• This record comes from PubMed

Origin, genetic structure and evolutionary potential of the natural hybrid Ranunculus circinatus × R. fluitans

. 2023 Jun 03 ; 13 (1) : 9030. [epub] 20230603

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37270656
PubMed Central PMC10239522
DOI 10.1038/s41598-023-36253-7
PII: 10.1038/s41598-023-36253-7
Knihovny.cz E-resources

Understanding the genetic variability of hybrids provides information on their current and future evolutionary role. In this paper, we focus on the interspecific hybrid Ranunculus circinatus × R. fluitans that forms spontaneously within the group Ranuculus L. sect. Batrachium DC. (Ranunculaceae Juss.). Genome-wide DNA fingerprinting using amplified fragment length polymorphisms (AFLP) was employed to determine the genetic variation among 36 riverine populations of the hybrid and their parental species. The results demonstrate a strong genetic structure of R. circinatus × R. fluitans within Poland (Central Europe), which is attributed to independent hybridization events, sterility of hybrid individuals, vegetative propagation, and isolation through geographical distance within populations. The hybrid R. circinatus × R. fluitans is a sterile triploid, but, as we have shown in this study, it may participate in subsequent hybridization events, resulting in a ploidy change that can lead to spontaneous fertility recovery. The ability to produce unreduced female gametes of the hybrid R. circinatus × R. fluitans and the parental species R. fluitans is an important evolutionary mechanism in Ranunculus sect. Batrachium that could give rise to new taxa.

See more in PubMed

Arnold ML. Evolution Through Genetic Exchange. Oxford University Press; 2006.

Abbott RJ, et al. Hybridization and speciation. J. Evol. Biol. 2013;26:229–246. doi: 10.1111/j.1420-9101.2012.02599.x. PubMed DOI

Goulet BE, Roda F, Hopkins R. Hybridization in plants: Old ideas. New Tech. Plant Physiol. 2017;173:65–78. doi: 10.1104/pp.16.01340. PubMed DOI PMC

Abbott RJ. Plant invasions, hybridization and the evolution of new plant taxa. Trends Ecol. Evol. 1992;7:401–405. doi: 10.1016/0169-5347(92)90020-C. PubMed DOI

Rieseberg LH. Hybrid origins of plant species. Annu. Rev. Ecol. Syst. 1997;28:359–389. doi: 10.1146/annurev.ecolsys.28.1.359. DOI

Mallet J. Hybrid speciation. Nature. 2007;446:279–283. doi: 10.1038/nature05706. PubMed DOI

Rieseberg, L. H. & Wendel, J. F. In Hybrid Zones and the Evolutionary Process (ed. Harrison, R. G.) 70–109 (Oxford University Press, 1993).

Hamilton JA, Miller JM. Adaptive introgression as a resource for management and genetic conservation in a changing climate. Conserv. Biol. 2015;30:33–41. doi: 10.1111/cobi.12574. PubMed DOI

Suarez-Gonzalez A, Lexer C, Cronk QCB. Adaptive introgression: A plant perspective. Biol. Lett. 2018;14:20170688. doi: 10.1098/rsbl.2017.0688. PubMed DOI PMC

Grant PR, Grant BR. Evolutionary biology: Speciation undone. Nature. 2014;507:178–179. doi: 10.1038/507178b. PubMed DOI

Todesco M, et al. Hybridization and extinction. Evol. Appl. 2016;9:892–908. doi: 10.1111/eva.12367. PubMed DOI PMC

Cook CDK. Hybridization in the evolution of Batrachium. Taxon. 1970;19:161–166. doi: 10.2307/1217948. DOI

Wiegleb G, Bobrov AA, Zalewska-Gałosz J. A taxonomic account of Ranunculus section Batrachium (Ranunculaceae) Phytotaxa. 2017;319:1–55. doi: 10.11646/phytotaxa.319.1.1. DOI

Bobrov AA, Zalewska-Gałosz J, Jopek M, Movergoz EA. Ranunculus schmalhausenii (section Batrachium, Ranunculaceae), a neglected water crowfoot endemic to Fennoscandia—A case of rapid hybrid speciation in postglacial environment of North Europe. Phytotaxa. 2015;233:101–138. doi: 10.11646/phytotaxa.233.2.1. DOI

