Identifying the richness and evolutionary relationships of Ranunculus sect. Batrachium in its diversity centre in south-western Europe
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
22-10464S
Grantová Agentura České Republiky
RVO 67985939
Akademie Věd České Republiky
PubMed
40269131
PubMed Central
PMC12018967
DOI
10.1038/s41598-025-98292-6
PII: 10.1038/s41598-025-98292-6
Knihovny.cz E-resources
- Keywords
- Chromosome number, Cryptic variation, Genome size, Hybridization, Molecular identification, Polyploidy,
- MeSH
- Biodiversity * MeSH
- Biological Evolution * MeSH
- DNA, Plant genetics MeSH
- Phylogeny MeSH
- Genetic Variation MeSH
- Evolution, Molecular MeSH
- Ploidies MeSH
- Polyploidy MeSH
- Ranunculus * genetics classification MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- DNA, Plant MeSH
Aquatic plants are generally attributed to have larger ranges than their terrestrial counterparts, but this knowledge is often hindered by insufficient exploration of their diversity. To fill this gap, we investigated the taxonomically extremely challenging aquatic plant group Ranunculus sect. Batrachium in south-western Europe, which is an important glacial refugium, using flow cytometry, chromosome counting and DNA sequencing (ITS nuclear region and two non-coding plastid regions). In a dataset comprising 587 individuals from 117 localities, we detected 36 cytotypes across seven ploidy levels, which included a considerable proportion of previously unrecognized diversity consisting of three high ploidies (7x, 10x, 12x), seven cryptic species, two additional unclassifiable biotypes and nine hybrids. Two thirds of the taxa are polyploid, with many species presumed to be of allopolyploid origin. We discovered a remarkably close relationship between the local cytotype of R. peltatus s.l. and the morphologically distinct, widespread and ecologically specialized species R. fluitans; the latter might have evolved as a result of rapid adaptation to newly colonized river habitats in the early postglacial period. Undeniably, diversity within this group is still incompletely understood and is far more complex than current taxonomic concepts suggest.
Department of Botany Faculty of Science Charles University Benátská 2 12801 Prague Czech Republic
Institute of Botany Czech Academy of Sciences Zámek 1 25243 Průhonice Czech Republic
See more in PubMed
Sculthorpe, C. D. The Biology of Aquatic Vascular Plants (Edward Arnold, 1975).
Cook, C. D. K. Aquatic plants endemic to Europe and the Mediterranean. Bot. Jahrb. Syst. Pflanzengesch. Pflanzengeogr.103, 539–582 (1983).
Santamaría, L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol.23, 137–154. 10.1016/S1146-609X(02)01146-3 (2002).
Les, D. H., Crawford, D. J., Kimball, R. T., Moody, M. L. & Landolt, E. Biogeography of discontinuously distributed hydrophytes: A molecular appraisal of intercontinental disjunctions. Int. J. Plant Sci.164, 917–932. 10.1086/378650 (2003).
Grosberg, R. K., Vermeij, G. J. & Wainwright, P. C. Biodiversity in water and on land. Curr. Biol.22, R900–R903. 10.1016/j.cub.2012.09.050 (2012). PubMed
Koutecký, P., Štěpánek, J. & Baďurová, T. Differentiation between diploid and tetraploid Centaurea phrygia: Mating barriers, morphology and geographic distribution. Preslia84, 1–32 (2012).
Kolář, F., Kaplan, Z., Suda, J. & Štech, M. Populations of Knautia in ecologically distinct refugia on the Hercynian massif belong to two endemic species. Preslia87, 363–386 (2015).
Wolf, P. G. et al. Worldwide relationships in the fern genus Pteridium (bracken) based on nuclear genome markers. Am. J. Bot.106, 1365–1376. 10.1002/ajb2.1365 (2019). PubMed PMC
Triest, L. A revision of the genus Najas L. (Najadaceae) in the Old World. Acad. R. Sci. O.-M. Cl. Sci. Nat. Médicales Mém.-8° Nouv. Sér.22, 1–172 (1988).
Lansdown, R. V., Bazos, I., Caria, M. C., Troia, A. & Wieringa, J. J. New distribution and taxonomic information on Callitriche (Plantaginaceae) in the Mediterranean region. Phytotaxa313, 91–104. 10.11646/phytotaxa.313.1.6 (2017).
Prančl, J. et al. Intricate evolutionary history of Callitriche (Plantaginaceae) taxa elucidated by a combination of DNA sequencing and genome size. Taxon69, 1016–1041. 10.1002/tax.12315 (2020).
Ernandes, P. & Marchiori, S. A comparative study of two endemic Isoëtes species from south Italy. ISRN Bot.2012, 127250. 10.5402/2012/127250 (2012).
Clausen, P., Nolet, B. A., Fox, A. D. & Klaassen, M. Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe: A critical review of possibilities and limitations. Acta Oecol.23, 191–203. 10.1016/S1146-609X(02)01150-5 (2002).
