Ribose Alters the Photochemical Properties of the Nucleobase in Thionated Nucleosides
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34260253
PubMed Central
PMC9634911
DOI
10.1021/acs.jpclett.1c01384
Knihovny.cz E-zdroje
- MeSH
- fotochemické procesy * MeSH
- nukleosidy chemie MeSH
- ribosa chemie MeSH
- síra chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- nukleosidy MeSH
- ribosa MeSH
- síra MeSH
Substitution of exocyclic oxygen with sulfur was shown to substantially influence the properties of RNA/DNA bases, which are crucial for prebiotic chemistry and photodynamic therapies. Upon UV irradiation, thionucleobases were shown to efficiently populate triplet excited states and can be involved in characteristic photochemistry or generation of singlet oxygen. Here, we show that the photochemistry of a thionucleobase can be considerably modified in a nucleoside, that is, by the presence of ribose. Our transient absorption spectroscopy experiments demonstrate that thiocytosine exhibits 5 times longer excited-state lifetime and different excited-state absorption features than thiocytidine. On the basis of accurate quantum chemical simulations, we assign these differences to the dominant population of a shorter-lived triplet nπ* state in the nucleoside and longer-lived triplet ππ* states in the nucleobase. This explains the distinctive photoanomerziation of thiocytidine and indicates that the nucleoside will be a less efficient phototherapeutic agent with regard to singlet oxygen generation.
Zobrazit více v PubMed
Reelfs O.; Karran P.; Young A. R. 4-thiothymidine sensitization of DNA to UVA offers potential for a novel photochemotherapy. Photochem. Photobiol. Sci. 2012, 11, 148–154. 10.1039/C1PP05188A. PubMed DOI
Zdrowowicz M.; Wityk P.; Michalska B.; Rak J. 5-Bromo-2’-deoxycytidine—a potential DNA photosensitizer. Org. Biomol. Chem. 2016, 14, 9312–9321. 10.1039/C6OB01446A. PubMed DOI
Zdrowowicz M.; Michalska B.; Zylicz-Stachula A.; Rak J. Photoinduced Single Strand Breaks and Intrastrand Cross-Links in an Oligonucleotide Labeled with 5-Bromouracil. J. Phys. Chem. B 2014, 118, 5009–5016. 10.1021/jp500192z. PubMed DOI
Wityk P.; Wieczór M.; Makurat S.; Chomicz-Mańka L.; Czub J.; Rak J. Dominant Pathways of Adenosyl Radical-Induced DNA Damage Revealed by QM/MM Metadynamics. J. Chem. Theory Comput. 2017, 13, 6415–6423. 10.1021/acs.jctc.7b00978. PubMed DOI
Piccirilli J. A.; Benner S. A.; Krauch T.; Moroney S. E.; Benner S. A. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 1990, 343, 33–37. 10.1038/343033a0. PubMed DOI
Gedik M.; Brown A. Computational study of the excited state properties of modified RNA nucleobases. J. Photochem. Photobiol., A 2013, 259, 25–32. 10.1016/j.jphotochem.2013.02.023. DOI
Jones A. C.; Neely R. K. 2-aminopurine as a fluorescent probe of DNA conformation and the DNA–enzyme interface. Q. Rev. Biophys. 2015, 48, 244–279. 10.1017/S0033583514000158. PubMed DOI
Xu W.; Chan K. M.; Kool E. T. Fluorescent nucleobases as tools for studying DNA and RNA. Nat. Chem. 2017, 9, 1043–1055. 10.1038/nchem.2859. PubMed DOI PMC
Xu J.; Chmela V.; Green N. J.; Russell D. A.; Janicki M. J.; Góra R. W.; Szabla R.; Bond A. D.; Sutherland J. D. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 2020, 582, 60–66. 10.1038/s41586-020-2330-9. PubMed DOI PMC
Xu J.; Tsanakopoulou M.; Magnani C. J.; Szabla R.; Šponer J. E.; Šponer J.; Góra R. W.; Sutherland J. D. A prebiotically plausible synthesis of pyrimidine β-ribonucleosides and their phosphate derivatives involving photoanomerization. Nat. Chem. 2017, 9, 303–309. 10.1038/nchem.2664. PubMed DOI PMC
Roberts S. J.; Szabla R.; Todd Z. R.; Stairs S.; Bučar D.-K.; Šponer J.; Sasselov D. D.; Powner M. W. Selective prebiotic conversion of pyrimidine and purine anhydronucleosides into Watson-Crick base-pairing arabino -furanosyl nucleosides in water. Nat. Commun. 2018, 9, 4073.10.1038/s41467-018-06374-z. PubMed DOI PMC