Zalewska-Gałosz J, Jopek M, Ilnicki T. Hybridization in Batrachium group: Controversial delimitation between heterophyllous Ranunculus penicillatus and the hybrid Ranunculus fluitans × R. peltatus. Aquat. Bot. 2015;120:160–168. doi: 10.1016/j.aquabot.2014.03.002. DOI

Koutecký P, et al. Waking up from a taxonomist’s nightmare: Emerging structure of Ranunculus section Batrachium (Ranunculaceae) in central Europe based on molecular data and genome sizes. Bot. J. Linn. Soc. 2022;198:417–437. doi: 10.1093/botlinnean/boab063. DOI

Santamaría L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 2002;23:137–154. doi: 10.1016/S1146-609X(02)01146-3. DOI

Boedeltje G, Bakker JP, Bekker RM, Van Groenendael JM, Soesbergen M. Plant dispersal in a lowland stream in relation to occurrence and three specific life-history traits of the species in the species pool. J. Ecol. 2003;91:855–866. doi: 10.1046/j.1365-2745.2003.00820.x. DOI

Preston CD, Hollingsworth PM, Gornall RJ. Potamogeton pectinatus L. × P. vaginatus Turcz (P. × bottnicus Hagstr), a newly identified hybrid in the British Isles. Watsonia. 1988;22:69–82.

Zalewska-Gałosz J. Potamogeton ×subrufus Hagstr.: A neglected Potamogeton hybrid. Ann. Bot. Fenn. 2010;47:257–260. doi: 10.5735/085.047.0402. DOI

Zalewska-Gałosz J. Potamogeton ×jutlandicus, a binominal for the hybrid between P. lucens and P. praelongus (Potamogetonaceae) Nord. J. Bot. 2011;29:473–476. doi: 10.1111/j.1756-1051.2011.01154.x. DOI

Vallejo-Marín M, Hiscock SJ. Hybridization and hybrid speciation under global change. New Phytol. 2016;211:1170–1187. doi: 10.1111/nph.14004. PubMed DOI

Gebler D, Zalewska-Gałosz J, Jopek M, Szoszkiewicz K. Molecular identification and habitat requirements of the hybrid Ranunculus circinatus × R. fluitans and its parental taxa R. circinatus and R. fluitans in running waters. Hydrobiologia. 2022;849:2999–3014. doi: 10.1007/s10750-022-04909-6. DOI

Bobrov AA, et al. Extensive hybridization in Ranunculus section Batrachium (Ranunculaceae) in rivers of two postglacial landscapes of East Europe. Sci. Rep. 2022;12:12088. doi: 10.1038/s41598-022-16224-0. PubMed DOI PMC

Vollrath H, Kohler A. Batrachium-Fundorte aus bayerischen Naturräumen. Ber. Bayer. Bot. Ges. 1972;43:63–75.

Cook CDK. A monographic study of Ranunculus subgenus Batrachium (DC.) A. Gray. Mitt. Bot. Staatssamml. München. 1966;6:47–237.

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X,2005.02553.x. PubMed DOI

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. doi: 10.1093/genetics/155.2.945. PubMed DOI PMC

Prančl J, et al. Cytotype variation, cryptic diversity and hybridization in Ranunculus sect. Batrachium revealed by flow cytometry and chromosome numbers. Preslia. 2018;90:195–223. doi: 10.23855/preslia.2018.195. DOI

Davis GL. Systematic Embryology of the Angiosperms. Wiley; 1966.

Bruckerhoff L, Havel J, Knight S. Survival of invasive aquatic plants after air exposure and implications for dispersal by recreational boats. Hydrobiologia. 2015;746:113–121. doi: 10.1007/s10750-014-1947-9. DOI

Kaplan Z, Štěpánek J. Genetic variation within and between populations of Potamogeton pusillus agg. Plant Syst. Evol. 2003;239:95–112. doi: 10.1007/s00606-002-0252-7. DOI

Laurent H, et al. An infraspecific dimension of bioindication? Comparison between genotypes and ecological distribution of Potamogeton coloratus. Aquat. Bot. 2021;171:103373. doi: 10.1016/j.aquabot.2021.103373. DOI

Cook CDK. Studies on Ranunculus L. subgenus Batrachium (DC.) A Gray. I. Chromosome numbers. Watsonia. 1962;5/3:123–126.

Turała, K. Cyto-taxonomical studies in Ranunculus fluitans Lam. and R. penicillatus (Dumort.) Bab. from Lower Silesia (Poland). Preliminary report. Acta Biol. Cracov. Ser. Bot.13, 119–123 + pls. 20–23 (1970).

