Why Are Branched-Chain Amino Acids Increased in Starvation and Diabetes?

. 2020 Oct 11 ; 12 (10) : . [epub] 20201011

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33050579

Grantová podpora
PROGRES Q40/02 Charles University

Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are increased in starvation and diabetes mellitus. However, the pathogenesis has not been explained. It has been shown that BCAA catabolism occurs mostly in muscles due to high activity of BCAA aminotransferase, which converts BCAA and α-ketoglutarate (α-KG) to branched-chain keto acids (BCKAs) and glutamate. The loss of α-KG from the citric cycle (cataplerosis) is attenuated by glutamate conversion to α-KG in alanine aminotransferase and aspartate aminotransferase reactions, in which glycolysis is the main source of amino group acceptors, pyruvate and oxaloacetate. Irreversible oxidation of BCKA by BCKA dehydrogenase is sensitive to BCKA supply, and ratios of NADH to NAD+ and acyl-CoA to CoA-SH. It is hypothesized that decreased glycolysis and increased fatty acid oxidation, characteristic features of starvation and diabetes, cause in muscles alterations resulting in increased BCAA levels. The main alterations include (i) impaired BCAA transamination due to decreased supply of amino groups acceptors (α-KG, pyruvate, and oxaloacetate) and (ii) inhibitory influence of NADH and acyl-CoAs produced in fatty acid oxidation on citric cycle and BCKA dehydrogenase. The studies supporting the hypothesis and pros and cons of elevated BCAA concentrations are discussed in the article.

Zobrazit více v PubMed

Adibi S.A. Influence of dietary deprivations on plasma concentration of free amino acids of man. J. Appl. Physiol. 1968;25:52–57. doi: 10.1152/jappl.1968.25.1.52. PubMed DOI

Felig P., Marliss E., Cahill G.F. Plasma amino acid levels and insulin secretion in obesity. N. Engl. J. Med. 1969;281:811–816. doi: 10.1056/NEJM196910092811503. PubMed DOI

Carlsten A., Hallgren B., Jagenburg R., Svanborg A., Werkö L. Amino acids and free fatty acids in plasma in diabetes. I. The effect of insulin on the arterial levels. Acta Med. Scand. 1966;179:361–370. doi: 10.1111/j.0954-6820.1966.tb05471.x. PubMed DOI

Borghi L., Lugari R., Montanari A., Dall’Argine P., Elia G.F., Nicolotti V., Simoni I., Parmeggiani A., Novarini A., Gnudi A. Plasma and skeletal muscle free amino acids in type I, insulin-treated diabetic subjects. Diabetes. 1985;34:812–815. doi: 10.2337/diab.34.8.812. PubMed DOI

van den Berg E.H., Flores-Guerrero J.L., Gruppen E.G., de Borst M.H., Wolak-Dinsmore J., Connelly M.A., Bakker S.J.L., Dullaart R.P.F. Non-alcoholic fatty liver disease and risk of incident type 2 diabetes: Role of circulating branched-chain amino acids. Nutrients. 2019;11:705. doi: 10.3390/nu11030705. PubMed DOI PMC

Iwasa M., Ishihara T., Mifuji-Moroka R., Fujita N., Kobayashi Y., Hasegawa H., Iwata K., Kaito M., Takei Y. Elevation of branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment. Obes. Res. Clin. Pract. 2015;9:293–297. doi: 10.1016/j.orcp.2015.01.003. PubMed DOI

Wang T.J., Larson M.G., Vasan R.S., Cheng S., Rhee E.P., McCabe E., Lewis G.D., Fox C.S., Jacques P.F., Fernandez C., et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011;17:448–453. doi: 10.1038/nm.2307. PubMed DOI PMC

Sunny N.E., Bril F., Cusi K. Mitochondrial adaptation in nonalcoholic fatty liver disease: Novel mechanisms and treatment strategies. Trends Endocrinol. Metab. 2017;28:250–260. doi: 10.1016/j.tem.2016.11.006. PubMed DOI

Holeček M. Branched-chain amino acids in health and disease: Metabolism, alterations in blood plasma, and as supplements. Nutr. Metab. (Lond.) 2018;15:33. PubMed PMC

