Branched-Chain Amino Acids and Branched-Chain Keto Acids in Hyperammonemic States: Metabolism and as Supplements
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Progres Q40/02
Charles University Prague
PubMed
32784821
PubMed Central
PMC7464849
DOI
10.3390/metabo10080324
PII: metabo10080324
Knihovny.cz E-zdroje
- Klíčová slova
- exercise, glutamine, liver cirrhosis, urea-cycle disorders, α-ketoglutarate,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In hyperammonemic states, such as liver cirrhosis, urea cycle disorders, and strenuous exercise, the catabolism of branched-chain amino acids (BCAAs; leucine, isoleucine, and valine) is activated and BCAA concentrations decrease. In these conditions, BCAAs are recommended to improve mental functions, protein balance, and muscle performance. However, clinical trials have not demonstrated significant benefits of BCAA-containing supplements. It is hypothesized that, under hyperammonemic conditions, enhanced glutamine availability and decreased BCAA levels facilitate the amination of branched-chain keto acids (BCKAs; α-ketoisocaproate, α-keto-β-methylvalerate, and α-ketoisovalerate) to the corresponding BCAAs, and that BCKA supplementation may offer advantages over BCAAs. Studies examining the effects of ketoanalogues of amino acids have provided proof that subjects with hyperammonemia can effectively synthesize BCAAs from BCKAs. Unfortunately, the benefits of BCKA administration have not been clearly confirmed. The shortcoming of most reports is the use of mixtures intended for patients with renal insufficiency, which might be detrimental for patients with liver injury. It is concluded that (i) BCKA administration may decrease ammonia production, attenuate cataplerosis, correct amino acid imbalance, and improve protein balance and (ii) studies specifically investigating the effects of BCKA, without the interference of other ketoanalogues, are needed to complete the information essential for decisions regarding their suitability in hyperammonemic conditions.
Zobrazit více v PubMed
Banister E.W., Cameron B.J. Exercise-induced hyperammonemia: Peripheral and central effects. Int. J. Sports Med. 1990;11:S129–S142. doi: 10.1055/s-2007-1024864. PubMed DOI
Wilkinson D.J., Smeeton N.J., Watt P.W. Ammonia metabolism, the brain and fatigue; revisiting the link. Prog. Neurobiol. 2010;91:200–219. doi: 10.1016/j.pneurobio.2010.01.012. PubMed DOI
Graham T.E., MacLean D.A. Ammonia and amino acid metabolism in human skeletal muscle during exercise. Can. J. Physiol. Pharmacol. 1992;70:132–141. doi: 10.1139/y92-020. PubMed DOI
Leweling H., Breitkreutz R., Behne F., Staedt U., Striebel J.P., Holm E. Hyperammonemia-induced depletion of glutamate and branched-chain amino acids in muscle and plasma. J. Hepatol. 1996;25:756–762. doi: 10.1016/S0168-8278(96)80249-2. PubMed DOI
Holeček M., Šprongl L., Tichý M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism. 2000;49:1330–1334. doi: 10.1053/meta.2000.9531. PubMed DOI
Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI
Holeček M., Vodeničarovová M. Effects of branched-chain amino acids on muscles under hyperammonemic conditions. J. Physiol. Biochem. 2018;74:523–530. doi: 10.1007/s13105-018-0646-9. PubMed DOI
Fischer J.E., Baldessarini R.J. False neurotransmitters and hepatic failure. Lancet. 1971;298:75–80. doi: 10.1016/S0140-6736(71)92048-4. PubMed DOI
Herlong H.F., Maddrey W.C., Walser M. The use of ornithine salts of branched-chain ketoacids in portal-systemic encephalopathy. Ann. Intern. Med. 1980;93:545–550. doi: 10.7326/0003-4819-93-4-545. PubMed DOI
Holeček M., Mráz J., Tilšer I. Plasma amino acids in four models of experimental liver injury in rats. Amino Acids. 1996;10:229–241. doi: 10.1007/BF00807325. PubMed DOI
Holeček M., Vodeničarovová M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis. Int. J. Exp. Pathol. 2018;99:274–281. doi: 10.1111/iep.12299. PubMed DOI PMC
