Role of Impaired Glycolysis in Perturbations of Amino Acid Metabolism in Diabetes Mellitus

. 2023 Jan 15 ; 24 (2) : . [epub] 20230115

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid36675238

Grantová podpora
the Cooperatio Program, research area METD Charles University

The most frequent alterations in plasma amino acid concentrations in type 1 and type 2 diabetes are decreased L-serine and increased branched-chain amino acid (BCAA; valine, leucine, and isoleucine) levels. The likely cause of L-serine deficiency is decreased synthesis of 3-phosphoglycerate, the main endogenous precursor of L-serine, due to impaired glycolysis. The BCAA levels increase due to decreased supply of pyruvate and oxaloacetate from glycolysis, enhanced supply of NADH + H+ from beta-oxidation, and subsequent decrease in the flux through the citric acid cycle in muscles. These alterations decrease the supply of α-ketoglutarate for BCAA transamination and the activity of branched-chain keto acid dehydrogenase, the rate-limiting enzyme in BCAA catabolism. L-serine deficiency contributes to decreased synthesis of phospholipids and increased synthesis of deoxysphinganines, which play a role in diabetic neuropathy, impaired homocysteine disposal, and glycine deficiency. Enhanced BCAA levels contribute to increased levels of aromatic amino acids (phenylalanine, tyrosine, and tryptophan), insulin resistance, and accumulation of various metabolites, whose influence on diabetes progression is not clear. It is concluded that amino acid concentrations should be monitored in patients with diabetes, and systematic investigation is needed to examine the effects of L-serine and glycine supplementation on diabetes progression when these amino acids are decreased.

Zobrazit více v PubMed

Sinha R., Fisch G., Teague B., Tamborlane W.V., Banyas B., Allen K., Savoye M., Rieger V., Taksali S., Barbetta G., et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N. Engl. J. Med. 2002;346:802–810. doi: 10.1056/NEJMoa012578. PubMed DOI

Gar C., Rottenkolber M., Prehn C., Adamski J., Seissler J., Lechner A. Serum and plasma amino acids as markers of prediabetes, insulin resistance, and incident diabetes. Crit. Rev. Clin. Lab. Sci. 2018;55:21–32. doi: 10.1080/10408363.2017.1414143. PubMed DOI

Hosseinkhani S., Arjmand B., Dilmaghani-Marand A., Mohammadi Fateh S., Dehghanbanadaki H., Najjar N., Alavi-Moghadam S., Ghodssi-Ghassemabadi R., Nasli-Esfahani E., Farzadfar F., et al. Targeted metabolomics analysis of amino acids and acylcarnitines as risk markers for diabetes by LC-MS/MS technique. Sci. Rep. 2022;12:8418. doi: 10.1038/s41598-022-11970-7. PubMed DOI PMC

Holeček M., Vodeničarovová M., Fingrová R. Dual effects of beta-hydroxy-beta-methylbutyrate (HMB) on amino acid, energy, and protein metabolism in the liver and muscles of rats with streptozotocin-induced type 1 diabetes. Biomolecules. 2020;10:1475. doi: 10.3390/biom10111475. PubMed DOI PMC

Holm L.J., Buschard K. L-serine: A neglected amino acid with a potential therapeutic role in diabetes. APMIS. 2019;127:655–659. doi: 10.1111/apm.12987. PubMed DOI PMC

Chen S., Akter S., Kuwahara K., Matsushita Y., Nakagawa T., Konishi M., Honda T., Yamamoto S., Hayashi T., Noda M., et al. Serum amino acid profiles and risk of type 2 diabetes among Japanese adults in the Hitachi Health Study. Sci. Rep. 2019;9:7010. doi: 10.1038/s41598-019-43431-z. PubMed DOI PMC

Alqudah A., Wedyan M., Qnais E., Jawarneh H., McClements L. Plasma amino acids metabolomics’ important in glucose management in type 2 diabetes. Front. Pharmacol. 2021;12:695418. doi: 10.3389/fphar.2021.695418. PubMed DOI PMC

Stanley W.C., Lopaschuk G.D., McCormack J.G. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc. Res. 1997;34:25–33. doi: 10.1016/S0008-6363(97)00047-3. PubMed DOI

Krause M.P., Riddell M.C., Hawke T.J. Effects of type 1 diabetes mellitus on skeletal muscle: Clinical observations and physiological mechanisms. Pediatr. Diabetes. 2011;12:345–364. doi: 10.1111/j.1399-5448.2010.00699.x. PubMed DOI