Newgard C.B. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 2012;15:606–614. doi: 10.1016/j.cmet.2012.01.024. PubMed DOI PMC

Laferrère B., Reilly D., Arias S., Swerdlow N., Gorroochurn P., Bawa B., Bose M., Teixeira J., Stevens R.D., Wenner B.R., et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci. Transl. Med. 2011;3:80re2. doi: 10.1126/scitranslmed.3002043. PubMed DOI PMC

Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI

Hutson S.M., Harper A.E. Blood and tissue branched-chain amino and alpha-keto acid concentrations: Effect of diet, starvation, and disease. Am. J. Clin. Nutr. 1981;34:173–183. doi: 10.1093/ajcn/34.2.173. PubMed DOI

Rodríguez T., Alvarez B., Busquets S., Carbó N., López-Soriano F.J., Argilés J.M. The increased skeletal muscle protein turnover of the streptozotocin diabetic rat is associated with high concentrations of branched-chain amino acids. Biochem. Mol. Med. 1997;61:87–94. doi: 10.1006/bmme.1997.2585. PubMed DOI

Brosnan J.T., Man K.C., Hall D.E., Colbourne S.A., Brosnan M.E. Interorgan metabolism of amino acids in streptozotocin-diabetic ketoacidotic rat. Am. J. Physiol. 1983;244:E151–E158. doi: 10.1152/ajpendo.1983.244.2.E151. PubMed DOI

Aftring R.P., Miller W.J., Buse M.G. Effects of diabetes and starvation on skeletal muscle branched-chain alpha-keto acid dehydrogenase activity. Am. J. Physiol. 1988;254:E292–E300. doi: 10.1152/ajpendo.1988.254.3.E292. PubMed DOI

Goldberg A.L., Odessey R. Oxidation of amino acids by diaphragms from fed and fasted rats. Am. J. Physiol. 1972;223:1384–1391. doi: 10.1152/ajplegacy.1972.223.6.1384. PubMed DOI

Buse M.G., Biggers J.F., Drier C., Buse J.F. The effect of epinephrine, glucagon, and the nutritional state on the oxidation of branched chain amino acids and pyruvate by isolated hearts and diaphragms of the rat. J. Biol. Chem. 1973;248:697–706. PubMed

Wagenmakers A.J., Schepens J.T., Veerkamp J.H. Effect of starvation and exercise on actual and total activity of the branched-chain 2-oxo acid dehydrogenase complex in rat tissues. Biochem. J. 1984;223:815–821. doi: 10.1042/bj2230815. PubMed DOI PMC

Fryburg D.A., Barrett E.J., Louard R.J., Gelfand R.A. Effect of starvation on human muscle protein metabolism and its response to insulin. Am. J. Physiol. 1990;259:E477–E482. doi: 10.1152/ajpendo.1990.259.4.E477. PubMed DOI

Koves T.R., Ussher J.R., Noland R.C., Slentz D., Mosedale M., Ilkayeva O., Bain J., Stevens R., Dyck J.R., Newgard C.B., et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56. doi: 10.1016/j.cmet.2007.10.013. PubMed DOI

Savage D.B., Petersen K.F., Shulman G.I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 2007;87:507–520. doi: 10.1152/physrev.00024.2006. PubMed DOI PMC

Randle P.J. Regulatory interactions between lipids and carbohydrates: The glucose fatty acid cycle after 35 years. Diabetes Metab. Rev. 1998;14:263–283. doi: 10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C. PubMed DOI

Brosnan J.T., Brosnan M.E. Branched-chain amino acids: Enzyme and substrate regulation. J. Nutr. 2006;136:207S–211S. doi: 10.1093/jn/136.1.207S. PubMed DOI

Kadowaki H., Knox W.E. Cytosolic and mitochondrial isoenzymes of branched-chain amino acid aminotransferase during development of the rat. Biochem. J. 1982;202:777–783. doi: 10.1042/bj2020777. PubMed DOI PMC