Batshaw M.L., Brusilow S., Walser M. Long-term management of a case of carbamyl phosphate synthetase deficiency using ketanalogues and hydroxyanalogues of essential amino acids. Pediatrics. 1976;58:227–235. PubMed
Rodney S., Boneh A. Amino acid profiles in patients with urea cycle disorders at admission to hospital due to metabolic decompensation. JIMD Rep. 2013;9:97–104. PubMed PMC
Als-Nielsen B., Koretz R.L., Kjaergard L.L., Gluud C. Branched-chain amino acids for hepatic encephalopathy. Cochrane Database Syst. Rev. 2003 doi: 10.1002/14651858.CD001939. PubMed DOI
Gluud L.L., Dam G., Les I., Córdoba J., Marchesini G., Borre M., Aagaard N.K., Vilstrup H. Branched-chain amino acids for people with hepatic encephalopathy. Cochrane Database Syst. Rev. 2015 doi: 10.1002/14651858.CD001939.pub2. PubMed DOI
Wolfe R.R., Goodenough R.D., Wolfe M.H., Royle G.T., Nadel E.R. Isotopic analysis of leucine and urea metabolism in exercising humans. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1982;52:458–466. doi: 10.1152/jappl.1982.52.2.458. PubMed DOI
Knapik J., Meredith C., Jones B., Fielding R., Young V., Evans W. Leucine metabolism during fasting and exercise. J. Appl. Physiol. (1985) 1991;70:43–47. doi: 10.1152/jappl.1991.70.1.43. PubMed DOI
Bassini A., Magalhães-Neto A.M., Sweet E., Bottino A., Veiga C., Tozzi M.B., Pickard M.B., Cameron L.-C. Caffeine decreases systemic urea in elite soccer players during intermittent exercise. Med. Sci. Sports Exerc. 2013;45:683–690. doi: 10.1249/MSS.0b013e3182797637. PubMed DOI
De Palo E.F., Gatti R., Bigon L., Previti O., De Palo C.B. Branched-chainα-amino acid chronic treatment: Responses of plasma α-keto-related compounds and ammonia when used in physical exercise performance. Amino Acids. 1996;10:317–332. doi: 10.1007/BF00805860. PubMed DOI
Madsen K., MacLean D.A., Kiens B., Christensen D. Effects of glucose, glucose plus branched-chain amino acids, or placebo on bike performance over 100 km. J. Appl. Physiol. (1985) 1996;81:2644–2650. doi: 10.1152/jappl.1996.81.6.2644. PubMed DOI
MacLean D.A., Graham T.E., Saltin B. Stimulation of muscle ammonia production during exercise following branched-chain amino acid supplementation in humans. J. Physiol. 1996;493:909–922. doi: 10.1113/jphysiol.1996.sp021433. PubMed DOI PMC
Watson P., Shirreffs S.M., Maughan R.J. The effect of acute branched-chain amino acid supplementation on prolonged exercise capacity in a warm environment. Eur. J. Appl. Physiol. 2004;93:306–314. doi: 10.1007/s00421-004-1206-2. PubMed DOI
Falavigna G., de Araújo A.J., Rogero M.M., Pires I.S., Pedrosa R.G., Martins E., de Castro I.A., Tirapegui J. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise. Nutrients. 2012;4:1767–1780. doi: 10.3390/nu4111767. PubMed DOI PMC
Wagenmakers A.J., Coakley J.H., Edwards R.H. Metabolism of branched-chain amino acids and ammonia during exercise: Clues from McArdle’s disease. Int. J. Sports Med. 1990;11:S101–S113. doi: 10.1055/s-2007-1024861. PubMed DOI
Holecek M. Evidence of a vicious cycle in glutamine synthesis and breakdown in pathogenesis of hepatic encephalopathy-therapeutic perspectives. Metab. Brain Dis. 2014;29:9–17. doi: 10.1007/s11011-013-9428-9. PubMed DOI PMC
Holeček M. Branched-chain amino acid supplementation in treatment of liver cirrhosis: Updated views on how to attenuate their harmful effects on cataplerosis and ammonia formation. Nutrition. 2017;41:80–85. doi: 10.1016/j.nut.2017.04.003. PubMed DOI
Watanabe A., Shiota T., Okita M., Nagashima H. Effect of a branched chain amino acid-enriched nutritional product on the pathophysiology of the liver and nutritional state of patients with liver cirrhosis. Acta Med. Okayama. 1983;37:321–333. PubMed
Nishikawa Y., Ukida M., Matsuo R., Morimoto Y., Omori N., Mikami M., Tsuji T. Administration of a branched-chain amino acid preparation during hepatic failure: A study emphasizing ammonia metabolism. Acta Med. Okayama. 1994;48:25–30. PubMed
