký P, et al. Waking up from a taxonomist’s nightmare: Emerging structure of Ranunculus section Batrachium (Ranunculaceae) in central Europe based on molecular data and genome sizes. Bot. J. Linn. Soc. 2022;198:417–437. doi: 10.1093/botlinnean/boab063. DOI
Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 2002;23:137–154. doi: 10.1016/S1146-609X(02)01146-3. DOI
Boedeltje G, Bakker JP, Bekker RM, Van Groenendael JM, Soesbergen M. Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. J. Ecol. 2003;91:855–866. doi: 10.1046/j.1365-2745.2003.00820.x. DOI
Preston CD, Hollingsworth PM, Gornall RJ. Potamogeton pectinatus L. × P. vaginatus Turcz (P. × bottnicus Hagstr), a newly identified hybrid in the British Isles. Watsonia. 1988;22:69–82.
Zalewska-Gałosz J. Potamogeton ×subrufus Hagstr.: A neglected Potamogeton hybrid. Ann. Bot. Fenn. 2010;47:257–260. doi: 10.5735/085.047.0402. DOI
Zalewska-Gałosz J. Potamogeton ×jutlandicus, a binominal for the hybrid between P. lucens and P. praelongus (Potamogetonaceae) Nord. J. Bot. 2011;29:473–476. doi: 10.1111/j.1756-1051.2011.01154.x. DOI
Vallejo-Marín M, Hiscock SJ. Hybridization and hybrid speciation under global change. New Phytol. 2016;211:1170–1187. doi: 10.1111/nph.14004. PubMed DOI
Gebler D, Zalewska-Gałosz J, Jopek M, Szoszkiewicz K. Molecular identification and habitat requirements of the hybrid Ranunculus circinatus × R. fluitans and its parental taxa R. circinatus and R. fluitans in running waters. Hydrobiologia. 2022;849:2999–3014. doi: 10.1007/s10750-022-04909-6. DOI
Bobrov AA, et al. Extensive hybridization in Ranunculus section Batrachium (Ranunculaceae) in rivers of two postglacial landscapes of East Europe. Sci. Rep. 2022;12:12088. doi: 10.1038/s41598-022-16224-0. PubMed DOI PMC
Vollrath H, Kohler A. Batrachium-Fundorte aus bayerischen Naturräumen. Ber. Bayer. Bot. Ges. 1972;43:63–75.
Cook CDK. A monographic study of Ranunculus subgenus Batrachium (DC.) A. Gray. Mitt. Bot. Staatssamml. München. 1966;6:47–237.
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X,2005.02553.x. PubMed DOI
Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC
Prančl J, et al. Cytotype variation, cryptic diversity and hybridization in Ranunculus sect. Batrachium revealed by flow cytometry and chromosome numbers. Preslia. 2018;90:195–223. doi: 10.23855/preslia.2018.195. DOI
Davis GL. Systematic Embryology of the Angiosperms. Wiley; 1966.
Bruckerhoff L, Havel J, Knight S. Survival of invasive aquatic plants after air exposure and implications for dispersal by recreational boats. Hydrobiologia. 2015;746:113–121. doi: 10.1007/s10750-014-1947-9. DOI
Kaplan Z, Štěpánek J. Genetic variation within and between populations of Potamogeton pusillus agg. Plant Syst. Evol. 2003;239:95–112. doi: 10.1007/s00606-002-0252-7. DOI
Laurent H, et al. An infraspecific dimension of bioindication? Comparison between genotypes and ecological distribution of Potamogeton coloratus. Aquat. Bot. 2021;171:103373. doi: 10.1016/j.aquabot.2021.103373. DOI
Cook CDK. Studies on Ranunculus L. subgenus Batrachium (DC.) A Gray. I. Chromosome numbers. Watsonia. 1962;5/3:123–126.
Turała, K. Cyto-taxonomical studies in Ranunculus fluitans Lam. and R. penicillatus (Dumort.) Bab. from Lower Silesia (Poland). Preliminary report. Acta Biol. Cracov. Ser. Bot.13, 119–123 + pls. 20–23 (1970).
Turała-Szybowska K. Karyological studies in Ranunculus fluitans Lam. from Thuringia and Vilnius with its surroundings. Acta Biol. Cracov. Ser. Bot. 1977;20:1–9.
Wiegleb G, Herr W. Taxonomie und Verbreitung von Ranunculus Subgenus Batrachium in niedersächsischen Fließgewässern unter besonderer Berücksichtigung des Ranunculus penicillatus-Komplexes. Göttinger Florist. Rundbr. 1983;17:101–150.
Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015;35:119–125. doi: 10.1016/j.gde.2015.11.003. PubMed DOI
Köhler C, Mittelsten Scheid O, Erilova A. The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet. 2010;26/3:142–148. doi: 10.1016/j.tig.2009.12.006. PubMed DOI
Schinkel CCF, et al. Pathways to polyploidy: Indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae) Plant Syst. Evol. 2017;303/8:1093–1108. doi: 10.1007/s00606-017-1435-6. PubMed DOI PMC
Turała-Szybowska K. Cyto-embryological studies in self-incompatible populations of Ranunculus penicillatus (Dumort.) Bab. from Poland. Acta Biol. Cracov. Ser. Bot. 1978;21:9–21.
Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998;29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467. DOI
Gluchoff-Fiasson K, Fiasson JL, Waton H. Quercetin glycosides from European aquatic Ranunculus species of subgenus Batrachium. Phytochemistry. 1997;45(5):1063–1067. doi: 10.1016/S0031-9422(97)00091-5. DOI
Turland, N. J. et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile No. 159 (Koeltz Botanical Books, 2018). 10.12705/Code.2018.
Vos P, et al. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 1995;23:4407–4414. doi: 10.1093/nar/23.21.4407. PubMed DOI PMC
Ronikier M, Cieślak E, Korbecka G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): Evidence for glacial survival in several Carpathian regions and long isolation between the Carpathians and the Alps. Mol. Ecol. 2008;17:1763–1775. doi: 10.1111/j.1365-294X.2008.03664.x. PubMed DOI
Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;76:379–390. doi: 10.1093/genetics/76.2.379. PubMed DOI PMC
Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Resour. 2007;7:574–578. doi: 10.1111/j.1471-8286.2007.01758.x. PubMed DOI PMC
Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Mantel NA. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–220. PubMed
Peakall R, Smouse PE. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC
Musiał K, Szeląg Z. Chromosome numbers in Hieracium (Asteraceae) from Central and Southeastern Europe I. Acta Biol. Cracov. Ser. Bot. 2015;57(2):115–120. doi: 10.1515/abcsb-2015-0020. DOI
Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol. 2007;42:92–103. doi: 10.1016/j.ympev.2006.06.016. PubMed DOI
Alexander MP. Differential staining of aborted and nonaborted pollen. Stain Technol. 1969;44:117–122. doi: 10.3109/10520296909063335. PubMed DOI
Singh RJ. Plant Cytogenetics. 2. CRC Press; 2003.
Kwiatkowska M, et al. Refinement of clearing procedure to study crassinucellar ovules of sugar beet (Beta vulgaris L., Amaranthaceae) Plants Methods. 2019;15(71):1–12. doi: 10.1186/s13007-019-0452-6. PubMed DOI PMC
Kwiatkowska M, et al. A new pollination system in non-cleistogamous species of Viola results from nyctinastic (night-closing) petal movements—A mixed outcrossing-selfing strategy. Flora. 2019;253:1–9. doi: 10.1016/j.flora.2019.01.007. DOI