Shimomura Y., Obayashi M., Murakami T., Harris R.A. Regulation of branched-chain amino acid catabolism: Nutritional and hormonal regulation of activity and expression of the branched-chain alpha-keto acid dehydrogenase kinase. Curr. Opin. Clin. Nutr. Metab. Care. 2001;4:419–423. doi: 10.1097/00075197-200109000-00013. PubMed DOI

Smith R.J., Larson S., Stred S.E., Durschlag R.P. Regulation of glutamine synthetase and glutaminase activities in cultured skeletal muscle cells. J. Cell Physiol. 1984;120:197–203. doi: 10.1002/jcp.1041200213. PubMed DOI

Safer B., Williamson J.R. Mitochondrial-cytosolic interactions in perfused rat heart. Role of coupled transamination in repletion of citric acid cycle intermediates. J. Biol. Chem. 1973;248:2570–2579. PubMed

Paxton R., Harris R.A. Regulation of branched-chain alpha-ketoacid dehydrogenase kinase. Arch. Biochem. Biophys. 1984;231:48–57. doi: 10.1016/0003-9861(84)90361-8. PubMed DOI

Sketcher R.D., Fern E.B., James W.P. The adaptation in muscle oxidation of leucine to dietary protein and energy intake. Br. J. Nutr. 1974;31:333–342. doi: 10.1079/BJN19740041. PubMed DOI

Hutson S.M., Fenstermacher D., Mahar C. Role of mitochondrial transamination in branched chain amino acid metabolism. J. Biol. Chem. 1988;263:3618–3625. PubMed

Kelley D., Mitrakou A., Marsh H., Schwenk F., Benn J., Sonnenberg G., Arcangeli M., Aoki T., Sorensen J., Berger M. Skeletal muscle glycolysis, oxidation, and storage of an oral glucose load. J. Clin. Investig. 1988;81:1563–1571. doi: 10.1172/JCI113489. PubMed DOI PMC

Wahren J., Felig P., Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes mellitus. J. Clin. Investig. 1976;57:987–999. doi: 10.1172/JCI108375. PubMed DOI PMC

Holecek M., Kovarik M. Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet—Effect of starvation. Food Chem. Toxicol. 2011;49:3336–3342. doi: 10.1016/j.fct.2011.09.016. PubMed DOI

Ruderman N.B., Berger M. The formation of glutamine and alanine in skeletal muscle. J. Biol. Chem. 1974;249:5500–5506. PubMed

Odessey R., Goldberg A.L. Oxidation of leucine by rat skeletal muscle. Am. J. Physiol. 1972;223:1376–1383. doi: 10.1152/ajplegacy.1972.223.6.1376. PubMed DOI

Durschlag R.P., Smith R.J. Regulation of glutamine production by skeletal muscle cells in culture. Am. J. Physiol. 1985;248:C442–C448. doi: 10.1152/ajpcell.1985.248.5.C442. PubMed DOI

Holecek M., Siman P., Vodenicarovova M., Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. (Lond.) 2016;13:12. doi: 10.1186/s12986-016-0072-3. PubMed DOI PMC

Beatty C.H., West E.S., Bocek R.M. Effect of succinate, fumarate, and oxalacetate on ketone body production by liver slices from non-diabetic and diabetic rats. J. Biol. Chem. 1958;230:725–733. PubMed

Spydevold S., Davis E.J., Bremer J. Replenishment and depletion of citric acid cycle intermediates in skeletal muscle. Indication of pyruvate carboxylation. Eur. J. Biochem. 1976;71:155–165. doi: 10.1111/j.1432-1033.1976.tb11101.x. PubMed DOI

Palmer T.N., Caldecourt M.A., Snell K., Sugden M.C. Alanine and inter-organ relationships in branched-chain amino and 2-oxo acid metabolism. Rev. Biosci. Rep. 1985;5:1015–1033. doi: 10.1007/BF01119623. PubMed DOI

Zinneman H.H., Nuttall F.Q., Goetz F.C. Effect of endogenous insulin on human amino acid metabolism. Diabetes. 1966;15:5–8. doi: 10.2337/diab.15.1.5. PubMed DOI

Brooks D.C., Bessey P.Q., Black P.R., Aoki T.T., Wilmore D.W. Insulin stimulates branched chain amino acid uptake and diminishes nitrogen flux from skeletal muscle of injured patients. J. Surg. Res. 1986;40:395–405. doi: 10.1016/0022-4804(86)90205-2. PubMed DOI