Dam G., Keiding S., Munk O.L., Ott P., Buhl M., Vilstrup H., Bak L.K., Waagepetersen H.S., Schousboe A., Møller N., et al. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects. Am. J. Physiol. 2011;301:G269–G277. doi: 10.1152/ajpgi.00062.2011. PubMed DOI
Meyer H.P., Chamuleau R.A., Legemate D.A., Mol J.A., Rothuizen J. Effects of a branched-chain amino acid-enriched diet on chronic hepatic encephalopathy in dogs. Metab. Brain Dis. 1999;14:103–115. doi: 10.1023/A:1020757730386. PubMed DOI
Jungers P., Chauveau P. Amino acids and keto acids in the treatment of chronic renal failure. Blood Purif. 1988;6:299–314. doi: 10.1159/000169557. PubMed DOI
Walser M., Mitch W.E., Abras E. Supplements containing amino acids and keto acids in the treatment of chronic uremia. Kidney Int. Suppl. 1983;16:S285–S289. PubMed
Teplan V., Schück O., Horácková M., Skibová J., Holecek M. Effect of a keto acid-amino acid supplement on the metabolism and renal elimination of branched-chain amino acids in patients with chronic renal insufficiency on a low protein diet. Wien. Klin. Wochenschr. 2000;112:876–881. PubMed
Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI
Imura K., Shiota T., Swain L.M., Walser M. Utilization for protein synthesis of 2-ketoisocaproate relative to utilization of leucine, as estimated from exhalation of labelled CO2. Clin. Sci. (Lond.) 1988;75:301–307. doi: 10.1042/cs0750301. PubMed DOI
Yagi M., Matthews D.E., Walser M. Nitrogen sparing by 2-ketoisocaproate in parenterally fed rats. Am. J. Physiol. 1990;259:E633–E638. doi: 10.1152/ajpendo.1990.259.5.E633. PubMed DOI
Holecek M., Sprongl L., Tilser I. Metabolism of branched-chain amino acids in starved rats: The role of hepatic tissue. Physiol. Res. 2001;50:25–33. PubMed
Holecek M. The BCAA-BCKA cycle: Its relation to alanine and glutamine synthesis and protein balance. Nutrition. 2001;17:70. doi: 10.1016/S0899-9007(00)00483-4. PubMed DOI
Holecek M., Rysava R., Safranek R., Kadlcikova J., Sprongl L. Acute effects of decreased glutamine supply on protein and amino acid metabolism in hepatic tissue: A study using isolated perfused rat liver. Metabolism. 2003;52:1062–1067. doi: 10.1016/S0026-0495(03)00107-0. PubMed DOI
Muñoz S., Walser M. Effect of experimental liver disease on the utilization for protein synthesis of orally administered alpha-ketoisocaproate. Hepatology. 1986;6:472–476. doi: 10.1002/hep.1840060325. PubMed DOI
Walser M., Lund P., Ruderman N.B., Coulter A.W. Synthesis of essential amino acids from their alpha-keto analogues by perfused rat liver and muscle. J. Clin. Invest. 1973;52:2865–2877. doi: 10.1172/JCI107483. PubMed DOI PMC
Brand K. Metabolism of 2-oxoacid analogues of leucine, valine and phenylalanine by heart muscle, brain and kidney of the rat. Biochim. Biophys. Acta. 1981;677:126–132. doi: 10.1016/0304-4165(81)90153-7. PubMed DOI
Holecek M., Sprongl L., Tichy M., Pecka M. Leucine metabolism in rat liver after a bolus injection of endotoxin. Metabolism. 1998;47:681–685. doi: 10.1016/S0026-0495(98)90030-0. PubMed DOI
Holeček M., Muthný T., Kovařík M., Šišpera L. Simultaneous infusion of glutamine and branched-chain amino acids (BCAA) to septic rats does not have more favorable effect on protein synthesis in muscle, liver, and small intestine than separate infusions. JPEN J. Parenter. Enter. Nutr. 2006;30:467–473. doi: 10.1177/0148607106030006467. PubMed DOI
Abumrad N.N., Wise K.L., Williams P.E., Abumrad N.A., Lacy W.W. Disposal of alpha-ketoisocaproate: Roles of liver, gut, and kidneys. Am. J. Physiol. 1982;243:E123–E131. doi: 10.1152/ajpendo.1982.243.2.E123. PubMed DOI
Khatra B.S., Chawla R.K., Sewell C.W., Rudman D. Distribution of branched-chain alpha-keto acid dehydrogenases in primate tissues. J. Clin. Investig. 1977;59:558–564. doi: 10.1172/JCI108671. PubMed DOI PMC