Karakelides H., Asmann Y.W., Bigelow M.L., Short K.R., Dhatariya K., Coenen-Schimke J., Kahl J., Mukhopadhyay D., Nair K.S. Effect of insulin deprivation on muscle mitochondrial ATP production and gene transcript levels in type 1 diabetic subjects. Diabetes. 2007;56:2683–2689. doi: 10.2337/db07-0378. PubMed DOI

Gaster M. A primary reduced TCA flux governs substrate oxidation in T2D skeletal muscle. Curr. Diabetes Rev. 2012;8:458–479. doi: 10.2174/157339912803529841. PubMed DOI

Schrauwen P., Hesselink M.K. Reduced tricarboxylic acid cycle flux in type 2 diabetes mellitus? Diabetologia. 2008;51:1694–1697. doi: 10.1007/s00125-008-1069-x. PubMed DOI PMC

Sickmann H.M., Waagepetersen H.S. Effects of diabetes on brain metabolism--is brain glycogen a significant player? Metab. Brain Dis. 2015;30:335–343. doi: 10.1007/s11011-014-9546-z. PubMed DOI

Lopaschuk G.D. Fatty acid oxidation and its relation with insulin resistance and associated disorders. Ann. Nutr. Metab. 2016;68((Suppl. S3)):15–20. doi: 10.1159/000448357. PubMed DOI

Randle P.J., Garland P.B., Hales C.N., Newsholme E.A. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–789. doi: 10.1016/S0140-6736(63)91500-9. PubMed DOI

Rabøl R., Højberg P.M., Almdal T., Boushel R., Haugaard S.B., Madsbad S., Dela F. Effect of hyperglycemia on mitochondrial respiration in type 2 diabetes. J. Clin. Endocrinol. Metab. 2009;94:1372–1378. doi: 10.1210/jc.2008-1475. PubMed DOI

Mogensen M., Sahlin K., Fernström M., Glintborg D., Vind B.F., Beck-Nielsen H., Højlund K. Mitochondrial respiration is decreased in skeletal muscle of patients with type 2 diabetes. Diabetes. 2007;56:1592–1599. doi: 10.2337/db06-0981. PubMed DOI

Antoun G., McMurray F., Thrush A.B., Patten D.A., Peixoto A.C., Slack R.S., McPherson R., Dent R., Harper M.E. Impaired mitochondrial oxidative phosphorylation and supercomplex assembly in rectus abdominis muscle of diabetic obese individuals. Diabetologia. 2015;58:2861–2866. doi: 10.1007/s00125-015-3772-8. PubMed DOI

Montaigne D., Marechal X., Coisne A., Debry N., Modine T., Fayad G., Potelle C., El Arid J.M., Mouton S., Sebti Y., et al. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation. 2014;130:554–564. doi: 10.1161/CIRCULATIONAHA.113.008476. PubMed DOI

Ito M., Gurumani M.Z., Merscher S., Fornoni A. Glucose- and non-glucose-induced mitochondrial dysfunction in diabetic kidney disease. Biomolecules. 2022;12:351. doi: 10.3390/biom12030351. PubMed DOI PMC

Kalhan S.C., Hanson R.W. Resurgence of serine: An often neglected but indispensable amino acid. J. Biol. Chem. 2012;287:19786–19791. doi: 10.1074/jbc.R112.357194. PubMed DOI PMC

Fell D.A., Snell K. Control analysis of mammalian serine biosynthesis. Feedback inhibition on the final step. Biochem. J. 1988;256:97–101. doi: 10.1042/bj2560097. PubMed DOI PMC

Murtas G., Marcone G.L., Sacchi S., Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol. Life Sci. 2020;77:5131–5148. doi: 10.1007/s00018-020-03574-z. PubMed DOI PMC

Lowry M., Hall D.E., Hall M.S., Brosnan J.T. Renal metabolism of amino acids in vivo: Studies on serine and glycine fluxes. Am. J. Physiol. 1987;252:F304–F309. doi: 10.1152/ajprenal.1987.252.2.F304. PubMed DOI

Knox W.E., Herzfeld A., Hudson J. Phosphoserine phosphatase distribution in normal and neoplastic rat tissues. Arch. Biochem. Biophys. 1969;132:397–403. doi: 10.1016/0003-9861(69)90381-6. PubMed DOI

Achouri Y., Robbi M., Van Schaftingen E. Role of cysteine in the dietary control of the expression of 3-phosphoglycerate dehydrogenase in rat liver. Biochem. J. 1999;344:15–21. doi: 10.1042/bj3440015. PubMed DOI PMC