Fukagawa N.K., Minaker K.L., Young V.R., Rowe J.W. Insulin dose-dependent reductions in plasma amino acids in man. Am. J. Physiol. 1986;250:E13–E17. doi: 10.1152/ajpendo.1986.250.1.E13. PubMed DOI

Eriksson L.S., Björkman O. Influence of insulin on peripheral uptake of branched chain amino acids in the 60-hour fasted state. Clin. Nutr. 1993;12:217–222. doi: 10.1016/0261-5614(93)90018-Y. PubMed DOI

Hijikata Y., Shiozaki Y., Sameshima Y. Changes in plasma amino acids during the oral glucose tolerance test and the effect of these changes on hepatic encephalopathy. J. Clin. Chem. Clin. Biochem. 1985;23:259–264. doi: 10.1515/cclm.1985.23.5.259. PubMed DOI

Rice D.E., Flakoll P.J., May M.M., Hill J.O., Abumrad N.N. The opposing effects of insulin and hyperglycemia in modulating amino acid metabolism during a glucose tolerance test in lean and obese subjects. Metabolism. 1994;43:211–216. doi: 10.1016/0026-0495(94)90247-X. PubMed DOI

Marchesini G., Cassarani S., Checchia G.A., Bianchi G., Bua V., Zoli M., Pisi E. Insulin resistance in aged man: Relationship between impaired glucose tolerance and decreased insulin activity on branched-chain amino acids. Metabolism. 1987;36:1096–1100. doi: 10.1016/0026-0495(87)90032-1. PubMed DOI

Vazquez J.A., Morse E.L., Adibi S.A. Effect of dietary fat, carbohydrate, and protein on branched-chain amino acid catabolism during caloric restriction. J. Clin. Investig. 1985;76:737–743. doi: 10.1172/JCI112029. PubMed DOI PMC

Schauder P., Herbertz L., Langenbeck U. Serum branched chain amino and keto acid response to fasting in humans. Metabolism. 1985;34:58–61. doi: 10.1016/0026-0495(85)90061-7. PubMed DOI

She P., Olson K.C., Kadota Y., Inukai A., Shimomura Y., Hoppel C.L., Adams S.H., Kawamata Y., Matsumoto H., Sakai R., et al. Leucine and protein metabolism in obese Zucker rats. PLoS ONE. 2013;8:e59443. doi: 10.1371/journal.pone.0059443. PubMed DOI PMC

Goldstein L., Perlman D.F., McLaughlin P.M., King P.A., Cha C.J. Muscle glutamine production in diabetic ketoacidotic rats. Biochem. J. 1983;214:757–767. doi: 10.1042/bj2140757. PubMed DOI PMC

Feng B., Banner C., Max S.R. Effect of diabetes on glutamine synthetase expression in rat skeletal muscles. Am. J. Physiol. 1990;258:E762–E766. doi: 10.1152/ajpendo.1990.258.5.E762. PubMed DOI

Aseervatham J., Palanivelu S., Panchanadham S. Semecarpus anacardium (bhallataka) alters the glucose metabolism and energy production in diabetic rats. Evid. Based Complement. Alternat. Med. 2011;2011:142978. doi: 10.1155/2011/142978. PubMed DOI PMC

Chandramohan G., Al-Numair K.S., Veeramani C., Alsaif M.A., Almajwal A.M. Protective effect of kaempferol, a flavonoid compound, on oxidative mitochondrial damage in streptozotocin-induced diabetic rats. Prog. Nutr. 2015;17:238–244.