Okita M., Watanabe A., Takei N., Nagashima H., Ubuka T. Effects of branched-chain alpha-keto acids on plasma amino acid concentrations in carbon tetrachloride-intoxicated rats. J. Nutr. 1984;114:1235–1241. doi: 10.1093/jn/114.7.1235. PubMed DOI
Schauder P. Pharmacokinetic and metabolic interrelationships among branched-chain keto and amino acids in humans. J. Lab. Clin. Med. 1985;106:701–707. PubMed
Mitch W.E., Walser M., Sapir D.G. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, alpha-ketoisocaproate, in fasting obese man. J. Clin. Investig. 1981;67:553–562. doi: 10.1172/JCI110066. PubMed DOI PMC
Tischler M.E., Desautels M., Goldberg A.L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle? J. Biol. Chem. 1982;257:1613–1621. PubMed
Stewart P.M., Walser M., Drachman D.B. Branched-chain ketoacids reduce muscle protein degradation in Duchenne muscular dystrophy. Muscle Nerve. 1982;5:197–201. doi: 10.1002/mus.880050304. PubMed DOI
Sapir D.G., Stewart P.M., Walser M., Moreadith C., Moyer E.D., Imbembo A.L., Rosenshein N.B., Munoz S. Effects of alpha-ketoisocaproate and of leucine on nitrogen metabolism in postoperative patients. Lancet. 1983;1:1010–1014. doi: 10.1016/S0140-6736(83)92643-0. PubMed DOI
Sherwin R.S. The effect of ketone bodies and dietary carbohydrate intake on protein metabolism. Acta Chir. Scand. Suppl. 1981;507:30–40. PubMed
Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle. 2017;8:529–541. doi: 10.1002/jcsm.12208. PubMed DOI PMC
Maddrey W.C., Weber F.L., Jr., Coulter A.W., Chura C.M., Chapanis N.P., Walser M. Effects of keto analogues of essential amino acids in portal-systemic encephalopathy. Gastroenterology. 1976;71:190–195. doi: 10.1016/S0016-5085(76)80185-0. PubMed DOI
Eriksson L.S., Hagenfeldt L., Wahren J. Intravenous infusion of alpha-oxoisocaproate: Influence on amino acid and nitrogen metabolism in patients with liver cirrhosis. Clin. Sci. (Lond.) 1982;62:285–293. doi: 10.1042/cs0620285. PubMed DOI
Walker S., Götz R., Czygan P., Stiehl A., Lanzinger G., Sieg A., Raedsch R., Kommerell B. Oral keto analogs of branched-chain amino acids in hyperammonemia in patients with cirrhosis of the liver. A double-blind crossover study. Digestion. 1982;24:105–111. doi: 10.1159/000198784. PubMed DOI
Holecek M., Siman P., Vodenicarovova M., Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. (Lond.) 2016;13:12. doi: 10.1186/s12986-016-0072-3. PubMed DOI PMC
Scaglia F., Carter S., O’Brien W.E., Lee B. Effect of alternative pathway therapy on branched chain amino acid metabolism in urea cycle disorder patients. Mol. Genet. Metab. 2004;81:S79–S85. doi: 10.1016/j.ymgme.2003.11.017. PubMed DOI
Brunetti-Pierri N., Lanpher B., Erez A., Ananieva E.A., Islam M., Marini J.C., Sun Q., Yu C., Hegde M., Li J., et al. Phenylbutyrate therapy for maple syrup urine disease. Hum. Mol. Genet. 2011;20:631–640. doi: 10.1093/hmg/ddq507. PubMed DOI PMC
Holecek M., Vodenicarovova M. Phenylbutyrate exerts adverse effects on liver regeneration and amino acid concentrations in partially hepatectomized rats. Int. J. Exp. Pathol. 2016;97:278–284. doi: 10.1111/iep.12190. PubMed DOI PMC
Batshaw M., Brusilow S., Walser M. Treatment of carbamyl phosphate synthetase deficiency with keto analogues of essential amino acids. N. Engl. J. Med. 1975;292:1085–1090. doi: 10.1056/NEJM197505222922101. PubMed DOI
Thoene J., Batshaw M., Spector E., Kulovich S., Brusilow S., Walser M., Nyhan W. Neonatal citrllinemia: Treatment with keto-analogues of essential amino acids. J. Pediatr. 1977;90:218–224. doi: 10.1016/S0022-3476(77)80633-1. PubMed DOI
Walser M., Batshaw M., Sherwood G., Robinson B., Brusilow S. Nitrogen metabolism in neonatal citrullinaemia. Clin. Sci. Mol. Med. 1977;53:173–181. doi: 10.1042/cs0530173. PubMed DOI
Glasgow A.M., Kraegel J.H., Schulman J.D. Studies of the cause and treatment of hyperammonemia in females with ornithine transcarbamylase deficiency. Pediatrics. 1978;62:30–37. PubMed