Murphy, K. et al. World distribution, diversity and endemism of aquatic macrophytes. Aquat. Bot.158, 103127. 10.1016/j.aquabot.2019.06.006 (2019).
Crawford, D. J. & Landolt, E. Allozyme divergence among species of Wolffia (Lemnaceae). Plant Syst. Evol.197, 59–69 (1995).
Kaplan, Z. Phenotypic plasticity in Potamogeton (Potamogetonaceae). Folia Geobot.37, 141–170. 10.1007/BF02804229 (2002).
Taberlet, P., Fumagalli, L., Wust-Saucy, A. & Cosson, J. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol.7, 453–464. 10.1046/j.1365-294x.1998.00289.x (1998). PubMed
Mason, A. S. & Pires, J. C. Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet.31, 5–10. 10.1016/j.tig.2014.09.011 (2015). PubMed
Hörandl, E. & Emadzade, K. Evolutionary classification: A case study on the diverse plant genus Ranunculus L. (Ranunculaceae). Perspect. Plant Ecol. Evol. Syst.14, 310–324. 10.1016/j.ppees.2012.04.001 (2012).
Cook, C. D. K. A monographic study of Ranunculus subgenus Batrachium (DC.) A. Gray. Mitteilungen Bot. Staatssamml. Münch6, 47–237 (1966).
Wiegleb, G., Bobrov, A. A. & Zalewska-Gałosz, J. A taxonomic account of Ranunculus section Batrachium (Ranunculaceae). Phytotaxa319, 1–55. 10.11646/phytotaxa.319.1.1 (2017).
Wiegleb, G. & Herr, W. Taxonomie und verbreitung von Ranunculus subgenus Batrachium in niedersächsischen Fliessgewässern unter besonderer Berücksichtigung des Ranunculus penicillatus Komplexes. Gött. Floristische Rundbriefe17, 101–150 (1983).
Webster, S. D. Ranunculuspenicillatus (Dumort.) Bab. in Great Britain and Ireland. Watsonia17, 1–22 (1988).
Turała, K. Cyto-taxonomical studies in Ranunculus subgenus Batrachium (DC.) A. Gray from Poland. Acta Biol. Cracoviensia Ser. Bot.12, 9–20 (1969).
Dahlgren, G. Karyological investigations in Ranunculus subg. Batrachium (Ranunculaceae) on the Aegean islands. Plant Syst. Evol.177, 193–211. 10.1007/BF00937957 (1991).
Koutecký, P. et al. Waking up from a taxonomist’s nightmare: emerging structure of Ranunculus section Batrachium (Ranunculaceae) in central Europe based on molecular data and genome sizes. Bot. J. Linn. Soc.198, 417–437. 10.1093/botlinnean/boab063 (2022).
Cook, C. D. K. Hybridization in the evolution of Batrachium. Taxon19, 161–166. 10.2307/1217948 (1970).
Vollrath, H. & Kohler, M. Batrachium-fundorte aus bayerischen Naturräumen. Berichte Bayer Bot. Ges. Zur Erforsch. Flora43, 63–75 (1972).
Zalewska-Gałosz, J., Jopek, M. & Ilnicki, T. Hybridization in Batrachium group: Controversial delimitation between heterophyllous Ranunculus penicillatus and the hybrid Ranunculus fluitans × R. peltatus. Aquat. Bot.120, 160–168. 10.1016/j.aquabot.2014.03.002 (2015).
Butkuvienė, J. et al. Genetic diversity of aquatic Ranunculus (Batrachium, Ranunculaceae) in one river basin caused by hybridization. Plants9, 1–17. 10.3390/plants9111455 (2020). PubMed PMC
Bobrov, A. A. et al. Extensive hybridization in Ranunculus section Batrachium (Ranunculaceae) in rivers of two postglacial landscapes of East Europe. Sci. Rep.12, 12088. 10.1038/s41598-022-16224-0 (2022). PubMed PMC
Zalewska-Gałosz, J. et al. Origin, genetic structure and evolutionary potential of the natural hybrid Ranunculus circinatus × R. fluitans. Sci. Rep.13, 9030. 10.1038/s41598-023-36253-7 (2023). PubMed PMC
Hong, D.-Y. A biosystematic study on Ranunculus subgenus Batrachium in S Sweden. Nord. J. Bot.11, 41–59. 10.1111/j.1756-1051.1991.tb01793.x (1991).
Prančl, J. et al. Cytotype variation, cryptic diversity and hybridization in Ranunculus sect. Batrachium revealed by flow cytometry and chromosome numbers. Preslia90, 195–223. 10.23855/preslia.2018.195 (2018).
Zander, B. & Wiegleb, G. Biosystematische Untersuchungen an Populationen von Ranunculus subgenus Batrachium in Nordwestdeutschland. Bot. Jahrb. Für Syst.109, 81–130 (1987).
Cook, C. D. K., Grau, J. & López Gonzales, G. Ranunculus L. In Flora Iberica 1. Lycopodiaceae to Papaveraceae (ed. Castroviejo, S.) 279–371 (Real Jardín Botanico, 1986).