Bloxam D.L. Nutritional aspects of amino acid metabolism. 2. The effects of starvation on hepatic portal-venous differences in plasma amino acid concentration and on liver amino acid concentrations in the rat. Br. J. Nutr. 1972;27:233–247. doi: 10.1079/BJN19720090. PubMed DOI

Wijekoon E.P., Skinner C., Brosnan M.E., Brosnan J.T. Amino acid metabolism in the Zucker diabetic fatty rat: Effects of insulin resistance and of type 2 diabetes. Can. J. Physiol. Pharmacol. 2004;82:506–514. doi: 10.1139/y04-067. PubMed DOI

Harris R.A., Goodwin G.W., Paxton R., Dexter P., Powell S.M., Zhang B., Han A., Shimomura Y., Gibson R. Nutritional and hormonal regulation of the activity state of hepatic branched-chain alpha-keto acid dehydrogenase complex. Ann. N. Y. Acad. Sci. 1989;573:306–313. doi: 10.1111/j.1749-6632.1989.tb15007.x. PubMed DOI

May M.E., Mancusi V.J., Aftring R.P., Buse M.G. Effects of diabetes on oxidative decarboxylation of branched-chain keto acids. Am. J. Physiol. 1980;239:E215–E222. doi: 10.1152/ajpendo.1980.239.3.E215. PubMed DOI

Gibson R., Zhao Y., Jaskiewicz J., Fineberg S.E., Harris R.A. Effects of diabetes on the activity and content of the branched-chain alpha-ketoacid dehydrogenase complex in liver. Arch. Biochem. Biophys. 1993;306:22–28. doi: 10.1006/abbi.1993.1475. PubMed DOI

Kuzuya T., Katano Y., Nakano I., Hirooka Y., Itoh A., Ishigami M., Hayashi K., Honda T., Goto H., Fujita Y., et al. Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochem. Biophys. Res. Commun. 2008;373:94–98. doi: 10.1016/j.bbrc.2008.05.167. PubMed DOI

Bajotto G., Murakami T., Nagasaki M., Sato Y., Shimomura Y. Decreased enzyme activity and contents of hepatic branched-chain alpha-keto acid dehydrogenase complex subunits in a rat model for type 2 diabetes mellitus. Metabolism. 2009;58:1489–1495. doi: 10.1016/j.metabol.2009.04.029. PubMed DOI

Tischler M.E., Goldberg A.L. Leucine degradation and release of glutamine and alanine by adipose tissue. J. Biol. Chem. 1980;255:8074–8081. PubMed

Frick G.P., Goodman H.M. Insulin regulation of the activity and phosphorylation of branched-chain 2-oxo acid dehydrogenase in adipose tissue. Biochem. J. 1989;258:229–235. doi: 10.1042/bj2580229. PubMed DOI PMC

Pietiläinen K.H., Naukkarinen J., Rissanen A., Saharinen J., Ellonen P., Keränen H., Suomalainen A., Götz A., Suortti T., Yki-Järvinen H., et al. Global transcript profiles of fat in monozygotic twins discordant for BMI: Pathways behind acquired obesity. PLoS Med. 2008;5:e51. doi: 10.1371/journal.pmed.0050051. PubMed DOI PMC

She P., Van Horn C., Reid T., Hutson S.M., Cooney R.N., Lynch C.J. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am. J. Physiol. 2007;293:E1552–E1563. doi: 10.1152/ajpendo.00134.2007. PubMed DOI PMC

Wiklund P., Zhang X., Pekkala S., Autio R., Kong L., Yang Y., Keinänen-Kiukaanniemi S., Alen M., Cheng S. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women. Sci. Rep. 2016;6:24540. doi: 10.1038/srep24540. PubMed DOI PMC

Herman M.A., She P., Peroni O.D., Lynch C.J., Kahn B.B. Adipose tissue branched chain amino acid (BCAA) metabolism modulates circulating BCAA levels. J. Biol. Chem. 2010;285:11348–11356. doi: 10.1074/jbc.M109.075184. PubMed DOI PMC

David J., Dardevet D., Mosoni L., Savary-Auzeloux I., Polakof S. Impaired skeletal muscle branched-chain amino acids catabolism contributes to their increased circulating levels in a non-obese insulin-resistant fructose-fed rat model. Nutrients. 2019;11:355. doi: 10.3390/nu11020355. PubMed DOI PMC

Holecek M. The BCAA-BCKA cycle: Its relation to alanine and glutamine synthesis and protein balance. Nutrition. 2001;17:70. doi: 10.1016/S0899-9007(00)00483-4. PubMed DOI

Holecek M. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition. 2002;18:130–133. doi: 10.1016/S0899-9007(01)00767-5. PubMed DOI