McReynolds J.W., Mantagos S., Brusilow S., Rosenberg L.E. Treatment of complete ornithine transcarbamylase deficiency with nitrogen-free analogues of essential amino acids. J. Pediatr. 1978;93:421–427. doi: 10.1016/S0022-3476(78)81149-4. PubMed DOI
Mero A. Leucine supplementation and intensive training. Sports Med. 1999;27:347–358. doi: 10.2165/00007256-199927060-00001. PubMed DOI
Graham T.E., Bangsbo J., Gollnick P.D., Juel C., Saltin B. Ammonia metabolism during intense dynamic exercise and recovery in humans. Am. J. Physiol. 1990;259:E170–E176. doi: 10.1152/ajpendo.1990.259.2.E170. PubMed DOI
Hellsten Y. The effect of muscle contraction on the regulation of adenosine formation in rat skeletal muscle cells. J. Physiol. 1999;518:761–768. doi: 10.1111/j.1469-7793.1999.0761p.x. PubMed DOI PMC
Shimomura Y., Murakami T., Nakai N., Nagasaki M., Harris R.A. Exercise promotes BCAA catabolism: Effects of BCAA supplementation on skeletal muscle during exercise. J. Nutr. 2004;134:S1583–S1587. doi: 10.1093/jn/134.6.1583S. PubMed DOI
Fouré A., Bendahan D. Is branched-chain amino acids supplementation an efficient nutritional strategy to alleviate skeletal muscle damage? A systematic review. Nutrients. 2017;9:10. PubMed PMC
Greer B.K., White J.P., Arguello E.M., Haymes E.M. Branched-chain amino acid supplementation lowers perceived exertion but does not affect performance in untrained males. J. Strength Cond. Res. 2011;25:539–544. doi: 10.1519/JSC.0b013e3181bf443a. PubMed DOI
Negro M., Giardina S., Marzani B., Marzatico F. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J. Sports Med. Phys. Fitness. 2008;48:347–351. PubMed
Kephart W.C., Mumford P.W., McCloskey A.E., Holland A.M., Shake J.J., Mobley C.B., Jagodinsky A.E., Weimar W.H., Oliver G.D., Young K.C., et al. Post-exercise branched chain amino acid supplementation does not affect recovery markers following three consecutive high intensity resistance training bouts compared to carbohydrate supplementation. J. Int. Soc. Sports Nutr. 2016;13:30. doi: 10.1186/s12970-016-0142-y. PubMed DOI PMC
de Almeida R.D., Prado E.S., Llosa C.D., Magalhães-Neto A., Cameron L.C. Acute supplementation with keto analogues and amino acids in rats during resistance exercise. Br. J. Nutr. 2010;104:1438–1442. doi: 10.1017/S0007114510002321. PubMed DOI
Prado E.S., de Rezende Neto J.M., de Almeida R.D., Dória de Melo M.G., Cameron L.C. Keto analogue and amino acid supplementation affects the ammonaemia response during exercise under ketogenic conditions. Br. J. Nutr. 2011;105:1729–1733. doi: 10.1017/S000711451000557X. PubMed DOI
Liu Y., Lange R., Langanky J., Hamma T., Yang B., Steinacker J.M. Improved training tolerance by supplementation with α-Keto acids in untrained young adults: A randomized, double blind, placebo-controlled trial. J. Int. Soc. Sports Nutr. 2012;9:37. doi: 10.1186/1550-2783-9-37. PubMed DOI PMC
Liu Y., Spreng T., Lehr M., Yang B., Karau A., Gebhardt H., Steinacker J.M. The supportive effect of supplementation with α-keto acids on physical training in type 2 diabetes mellitus. Food Funct. 2015;6:2224–2230. doi: 10.1039/C5FO00263J. PubMed DOI
Camerino S.R., Lima R.C., França T.C., Herculano Ede A., Rodrigues D.S., Gouveia M.G., Cameron L.C., Prado E.S. Keto analogue and amino acid supplementation and its effects on ammonemia and performance under thermoneutral conditions. Food Funct. 2016;7:872–880. doi: 10.1039/C5FO01054C. PubMed DOI
Lima R.C.P., Camerino S.R.A.S., França T.C.L., Rodrigues D.S.A., Gouveia M.G.S., Ximenes-da-Silva A., Bassini A., Prado E.S., Cameron L.C. Keto analogues and amino acids supplementation induces a decrease of white blood cell counts and a reduction of muscle damage during intense exercise under thermoneutral conditions. Food Funct. 2017;8:1519–1525. doi: 10.1039/C7FO00189D. PubMed DOI