Heuberger B. D.; Pal A.; Del Frate F.; Topkar V. V.; Szostak J. W. Replacing Uridine with 2-Thiouridine Enhances the Rate and Fidelity of Nonenzymatic RNA Primer Extension. J. Am. Chem. Soc. 2015, 137, 2769–2775. 10.1021/jacs.5b00445. PubMed DOI PMC
Kim S. C.; O’Flaherty D. K.; Zhou L.; Lelyveld V. S.; Szostak J. W. Inosine, but none of the 8-oxo-purines, is a plausible component of a primordial version of RNA. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 13318–13323. 10.1073/pnas.1814367115. PubMed DOI PMC
Nguyen K. V.; Burrows C. J. A Prebiotic Role for 8-Oxoguanosine as a Flavin Mimic in Pyrimidine Dimer Photorepair. J. Am. Chem. Soc. 2011, 133, 14586–14589. 10.1021/ja2072252. PubMed DOI
Zhang Y.; Dood J.; Beckstead A. A.; Li X.-B.; Nguyen K. V.; Burrows C. J.; Improta R.; Kohler B. Photoinduced Electron Transfer in DNA: Charge Shift Dynamics Between 8-Oxo-Guanine Anion and Adenine. J. Phys. Chem. B 2015, 119, 7491–7502. 10.1021/jp511220x. PubMed DOI
Szabla R.; Zdrowowicz M.; Spisz P.; Green N. J.; Stadlbauer P.; Kruse H.; Šponer J.; Rak J. 2,6-diaminopurine promotes repair of DNA lesions under prebiotic conditions. Nat. Commun. 2021, 12, 1–11. 10.1038/s41467-021-23300-y. PubMed DOI PMC
Martínez-Fernández L.; González L.; Corral I. An ab initio mechanism for efficient population of triplet states in cytotoxic sulfur substituted DNA bases: the case of 6-thioguanine. Chem. Commun. 2012, 48, 2134–2136. 10.1039/c2cc15775f. PubMed DOI
Bai S.; Barbatti M. Why Replacing Different Oxygens of Thymine with Sulfur Causes Distinct Absorption and Intersystem Crossing. J. Phys. Chem. A 2016, 120, 6342–6350. 10.1021/acs.jpca.6b05110. PubMed DOI
Mai S.; Marquetand P.; González L. Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture. J. Phys. Chem. Lett. 2016, 7, 1978–1983. 10.1021/acs.jpclett.6b00616. PubMed DOI PMC
Mai S.; Marquetand P.; González L. A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil. J. Phys. Chem. A 2015, 119, 9524–9533. 10.1021/acs.jpca.5b06639. PubMed DOI PMC
Bai S.; Barbatti M. On the decay of the triplet state of thionucleobases. Phys. Chem. Chem. Phys. 2017, 19, 12674–12682. 10.1039/C7CP02050C. PubMed DOI
Bai S.; Barbatti M. Mechanism of enhanced triplet decay of thionucleobase by glycosylation and rate-modulating strategies. Phys. Chem. Chem. Phys. 2018, 20, 16428–16436. 10.1039/C8CP02306A. PubMed DOI
Mai S.; Ashwood B.; Marquetand P.; Crespo-Hernández C. E.; González L. Solvatochromic Effects on the Absorption Spectrum of 2-Thiocytosine. J. Phys. Chem. B 2017, 121, 5187–5196. 10.1021/acs.jpcb.7b02715. PubMed DOI PMC
Ashwood B.; Pollum M.; Crespo-Hernández C. E. Photochemical and Photodynamical Properties of Sulfur-Substituted Nucleic Acid Bases. Photochem. Photobiol. 2019, 95, 33–58. 10.1111/php.12975. PubMed DOI
Brister M. M.; Gustavsson T.; Crespo-Hernández C. E. Excited State Lifetimes of Sulfur-Substituted DNA and RNA Monomers Probed Using the Femtosecond Fluorescence Up-Conversion Technique. Molecules 2020, 25, 584.10.3390/molecules25030584. PubMed DOI PMC
Mai S.; Pollum M.; Martínez-Fernández L.; Dunn N.; Marquetand P.; Corral I.; Crespo-Hernández C. E.; González L. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat. Commun. 2016, 7, 13077.10.1038/ncomms13077. PubMed DOI PMC
Arslancan S.; Martínez-Fernández L.; Corral I. Photophysics and Photochemistry of Canonical Nucleobases’ Thioanalogs: From Quantum Mechanical Studies to Time Resolved Experiments. Molecules 2017, 22, 998.10.3390/molecules22060998. DOI
Janicki M. J.; Roberts S. J.; Šponer J.; Powner M. W.; Góra R. W.; Szabla R. Photostability of oxazoline RNA-precursors in UV-rich prebiotic environments. Chem. Commun. 2018, 54, 13407–13410. 10.1039/C8CC07343K. PubMed DOI
Taras-Goślińska K.; Burdziński G.; Wenska G. Relaxation of the T1 excited state of 2-thiothymine, its riboside and deoxyriboside-enhanced nonradiative decay rate induced by sugar substituent. J. Photochem. Photobiol., A 2014, 275, 89–95. 10.1016/j.jphotochem.2013.11.003. DOI