Valdés, B. Ranunculus L. In Flora Vascular de Andalucía Occidental 1 (eds Valdés, B. et al.) 97–114 (Ketres editora S.A, 1987).
Velayos, M. Acotaciones a Ranunculus subgénero Batrachium (DC.) A. Gray tratamiento taxonómico general y estudio de la variabilidad de R. peltatus. An. Jard. Botánico Madr.45, 103–119 (1988).
Pizzaro, J. Contribución al estudio taxonómica de Ranunculus L. subgen. Batrachium (DC.) A. Gray (Ranunculaceae). Lazaroa15, 21–113 (1995).
Diosdado, J. C., Pastor, J. E. & Valdés, B. Contributions to the karyological study of the genus Ranunculus L subgenus Batrachium (DC.) A. Gray from the Iberian Peninsula. Bot. J. Linn. Soc.112, 75–87. 10.1111/j.1095-8339.1993.tb00309.x (1993).
Bobrov, A. A., Zalewska-Gałosz, J., Jopek, M. & Movergoz, E. A. Ranunculus schmalhausenii (section Batrachium, Ranunculaceae), a neglected water crowfoot endemic to Fennoscandia: A case of rapid hybrid speciation in postglacial environment of North Europe. Phytotaxa233, 101–138. 10.11646/phytotaxa.233.2.1 (2015).
Jopek, M., Wiegleb, G., Babik, W. & Zalewska-Gałosz, J. Ranunculus dahlgreniae (section Batrachium, Ranunculaceae), a new species from Crete, Greece, with remarks on taxonomy and phylogenetic relations within the section. Acta Soc. Bot. Pol.92, 167462. 10.5586/asbp/167462 (2023).
QGIS Association. QGIS Geographic Information System. https://qgis.org (2022).
Turała-Szybowska, K. Disturbances in pollen development in diploid cytotype of Ranunculus fluitans Lam. Acta Biol. Cracoviensia Ser. Bot.25, 15–27 (1983).
Schönswetter, P., Suda, J., Popp, M., Weiss-Schneeweiss, H. & Brochmann, C. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol. Phylogenet. Evol.42, 92–103. 10.1016/j.ympev.2006.06.016 (2007). PubMed
Štorchová, H. et al. An improved method of DNA isolation from plants collected in the field and conserved in saturated NaCl/CTAB solution. Taxon49, 79–84. 10.2307/1223934 (2000).
Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull.19, 11–15 (1987).
Shaw, J., Lickey, E. B., Schilling, E. E. & Small, R. L. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: The tortoise and the hare III. Am. J. Bot.94, 275–288. 10.3732/ajb.94.3.275 (2007). PubMed
King, R. A., Gornall, R. J., Preston, C. D. & Croft, J. M. Molecular confirmation of Potamogeton ×bottnicus (P. pectinatus × P. vaginatus, Potamogetonaceae) in Britain. Bot. J. Linn. Soc.135, 67–70. 10.1006/bojl.2000.0354 (2001).
White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications (eds Innis, M. A. et al.) 315–322 (Academic Press, 1990). 10.1016/B978-0-12-372180-8.50042-1.
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser.41, 95–98 (1999).
Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes7, 965–968. 10.1111/j.1471-8286.2007.01821.x (2007).
Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol.6, 1110–1116. 10.1111/2041-210X.12410 (2015).
Clement, M., Snell, Q., Walke, P., Posada, D. & Crandall, K. TCS: estimating gene genealogies. in Proceedings 16th International Parallel and Distributed Processing Symposium. (Ft. Lauderdale, FL, USA, 2002). 10.1109/IPDPS.2002.1016585
Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol.23, 254–267. 10.1093/molbev/msj030 (2006). PubMed
Rieseberg, L. H., Whitton, J. & Linder, C. R. Molecular marker incongruence in plant hybrid zones and phylogenetic trees. Acta Bot. Neerlandica45, 243–262. 10.1111/j.1438-8677.1996.tb00515.x (1996).
Turała-Szybowska, K. Karyological studies in Ranunculusfluitans Lam. from Thuringia and Vilnius with its surroundings. Acta Biol. Cracoviensia Ser. Bot.20, 1–9 (1977).
Álvarez, I. & Wendel, J. F. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol.29, 417–434. 10.1016/S1055-7903(03)00208-2 (2003). PubMed
Koch, M. A., Dobes, C. & Mitchell-Olds, T. Multiple hybrid formation in natural populations: Concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae). Mol. Biol. Evol.20, 338–350. 10.1093/molbev/msg046 (2003). PubMed
Leitch, I. J. & Bennett, M. D. Genome downsizing in polyploid plants. Biol. J. Linn. Soc.82, 651–663. 10.1111/j.1095-8312.2004.00349.x (2004).
Wang, X., Morton, J. A., Pellicer, J., Leitch, I. J. & Leitch, A. R. Genome downsizing after polyploidy: Mechanisms, rates and selection pressures. Plant J.107, 1003–1015. 10.1111/tpj.15363 (2021). PubMed