Holeček M. Branched-chain amino acids and branched-chain keto acids in hyperammonemic states: Metabolism and as supplements. Metabolites. 2020;10:324. doi: 10.3390/metabo10080324. PubMed DOI PMC

Giesecke K., Magnusson I., Ahlberg M., Hagenfeldt L., Wahren J. Protein and amino acid metabolism during early starvation as reflected by excretion of urea and methylhistidines. Metabolism. 1989;38:1196–1200. doi: 10.1016/0026-0495(89)90159-5. PubMed DOI

Pozefsky T., Tancredi R.G., Moxley R.T., Dupre J., Tobin J.D. Effects of brief starvation on muscle amino acid metabolism in nonobese man. J. Clin. Investig. 1976;57:444–449. doi: 10.1172/JCI108295. PubMed DOI PMC

De Blaauw I., Deutz N.E., Von Meyenfeldt M.F. In vivo amino acid metabolism of gut and liver during short and prolonged starvation. Am. J. Physiol. 1996;270:G298–G306. doi: 10.1152/ajpgi.1996.270.2.G298. PubMed DOI

Holecek M. Effect of starvation on branched-chain alpha-keto acid dehydrogenase activity in rat heart and skeletal muscle. Physiol. Res. 2001;50:19–24. PubMed

Umpleby A.M., Scobie I.N., Boroujerdi M.A., Sönksen P.H. The effect of starvation on leucine, alanine and glucose metabolism in obese subjects. Eur. J. Clin. Investig. 1995;25:619–626. doi: 10.1111/j.1365-2362.1995.tb01755.x. PubMed DOI

Wu G.Y., Thompson J.R. The effect of ketone bodies on alanine and glutamine metabolism in isolated skeletal muscle from the fasted chick. Biochem. J. 1988;255:139–144. doi: 10.1042/bj2550139. PubMed DOI PMC

Holecek M., Sprongl L., Tilser I. Metabolism of branched-chain amino acids in starved rats: The role of hepatic tissue. Physiol. Res. 2001;50:25–33. PubMed

Palaiologos G., Felig P. Effects of ketone bodies on amino acid metabolism in isolated rat diaphragm. Biochem. J. 1976;154:709–716. doi: 10.1042/bj1540709. PubMed DOI PMC

Karakelides H., Asmann Y.W., Bigelow M.L., Short K.R., Dhatariya K., Coenen-Schimke J., Kahl J., Mukhopadhyay D., Nair K.S. Effect of insulin deprivation on muscle mitochondrial ATP production and gene transcript levels in type 1 diabetic subjects. Diabetes. 2007;56:2683–2689. doi: 10.2337/db07-0378. PubMed DOI

Felig P., Wahren J., Sherwin R., Palaiologos G. Amino acid and protein metabolism in diabetes mellitus. Arch. Intern. Med. 1977;137:507–513. doi: 10.1001/archinte.1977.03630160069014. PubMed DOI

Charlton M., Nair K.S. Protein metabolism in insulin-dependent diabetes mellitus. J. Nutr. 1998;128:323S–327S. doi: 10.1093/jn/128.2.323S. PubMed DOI

Lombardo Y.B., Thamotharan M., Bawani S.Z., Paul H.S., Adibi S.A. Posttranscriptional alterations in protein masses of hepatic branched-chain keto acid dehydrogenase and its associated kinase in diabetes. Proc. Assoc. Am. Phys. 1998;110:40–49. PubMed

Lombardo Y.B., Serdikoff C., Thamotharan M., Paul H.S., Adibi S.A. Inverse alterations of BCKA dehydrogenase activity in cardiac and skeletal muscles of diabetic rats. Am. J. Physiol. 1999;277:E685–E692. doi: 10.1152/ajpendo.1999.277.4.E685. PubMed DOI

Nair K.S., Garrow J.S., Ford C., Mahler R.F., Halliday D. Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia. 1983;25:400–403. doi: 10.1007/BF00282518. PubMed DOI