Antflick J.E., Baker G.B., Hampson D.R. The effects of a low protein diet on amino acids and enzymes in the serine synthesis pathway in mice. Amino Acids. 2010;39:145–153. doi: 10.1007/s00726-009-0387-8. PubMed DOI

Ye L., Sun Y., Jiang Z., Wang G. L-serine, an endogenous amino acid, is a potential neuroprotective agent for neurological disease and injury. Front. Mol. Neurosci. 2021;14:726665. doi: 10.3389/fnmol.2021.726665. PubMed DOI PMC

Maugard M., Vigneron P.A., Bolaños J.P., Bonvento G. l-Serine links metabolism with neurotransmission. Prog. Neurobiol. 2021;197:101896. doi: 10.1016/j.pneurobio.2020.101896. PubMed DOI

Holeček M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients. 2022;14:1987. doi: 10.3390/nu14091987. PubMed DOI PMC

Scharff R., Wool I.G. Effect of diabetes on the concentration of amino acids in plasma and heart muscle of rats. Biochem. J. 1966;99:173–178. doi: 10.1042/bj0990173. PubMed DOI PMC

Bervoets L., Massa G., Guedens W., Louis E., Noben J.P., Adriaensens P. Metabolic profiling of type 1 diabetes mellitus in children and adolescents: A case-control study. Diabetol. Metab. Syndr. 2017;9:48. doi: 10.1186/s13098-017-0246-9. PubMed DOI PMC

Drábková P., Šanderová J., Kovařík J., Kanďár R. An assay of selected serum amino acids in patients with type 2 diabetes mellitus. Adv. Clin. Exp. Med. 2015;24:447–451. doi: 10.17219/acem/29223. PubMed DOI

Bertea M., Rütti M.F., Othman A., Marti-Jaun J., Hersberger M., von Eckardstein A., Hornemann T. Deoxysphingoid bases as plasma markers in diabetes mellitus. Lipids Health Dis. 2010;9:84. doi: 10.1186/1476-511X-9-84. PubMed DOI PMC

Kamaura M., Nishijima K., Takahashi M., Ando T., Mizushima S., Tochikubo O. Lifestyle modification in metabolic syndrome and associated changes in plasma amino acid profiles. Circ. J. 2010;74:2434–2440. doi: 10.1253/circj.CJ-10-0150. PubMed DOI

Mook-Kanamori D.O., de Mutsert R., Rensen P.C., Prehn C., Adamski J., den Heijer M., le Cessie S., Suhre K., Rosendaal F.R., van Dijk K.W. Type 2 diabetes is associated with postprandial amino acid measures. Arch. Biochem. Biophys. 2016;589:138–144. doi: 10.1016/j.abb.2015.08.003. PubMed DOI

Enquobahrie D.A., Denis M., Tadesse M.G., Gelaye B., Ressom H.W., Williams M.A. Maternal early pregnancy serum metabolites and risk of gestational diabetes mellitus. J. Clin. Endocrinol. Metab. 2015;100:4348–4356. doi: 10.1210/jc.2015-2862. PubMed DOI PMC

Calianese D.C., Birge R.B. Biology of phosphatidylserine (PS): Basic physiology and implications in immunology, infectious disease, and cancer. Cell Commun. Signal. 2020;18:41. doi: 10.1186/s12964-020-00543-8. PubMed DOI PMC

Penno A., Reilly M.M., Houlden H., Laurá M., Rentsch K., Niederkofler V., Stoeckli E.T., Nicholson G., Eichler F., Brown R.H., Jr., et al. Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J. Biol. Chem. 2010;285:11178–11187. doi: 10.1074/jbc.M109.092973. PubMed DOI PMC

Othman A., Saely C.H., Muendlein A., Vonbank A., Drexel H., von Eckardstein A., Hornemann T. Plasma 1-deoxysphingolipids are predictive biomarkers for type 2 diabetes mellitus. BMJ Open Diabetes Res. Care. 2015;3:e000073. doi: 10.1136/bmjdrc-2014-000073. PubMed DOI PMC

Zuellig R.A., Hornemann T., Othman A., Hehl A.B., Bode H., Güntert T., Ogunshola O.O., Saponara E., Grabliauskaite K., Jang J.H., et al. Deoxysphingolipids, novel biomarkers for type 2 diabetes, are cytotoxic for insulin-producing cells. Diabetes. 2014;63:1326–1339. doi: 10.2337/db13-1042. PubMed DOI