Turała-Szybowska K. Karyological studies in Ranunculus fluitans Lam. from Thuringia and Vilnius with its surroundings. Acta Biol. Cracov. Ser. Bot. 1977;20:1–9.

Wiegleb G, Herr W. Taxonomie und Verbreitung von Ranunculus Subgenus Batrachium in niedersächsischen Fließgewässern unter besonderer Berücksichtigung des Ranunculus penicillatus-Komplexes. Göttinger Florist. Rundbr. 1983;17:101–150.

Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. Polyploidy and genome evolution in plants. Curr. Opin. Genet. Dev. 2015;35:119–125. doi: 10.1016/j.gde.2015.11.003. PubMed DOI

Köhler C, Mittelsten Scheid O, Erilova A. The impact of the triploid block on the origin and evolution of polyploid plants. Trends Genet. 2010;26/3:142–148. doi: 10.1016/j.tig.2009.12.006. PubMed DOI

Schinkel CCF, et al. Pathways to polyploidy: Indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae) Plant Syst. Evol. 2017;303/8:1093–1108. doi: 10.1007/s00606-017-1435-6. PubMed DOI PMC

Turała-Szybowska K. Cyto-embryological studies in self-incompatible populations of Ranunculus penicillatus (Dumort.) Bab. from Poland. Acta Biol. Cracov. Ser. Bot. 1978;21:9–21.

Ramsey J, Schemske DW. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu. Rev. Ecol. Syst. 1998;29:467–501. doi: 10.1146/annurev.ecolsys.29.1.467. DOI

Gluchoff-Fiasson K, Fiasson JL, Waton H. Quercetin glycosides from European aquatic Ranunculus species of subgenus Batrachium. Phytochemistry. 1997;45(5):1063–1067. doi: 10.1016/S0031-9422(97)00091-5. DOI

Turland, N. J. et al. International Code of Nomenclature for Algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Regnum Vegetabile No. 159 (Koeltz Botanical Books, 2018). 10.12705/Code.2018.

Vos P, et al. AFLP: a new technique for DNA fingerprinting. Nucl. Acids Res. 1995;23:4407–4414. doi: 10.1093/nar/23.21.4407. PubMed DOI PMC

Ronikier M, Cieślak E, Korbecka G. High genetic differentiation in the alpine plant Campanula alpina Jacq. (Campanulaceae): Evidence for glacial survival in several Carpathian regions and long isolation between the Carpathians and the Alps. Mol. Ecol. 2008;17:1763–1775. doi: 10.1111/j.1365-294X.2008.03664.x. PubMed DOI

Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics. 1978;76:379–390. doi: 10.1093/genetics/76.2.379. PubMed DOI PMC

Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Resour. 2007;7:574–578. doi: 10.1111/j.1471-8286.2007.01758.x. PubMed DOI PMC

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015;15:1179–1191. doi: 10.1111/1755-0998.12387. PubMed DOI PMC

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Mantel NA. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967;27:209–220. PubMed

Peakall R, Smouse PE. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics. 2012;28:2537–2539. doi: 10.1093/bioinformatics/bts460. PubMed DOI PMC

Musiał K, Szeląg Z. Chromosome numbers in Hieracium (Asteraceae) from Central and Southeastern Europe I. Acta Biol. Cracov. Ser. Bot. 2015;57(2):115–120. doi: 10.1515/abcsb-2015-0020. DOI

Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol. 2007;42:92–103. doi: 10.1016/j.ympev.2006.06.016. PubMed DOI

Alexander MP. Differential staining of aborted and nonaborted pollen. Stain Technol. 1969;44:117–122. doi: 10.3109/10520296909063335. PubMed DOI

Singh RJ. Plant Cytogenetics. 2. CRC Press; 2003.

Kwiatkowska M, et al. Refinement of clearing procedure to study crassinucellar ovules of sugar beet (Beta vulgaris L., Amaranthaceae) Plants Methods. 2019;15(71):1–12. doi: 10.1186/s13007-019-0452-6. PubMed DOI PMC

Kwiatkowska M, et al. A new pollination system in non-cleistogamous species of Viola results from nyctinastic (night-closing) petal movements—A mixed outcrossing-selfing strategy. Flora. 2019;253:1–9. doi: 10.1016/j.flora.2019.01.007. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...