Berger M., Zimmermann-Telschow H., Berchtold P., Drost H., Müller W.A., Gries F.A., Zimmermann H. Blood amine acid levels in patients with insulin excess (functioning insulinoma) and insulin deficiency (diabetic ketosis) Metabolism. 1978;27:793–799. doi: 10.1016/0026-0495(78)90214-7. PubMed DOI

Jensen-Waern M., Andersson M., Kruse R., Nilsson B., Larsson R., Korsgren O., Essén-Gustavsson B. Effects of streptozotocin-induced diabetes in domestic pigs with focus on the amino acid metabolism. Lab. Anim. 2009;43:249–254. doi: 10.1258/la.2008.008069. PubMed DOI

Buse M.G., Weigand D.A., Peeler D., Hedden M.P. The effect of diabetes and the redox potential on amino acid content and release by isolated rat hemidiaphragms. Metabolism. 1980;29:605–616. doi: 10.1016/0026-0495(80)90104-3. PubMed DOI

Buse M.G., Herlong H.F., Weigand D.A. The effect of diabetes, insulin, and the redox potential on leucine metabolism by isolated rat hemidiaphragm. Endocrinology. 1976;98:1166–1175. doi: 10.1210/endo-98-5-1166. PubMed DOI

Aftring R.P., Manos P.N., Buse M.G. Catabolism of branched-chain amino acids by diaphragm muscles of fasted and diabetic rats. Metabolism. 1985;34:702–711. doi: 10.1016/0026-0495(85)90018-6. PubMed DOI

Gürke J., Hirche F., Thieme R., Haucke E., Schindler M., Stangl G.I., Fischer B., Santos A.N. Maternal diabetes leads to adaptation in embryonic amino acid metabolism during early pregnancy. PLoS ONE. 2015;10:e0127465. doi: 10.1371/journal.pone.0127465. PubMed DOI PMC

Tan H.C., Hsu J.W., Khoo C.M., Tai E.S., Yu S., Chacko S., Lai O.F., Jahoor F. Alterations in branched-chain amino acid kinetics in nonobese but insulin-resistant Asian men. Am. J. Clin. Nutr. 2018;108:1220–1228. doi: 10.1093/ajcn/nqy208. PubMed DOI

Seibert R., Abbasi F., Hantash F.M., Caulfield M.P., Reaven G., Kim S.H. Relationship between insulin resistance and amino acids in women and men. Physiol. Rep. 2015;3:e12392. doi: 10.14814/phy2.12392. PubMed DOI PMC

Würtz P., Soininen P., Kangas A.J., Rönnemaa T., Lehtimäki T., Kähönen M., Viikari J.S., Raitakari O.T., Ala-Korpela M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–655. doi: 10.2337/dc12-0895. PubMed DOI PMC

Shaham O., Wei R., Wang T.J., Ricciardi C., Lewis G.D., Vasan R.S., Carr S.A., Thadhani R., Gerszten R.E., Mootha V.K. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol. Syst. Biol. 2008;4:214. doi: 10.1038/msb.2008.50. PubMed DOI PMC

Yamakado M., Nagao K., Imaizumi A., Tani M., Toda A., Tanaka T., Jinzu H., Miyano H., Yamamoto H., Daimon T., et al. Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci. Rep. 2015;5:11918. doi: 10.1038/srep11918. PubMed DOI PMC

Biolo G., Tessari P., Inchiostro S., Bruttomesso D., Sabadin L., Fongher C., Panebianco G., Fratton M.G., Tiengo A. Fasting and postmeal phenylalanine metabolism in mild type 2 diabetes. Am. J. Physiol. 1992;263:E877–E883. doi: 10.1152/ajpendo.1992.263.5.E877. PubMed DOI

Lerin C., Goldfine A.B., Boes T., Liu M., Kasif S., Dreyfuss J.M., De Sousa-Coelho A.L., Daher G., Manoli I., Sysol J.R., et al. Defects in muscle branched-chain amino acid oxidation contribute to impaired lipid metabolism. Mol. Metab. 2016;5:926–936. doi: 10.1016/j.molmet.2016.08.001. PubMed DOI PMC

