• Je něco špatně v tomto záznamu ?

Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes

S. Wagner, A. Herrmannová, V. Hronová, S. Gunišová, ND. Sen, RD. Hannan, AG. Hinnebusch, NE. Shirokikh, T. Preiss, LS. Valášek,

. 2020 ; 79 (4) : 546-560.e7. [pub] 20200625

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc20024822

Grantová podpora
090812/B/09/Z Wellcome Trust - United Kingdom

E-zdroje Online Plný text

NLK Cell Press Free Archives od 1997-12-01 do Před 1 rokem
Free Medical Journals od 1997 do Před 1 rokem
Free Medical Journals od 1997 do Před 1 rokem
Open Access Digital Library od 1997-12-01
Elsevier Open Access Journals od 1997-12-01 do 2023-06-15
Elsevier Open Archive Journals od 1997-12-01 do Před 1 rokem

Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20024822
003      
CZ-PrNML
005      
20201222154923.0
007      
ta
008      
201125s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.molcel.2020.06.004 $2 doi
035    __
$a (PubMed)32589964
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Wagner, Susan $u EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic. Electronic address: susan.wagner@anu.edu.au.
245    10
$a Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes / $c S. Wagner, A. Herrmannová, V. Hronová, S. Gunišová, ND. Sen, RD. Hannan, AG. Hinnebusch, NE. Shirokikh, T. Preiss, LS. Valášek,
520    9_
$a Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5'TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5' UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
650    _2
$a 5' nepřekládaná oblast $7 D020121
650    _2
$a transkripční faktor ATF4 $x genetika $x metabolismus $7 D051701
650    _2
$a transkripční faktory bZIP $x genetika $x metabolismus $7 D050976
650    _2
$a kodon iniciační $7 D018387
650    _2
$a eukaryotický iniciační faktor 2 $x genetika $x metabolismus $7 D015852
650    _2
$a eukaryotický iniciační faktor 3 $x genetika $x metabolismus $7 D039621
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a lidé $7 D006801
650    _2
$a multiproteinové komplexy $x genetika $x metabolismus $7 D046912
650    _2
$a iniciační faktory $x genetika $x metabolismus $7 D010448
650    12
$a proteosyntéza $7 D014176
650    _2
$a malé podjednotky ribozomu eukaryotické $x genetika $x metabolismus $7 D054682
650    _2
$a ribozomy $x genetika $x metabolismus $7 D012270
650    _2
$a Saccharomyces cerevisiae $x genetika $7 D012441
650    _2
$a Saccharomyces cerevisiae - proteiny $x genetika $x metabolismus $7 D029701
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Herrmannová, Anna $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
700    1_
$a Hronová, Vladislava $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
700    1_
$a Gunišová, Stanislava $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
700    1_
$a Sen, Neelam D $u Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
700    1_
$a Hannan, Ross D $u Australian Cancer Research Foundation Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
700    1_
$a Hinnebusch, Alan G $u Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
700    1_
$a Shirokikh, Nikolay E $u EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia.
700    1_
$a Preiss, Thomas $u EMBL-Australia Collaborating Group, Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia; Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia. Electronic address: thomas.preiss@anu.edu.au.
700    1_
$a Valášek, Leoš Shivaya $u Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic. Electronic address: valasekl@biomed.cas.cz.
773    0_
$w MED00011398 $t Molecular cell $x 1097-4164 $g Roč. 79, č. 4 (2020), s. 546-560.e7
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32589964 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222154920 $b ABA008
999    __
$a ok $b bmc $g 1598967 $s 1115508
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 79 $c 4 $d 546-560.e7 $e 20200625 $i 1097-4164 $m Molecular cell $n Mol Cell $x MED00011398
GRA    __
$a 090812/B/09/Z $p Wellcome Trust $2 United Kingdom
LZP    __
$a Pubmed-20201125

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...