Fridman V., Zarini S., Sillau S., Harrison K., Bergman B.C., Feldman E.L., Reusch J.E.B., Callaghan B.C. Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. J. Diabetes Complicat. 2021;35:107852. doi: 10.1016/j.jdiacomp.2021.107852. PubMed DOI PMC

Garofalo K., Penno A., Schmidt B.P., Lee H.J., Frosch M.P., von Eckardstein A., Brown R.H., Hornemann T., Eichler F.S. Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1. J. Clin. Investig. 2011;121:4735–4745. doi: 10.1172/JCI57549. PubMed DOI PMC

Esaki K., Sayano T., Sonoda C., Akagi T., Suzuki T., Ogawa T., Okamoto M., Yoshikawa T., Hirabayashi Y., Furuya S. L-Serine deficiency elicits intracellular accumulation of cytotoxic deoxysphingolipids and lipid body formation. J. Biol. Chem. 2015;290:14595–14609. doi: 10.1074/jbc.M114.603860. PubMed DOI PMC

Newgard C.B., An J., Bain J.R., Muehlbauer M.J., Stevens R.D., Lien L.F., Haqq A.M., Shah S.H., Arlotto M., Slentz C.A., et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–326. doi: 10.1016/j.cmet.2009.02.002. PubMed DOI PMC

Thalacker-Mercer A.E., Ingram K.H., Guo F., Ilkayeva O., Newgard C.B., Garvey T. BMI, RQ, diabetes, and sex affect the relationships between amino acids and clamp measures of insulin action in humans. Diabetes. 2014;63:791–800. doi: 10.2337/db13-0396. PubMed DOI PMC

Adeva-Andany M., López-Ojén M., Funcasta-Calderón R., Ameneiros-Rodríguez E., Donapetry-García C., Vila-Altesor M., Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion. 2014;17:76–100. doi: 10.1016/j.mito.2014.05.007. PubMed DOI

Davis S.R., Stacpoole P.W., Williamson J., Kick L.S., Quinlivan E.P., Coats B.S., Shane B., Bailey L.B., Gregory J.F., 3rd Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor. Am. J. Physiol. Endocrinol. Metab. 2004;286:E272–E279. doi: 10.1152/ajpendo.00351.2003. PubMed DOI

Cruciani-Guglielmacci C., Meneyrol K., Denom J., Kassis N., Rachdi L., Makaci F., Migrenne-Li S., Daubigney F., Georgiadou E., Denis R.G., et al. Homocysteine metabolism pathway is involved in the control of glucose homeostasis: A cystathionine beta synthase deficiency study in mouse. Cells. 2022;11:1737. doi: 10.3390/cells11111737. PubMed DOI PMC

Zheng Y., Deng H.Y., Qiao Z.Y., Gong F.X. Homocysteine level and gestational diabetes mellitus: A systematic review and meta-analysis. Gynecol. Endocrinol. 2021;37:987–994. doi: 10.1080/09513590.2021.1967314. PubMed DOI

Muzurović E., Kraljević I., Solak M., Dragnić S., Mikhailidis D.P. Homocysteine and diabetes: Role in macrovascular and microvascular complications. J. Diabetes Complicat. 2021;35:107834. doi: 10.1016/j.jdiacomp.2020.107834. PubMed DOI

Elshorbagy A.K., Turner C., Bastani N., Refsum H., Kwok T. The association of serum sulfur amino acids and related metabolites with incident diabetes: A prospective cohort study. Eur. J. Nutr. 2022;61:3161–3173. doi: 10.1007/s00394-022-02872-5. PubMed DOI

Rehman T., Shabbir M.A., Inam-Ur-Raheem M., Manzoor M.F., Ahmad N., Liu Z.W., Ahmad M.H., Siddeeg A., Abid M., Aadil R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr. 2020;8:4696–4707. doi: 10.1002/fsn3.1818. PubMed DOI PMC

Benevenga N.J., Harper A.E. Effect of glycine and serine on methionine metabolism in rats fed diets high in methionine. J. Nutr. 1970;100:1205–1214. doi: 10.1093/jn/100.10.1205. PubMed DOI

Fukada S., Shimada Y., Morita T., Sugiyama K. Suppression of methionine-induced hyperhomocysteinemia by glycine and serine in rats. Biosci. Biotechnol. Biochem. 2006;70:2403–2409. doi: 10.1271/bbb.60130. PubMed DOI