Hernández-Alvarez M.I., Díaz-Ramos A., Berdasco M., Cobb J., Planet E., Cooper D., Pazderska A., Wanic K., O’Hanlon D., Gomez A., et al. Early-onset and classical forms of type 2 diabetes show impaired expression of genes involved in muscle branched-chain amino acids metabolism. Sci. Rep. 2017;7:13850. doi: 10.1038/s41598-017-14120-6. PubMed DOI PMC

Gaster M. Reduced TCA flux in diabetic myotubes: A governing influence on the diabetic phenotype? Biochem. Biophys. Res. Commun. 2009;387:651–655. doi: 10.1016/j.bbrc.2009.07.064. PubMed DOI

Krebs M., Krssak M., Bernroider E., Anderwald C., Brehm A., Meyerspeer M., Nowotny P., Roth E., Waldhäusl W., Roden M. Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 2002;51:599–605. doi: 10.2337/diabetes.51.3.599. PubMed DOI

Xiao F., Yu J., Guo Y., Deng J., Li K., Du Y., Chen S., Zhu J., Sheng H., Guo F. Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice. Metabolism. 2014;63:841–850. doi: 10.1016/j.metabol.2014.03.006. PubMed DOI

Tremblay F., Marette A. Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J. Biol. Chem. 2001;276:38052–38060. PubMed

Lynch C.J., Adams S.H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 2014;10:723–736. doi: 10.1038/nrendo.2014.171. PubMed DOI PMC

Siddik M.A.B., Shin A.C. Recent progress on branched-chain amino acids in obesity, diabetes, and beyond. Endocrinol. Metab. (Seoul) 2019;34:234–246. doi: 10.3803/EnM.2019.34.3.234. PubMed DOI PMC

Lu J., Xie G., Jia W., Jia W. Insulin resistance and the metabolism of branched-chain amino acids. Front. Med. 2013;7:53–59. doi: 10.1007/s11684-013-0255-5. PubMed DOI

Giesbertz P., Daniel H. Branched-chain amino acids as biomarkers in diabetes. Curr. Opin. Clin. Nutr. Metab. Care. 2016;19:48–54. doi: 10.1097/MCO.0000000000000235. PubMed DOI

Aguer C., McCoin C.S., Knotts T.A., Thrush A.B., Ono-Moore K., McPherson R., Dent R., Hwang D.H., Adams S.H., Harper M.E. Acylcarnitines: Potential implications for skeletal muscle insulin resistance. FASEB J. 2015;29:336–345. doi: 10.1096/fj.14-255901. PubMed DOI PMC

White P.J., Lapworth A.L., An J., Wang L., McGarrah R.W., Stevens R.D., Ilkayeva O., George T., Muehlbauer M.J., Bain J.R., et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 2016;5:538–551. doi: 10.1016/j.molmet.2016.04.006. PubMed DOI PMC

Yoon M.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 2016;8:405. doi: 10.3390/nu8070405. PubMed DOI PMC

Arany Z., Neinast M. Branched Chain Amino Acids in Metabolic Disease. Curr. Diab. Rep. 2018;18:76. doi: 10.1007/s11892-018-1048-7. PubMed DOI

De Bandt J.P., Cynober L. Therapeutic use of branched-chain amino acids in burn, trauma, and sepsis. J. Nutr. 2006;136:308S–313S. doi: 10.1093/jn/136.1.308S. PubMed DOI

Floyd J.C., Fajans S.S., Conn J.W., Knopf R.F., Rull J. Stimulation of insulin secretion by amino acids. J. Clin. Investig. 1966;45:1487–1502. doi: 10.1172/JCI105456. PubMed DOI PMC

Anthony J.C., Lang C.H., Crozier S.J., Anthony T.G., MacLean D.A., Kimball S.R., Jefferson L.S. Contribution of insulin to the translational control of protein synthesis in skeletal muscle by leucine. Am. J. Physiol. 2002;282:E1092–E1101. doi: 10.1152/ajpendo.00208.2001. PubMed DOI

Desikan V., Mileva I., Garlick J., Lane A.H., Wilson T.A., McNurlan M.A. The effect of oral leucine on protein metabolism in adolescents with type 1 diabetes mellitus. Int. J. Pediatr. Endocrinol. 2010;2010:493258. doi: 10.1186/1687-9856-2010-493258. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...