Pollum M.; Jockusch S.; Crespo-Hernández C. E. 2,4-Dithiothymine as a Potent UVA Chemotherapeutic Agent. J. Am. Chem. Soc. 2014, 136, 17930–17933. 10.1021/ja510611j. PubMed DOI
Sánchez-Rodríguez J. A.; Mohamadzade A.; Mai S.; Ashwood B.; Pollum M.; Marquetand P.; González L.; Crespo-Hernández C. E.; Ullrich S. 2-Thiouracil intersystem crossing photodynamics studied by wavelength-dependent photoelectron and transient absorption spectroscopies. Phys. Chem. Chem. Phys. 2017, 19, 19756–19766. 10.1039/C7CP02258A. PubMed DOI
Janicki M. J.; Szabla R.; Šponer J.; Góra R. W. Solvation effects alter the photochemistry of 2-thiocytosine. Chem. Phys. 2018, 515, 502–508. 10.1016/j.chemphys.2018.06.016. DOI
Martínez-Fernández L.; Corral I.; Granucci G.; Persico M. Competing ultrafast intersystem crossing and internal conversion: a time resolved picture for the deactivation of 6-thioguanine. Chem. Sci. 2014, 5, 1336–1347. 10.1039/c3sc52856a. DOI
Bai S.; Barbatti M. Divide-to-Conquer: A Kinetic Model for Singlet Oxygen Photosensitization. J. Chem. Theory Comput. 2017, 13, 5528–5538. 10.1021/acs.jctc.7b00619. PubMed DOI
Colville B. W. F.; Powner M. W. Selective Prebiotic Synthesis of α-Threofuranosyl Cytidine by Photochemical Anomerization. Angew. Chem., Int. Ed. 2021, 60, 10526–10530. 10.1002/anie.202101376. PubMed DOI PMC
Weigend F.; Häser M. RI-MP2: first derivatives and global consistency. Theor. Chem. Acc. 1997, 97, 331–340. 10.1007/s002140050269. DOI
Dunning T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. 10.1063/1.456153. DOI
Plavec J.; Thibaudeau C.; Chattopadhyaya J. How do the energetics of the stereoelectronic gauche and anomeric effects modulate the conformation of nucleos(t)ides?. Pure Appl. Chem. 1996, 68, 2137–2144. 10.1351/pac199668112137. DOI
Hättig C. Structure Optimizations for Excited States with Correlated Second-Order Methods: CC2 and ADC(2). Adv. Quantum Chem. 2005, 50, 37–60. 10.1016/S0065-3276(05)50003-0. DOI
Dreuw A.; Wormit M. The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5, 82–95. 10.1002/wcms.1206. DOI
Plasser F.; Crespo-Otero R.; Pederzoli M.; Pittner J.; Lischka H.; Barbatti M. Surface Hopping Dynamics with Correlated Single-Reference Methods: 9H-Adenine as a Case Study. J. Chem. Theory Comput. 2014, 10, 1395–1405. 10.1021/ct4011079. PubMed DOI
Wiebeler C.; Borin V.; Sanchez de Araujo A. V.; Schapiro I.; Borin A. C. Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories. Photochem. Photobiol. 2017, 93, 888–902. 10.1111/php.12765. PubMed DOI
Klamt A.; Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc., Perkin Trans. 2 1993, 2, 799–805. 10.1039/P29930000799. DOI
Khani S. K.; Khah A. M.; Hättig C. COSMO-RI-ADC(2) excitation energies and excited state gradients. Phys. Chem. Chem. Phys. 2018, 20, 16354–16363. 10.1039/C8CP00643A. PubMed DOI
Andersson K.; Malmqvist P.; Roos B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 1992, 96, 1218–1226. 10.1063/1.462209. DOI
Shiozaki T.; Győrffy W.; Celani P.; Werner H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 2011, 135, 081106.10.1063/1.3633329. PubMed DOI
Petrenko T.; Neese F. Analysis and prediction of absorption band shapes, fluorescence band shapes, resonance Raman intensities, and excitation profiles using the time-dependent theory of electronic spectroscopy. J. Chem. Phys. 2007, 127, 164319.10.1063/1.2770706. PubMed DOI
Petrenko T.; Neese F. Efficient and automatic calculation of optical band shapes and resonance Raman spectra for larger molecules within the independent mode displaced harmonic oscillator model. J. Chem. Phys. 2012, 137, 234107.10.1063/1.4771959. PubMed DOI
Ferrer F. J. A.; Improta R.; Santoro F.; Barone V. Computing the inhomogeneous broadening of electronic transitions in solution: a first-principle quantum mechanical approach. Phys. Chem. Chem. Phys. 2011, 13, 17007.10.1039/c1cp22115a. PubMed DOI
Hare P. M.; Crespo-Hernández C. E.; Kohler B. Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 435–440. 10.1073/pnas.0608055104. PubMed DOI PMC