Verhoef P., Steenge G.R., Boelsma E., van Vliet T., Olthof M.R., Katan M.B. Dietary serine and cystine attenuate the homocysteine-raising effect of dietary methionine: A randomized crossover trial in humans. Am. J. Clin. Nutr. 2004;80:674–679. doi: 10.1093/ajcn/80.3.674. PubMed DOI

Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI

Shimomura Y., Fujii H., Suzuki M., Murakami T., Fujitsuka N., Nakai N. Branched-chain alpha-keto acid dehydrogenase complex in rat skeletal muscle: Regulation of the activity and gene expression by nutrition and physical exercise. J. Nutr. 1995;125:1762S–1765S. PubMed

Holeček M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle. 2017;8:529–541. doi: 10.1002/jcsm.12208. PubMed DOI PMC

Holeček M. Why are branched-chain amino acids increased in starvation and diabetes? Nutrients. 2020;12:3087. doi: 10.3390/nu12103087. PubMed DOI PMC

Holeček M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021;70:293–305. doi: 10.33549/physiolres.934648. PubMed DOI PMC

Puckett S.W., Reddy W.J. A decrease in the malate--aspartate shuttle and glutamate translocase activity in heart mitochondria from alloxan-diabetic rats. J. Mol. Cell Cardiol. 1979;11:173–187. doi: 10.1016/0022-2828(79)90462-0. PubMed DOI

Holecek M. The BCAA-BCKA cycle: Its relation to alanine and glutamine synthesis and protein balance. Nutrition. 2001;17:70. doi: 10.1016/S0899-9007(00)00483-4. PubMed DOI

Holecek M. Relation between glutamine, branched-chain amino acids, and protein metabolism. Nutrition. 2002;18:30–33. doi: 10.1016/S0899-9007(01)00767-5. PubMed DOI

Shaham O., Wei R., Wang T.J., Ricciardi C., Lewis G.D., Vasan R.S., Carr S.A., Thadhani R., Gerszten R.E., Mootha V.K. Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol. Syst. Biol. 2008;4:214. doi: 10.1038/msb.2008.50. PubMed DOI PMC

Seibert R., Abbasi F., Hantash F.M., Caulfield M.P., Reaven G., Kim S.H. Relationship between insulin resistance and amino acids in women and men. Physiol. Rep. 2015;3:e12392. doi: 10.14814/phy2.12392. PubMed DOI PMC

Brosnan J.T., Man K.C., Hall D.E., Colbourne S.A., Brosnan M.E. Interorgan metabolism of amino acids in streptozotocin-diabetic ketoacidotic rat. Am. J. Physiol. 1983;244:E151–E158. doi: 10.1152/ajpendo.1983.244.2.E151. PubMed DOI

Aftring R.P., Miller W.J., Buse M.G. Effects of diabetes and starvation on skeletal muscle branched-chain alpha-keto acid dehydrogenase activity. Am. J. Physiol. 1988;254:E292–E300. doi: 10.1152/ajpendo.1988.254.3.E292. PubMed DOI

Wijekoon E.P., Skinner C., Brosnan M.E., Brosnan J.T. Amino acid metabolism in the Zucker diabetic fatty rat: Effects of insulin resistance and of type 2 diabetes. Can. J. Physiol. Pharmacol. 2004;82:506–514. doi: 10.1139/y04-067. PubMed DOI

Rodríguez T., Alvarez B., Busquets S., Carbó N., López-Soriano F.J., Argilés J.M. The increased skeletal muscle protein turnover of the streptozotocin diabetic rat is associated with high concentrations of branched-chain amino acids. Biochem. Mol. Med. 1997;61:87–94. doi: 10.1006/bmme.1997.2585. PubMed DOI

Borghi L., Lugari R., Montanari A., Dall’Argine P., Elia G.F., Nicolotti V., Simoni I., Parmeggiani A., Novarini A., Gnudi A. Plasma and skeletal muscle free amino acids in type I, insulin-treated diabetic subjects. Diabetes. 1985;34:812–815. doi: 10.2337/diab.34.8.812. PubMed DOI

She P., Olson K.C., Kadota Y., Inukai A., Shimomura Y., Hoppel C.L., Adams S.H., Kawamata Y., Matsumoto H., Sakai R., et al. Leucine and protein metabolism in obese Zucker rats. PLoS ONE. 2013;8:e59443. doi: 10.1371/journal.pone.0059443. PubMed DOI PMC

Würtz P., Soininen P., Kangas A.J., Rönnemaa T., Lehtimäki T., Kähönen M., Viikari J.S., Raitakari O.T., Ala-Korpela M. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36:648–655. doi: 10.2337/dc12-0895. PubMed DOI PMC

