Effects of branched-chain amino acids on muscles under hyperammonemic conditions

. 2018 Nov ; 74 (4) : 523-530. [epub] 20180730

Jazyk angličtina Země Španělsko Médium print-electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30058052

Grantová podpora
PROGRES Q40/02 Charles University

Odkazy

PubMed 30058052
DOI 10.1007/s13105-018-0646-9
PII: 10.1007/s13105-018-0646-9
Knihovny.cz E-zdroje

The aim was to determine the effects of enhanced availability of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) on ammonia detoxification to glutamine (GLN) and protein metabolism in two types of skeletal muscle under hyperammonemic conditions. Isolated soleus (SOL, slow-twitch) and extensor digitorum longus (EDL, fast-twitch) muscles from the left leg of white rats were incubated in a medium with 1 mM ammonia (NH3 group), BCAAs at four times the concentration of the controls (BCAA group) or high levels of both ammonia and BCAA (NH3 + BCAA group). The muscles from the right leg were incubated in basal medium and served as paired controls. L-[1-14C]leucine was used to estimate protein synthesis and leucine oxidation, and 3-methylhistidine release was used to evaluate myofibrillar protein breakdown. We observed decreased protein synthesis and glutamate and α-ketoglutarate (α-KG) levels and increased leucine oxidation, GLN levels, and GLN release into medium in muscles in NH3 group. Increased leucine oxidation, release of branched-chain keto acids and GLN into incubation medium, and protein synthesis in EDL were observed in muscles in the BCAA group. The addition of BCAAs to medium eliminated the adverse effects of ammonia on protein synthesis and adjusted the decrease in α-KG found in the NH3 group. We conclude that (i) high levels of ammonia impair protein synthesis, activate BCAA catabolism, enhance GLN synthesis, and decrease glutamate and α-KG levels and (ii) increased BCAA availability enhances GLN release from muscles and attenuates the adverse effects of ammonia on protein synthesis and decrease in α-KG.

Zobrazit více v PubMed

J Physiol. 2016 Dec 15;594(24):7341-7360 PubMed

Am J Physiol Endocrinol Metab. 2012 Oct 15;303(8):E983-93 PubMed

J Hepatol. 2016 Nov;65(5):929-937 PubMed

Biochim Biophys Acta. 1965 Apr 12;100:295-8 PubMed

J Cachexia Sarcopenia Muscle. 2017 Dec;8(6):864-869 PubMed

Nutrition. 2007 Feb;23(2):113-20 PubMed

J Hepatol. 1996 Nov;25(5):756-62 PubMed

J Nutr. 2005 Jun;135(6 Suppl):1553S-6S PubMed

Curr Opin Clin Nutr Metab Care. 2018 Jan;21(1):30-36 PubMed

Hepatology. 2015 Jun;61(6):2018-29 PubMed

Nutrition. 2017 Sep;41:80-85 PubMed

Metab Brain Dis. 2014 Mar;29(1):9-17 PubMed

Int J Exp Pathol. 2004 Dec;85(6):365-71 PubMed

Hepatol Res. 2007 Aug;37(8):615-9 PubMed

Biochem J. 1977 Mar 15;162(3):557-68 PubMed

Cochrane Database Syst Rev. 2015 Sep 17;(9):CD001939 PubMed

Cochrane Database Syst Rev. 2003;(2):CD001939 PubMed

Hepatol Res. 2007 Jul;37(7):510-6 PubMed

Int J Sports Med. 1990 May;11 Suppl 2:S101-13 PubMed

Gastroenterology. 2003 Jun;124(7):1792-801 PubMed

Nutr Metab (Lond). 2016 Feb 11;13:12 PubMed

J Biol Chem. 1951 Nov;193(1):265-75 PubMed

Can J Physiol Pharmacol. 1992 Jan;70(1):132-41 PubMed

Metabolism. 2000 Oct;49(10):1330-4 PubMed

Physiol Res. 2017 Dec 20;66(6):959-967 PubMed

J Surg Res. 1967 Jan;7(1):41-3 PubMed

Clin Nutr. 2003 Oct;22(5):437-43 PubMed

Amino Acids. 2011 Feb;40(2):575-84 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...