Wang T.J., Larson M.G., Vasan R.S., Cheng S., Rhee E.P., McCabe E., Lewis G.D., Fox C.S., Jacques P.F., Fernandez C., et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 2011;17:448–453. doi: 10.1038/nm.2307. PubMed DOI PMC

Harris L.L.S., Smith G.I., Patterson B.W., Ramaswamy R.S., Okunade A.L., Kelly S.C., Porter L.C., Klein S., Yoshino J., Mittendorfer B. Alterations in 3-hydroxyisobutyrate and FGF21 metabolism are associated with protein ingestion-induced insulin resistance. Diabetes. 2017;66:1871–1878. doi: 10.2337/db16-1475. PubMed DOI PMC

Yoon M.S. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 2016;8:405. doi: 10.3390/nu8070405. PubMed DOI PMC

Wolfson R.L., Chantranupong L., Saxton R.A., Shen K., Scaria S.M., Cantor J.R., Sabatini D.M. Sestrin2 is a leucine sensor for the mTORC1 pathway. Science. 2016;351:43–48. doi: 10.1126/science.aab2674. PubMed DOI PMC

Nair K.S., Short K.R. Hormonal and signaling role of branched-chain amino acids. J. Nutr. 2005;135:1547S–1552S. doi: 10.1093/jn/135.6.1547S. PubMed DOI

Ma Q., Zhou X., Hu L., Chen J., Zhu J., Shan A. Leucine and isoleucine have similar effects on reducing lipid accumulation, improving insulin sensitivity and increasing the browning of WAT in high-fat diet-induced obese mice. Food Funct. 2020;11:2279–2290. doi: 10.1039/C9FO03084K. PubMed DOI

Yao K., Duan Y., Li F., Tan B., Hou Y., Wu G., Yin Y. Leucine in obesity: Therapeutic prospects. Trends Pharmacol. Sci. 2016;37:714–727. doi: 10.1016/j.tips.2016.05.004. PubMed DOI

Cuomo P., Capparelli R., Iannelli A., Iannelli D. Role of branched-chain amino acid metabolism in type 2 diabetes, obesity, cardiovascular disease and non-alcoholic fatty liver disease. Int. J. Mol. Sci. 2022;23:4325. doi: 10.3390/ijms23084325. PubMed DOI PMC

White P.J., Lapworth A.L., An J., Wang L., McGarrah R.W., Stevens R.D., Ilkayeva O., George T., Muehlbauer M.J., Bain J.R., et al. Branched-chain amino acid restriction in Zucker-fatty rats improves muscle insulin sensitivity by enhancing efficiency of fatty acid oxidation and acyl-glycine export. Mol. Metab. 2016;5:538–551. doi: 10.1016/j.molmet.2016.04.006. PubMed DOI PMC

Haufe S., Engeli S., Kaminski J., Witt H., Rein D., Kamlage B., Utz W., Fuhrmann J.C., Haas V., Mähler A., et al. Branched-chain amino acid catabolism rather than amino acids plasma concentrations is associated with diet-induced changes in insulin resistance in overweight to obese individuals. Nutr. Metab. Cardiovasc. Dis. 2017;27:858–864. doi: 10.1016/j.numecd.2017.07.001. PubMed DOI

Mardinoglu A., Gogg S., Lotta L.A., Stančáková A., Nerstedt A., Boren J., Blüher M., Ferrannini E., Langenberg C., Wareham N.J., et al. Elevated plasma levels of 3-hydroxyisobutyric acid are associated with incident type 2 diabetes. EBioMedicine. 2018;27:151–155. doi: 10.1016/j.ebiom.2017.12.008. PubMed DOI PMC

Fernstrom J.D. Branched-chain amino acids and brain function. J. Nutr. 2005;135:1539S–1546S. doi: 10.1093/jn/135.6.1539S. PubMed DOI

Arjmand B., Ebrahimi Fana S., Ghasemi E., Kazemi A., Ghodssi-Ghassemabadi R., Dehghanbanadaki H., Najjar N., Kakaii A., Forouzanfar K., Nasli-Esfahani E., et al. Metabolic signatures of insulin resistance in non-diabetic individuals. BMC Endocr. Disord. 2022;22:212. doi: 10.1186/s12902-022-01130-3. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Aspartic Acid in Health and Disease

. 2023 Sep 17 ; 15 (18) : . [epub] 20230917

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...