Aspartic Acid in Health and Disease
Status Publisher Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
The Cooperati Program, research area METD
Charles University
PubMed
37764806
PubMed Central
PMC10536334
DOI
10.3390/nu15184023
PII: nu15184023
Knihovny.cz E-zdroje
- Klíčová slova
- aspartame, aspartate and cell-to-cell interactions, branched-chain amino acids, gluconeogenesis, glutamate–glutamine cycle, malate–aspartate shuttle, neurotransmission, oxaloacetate, purine-nucleotide cycle, urea cycle,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Aspartic acid exists in L- and D-isoforms (L-Asp and D-Asp). Most L-Asp is synthesized by mitochondrial aspartate aminotransferase from oxaloacetate and glutamate acquired by glutamine deamidation, particularly in the liver and tumor cells, and transamination of branched-chain amino acids (BCAAs), particularly in muscles. The main source of D-Asp is the racemization of L-Asp. L-Asp transported via aspartate-glutamate carrier to the cytosol is used in protein and nucleotide synthesis, gluconeogenesis, urea, and purine-nucleotide cycles, and neurotransmission and via the malate-aspartate shuttle maintains NADH delivery to mitochondria and redox balance. L-Asp released from neurons connects with the glutamate-glutamine cycle and ensures glycolysis and ammonia detoxification in astrocytes. D-Asp has a role in brain development and hypothalamus regulation. The hereditary disorders in L-Asp metabolism include citrullinemia, asparagine synthetase deficiency, Canavan disease, and dicarboxylic aminoaciduria. L-Asp plays a role in the pathogenesis of psychiatric and neurologic disorders and alterations in BCAA levels in diabetes and hyperammonemia. Further research is needed to examine the targeting of L-Asp metabolism as a strategy to fight cancer, the use of L-Asp as a dietary supplement, and the risks of increased L-Asp consumption. The role of D-Asp in the brain warrants studies on its therapeutic potential in psychiatric and neurologic disorders.
Zobrazit více v PubMed
Plisson A.A., Henry É.O. Recherches sur les substances organiques azotées [Research on nitrogenous organic substances] J. Pharm. Sci. Acc. 1830;16:729.
Thangaratnarajah C., Ruprecht J.J., Kunji E.R. Calcium-induced conformational changes of the regulatory domain of human mitochondrial aspartate/glutamate carriers. Nat. Commun. 2014;5:5491. doi: 10.1038/ncomms6491. PubMed DOI PMC
Birsoy K., Wang T., Chen W.W., Freinkman E., Abu-Remaileh M., Sabatini D.M. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162:540–551. doi: 10.1016/j.cell.2015.07.016. PubMed DOI PMC
Monné M., Vozza A., Lasorsa F.M., Porcelli V., Palmieri F. Mitochondrial carriers for aspartate, glutamate and other amino acids: A review. Int. J. Mol. Sci. 2019;20:4456. doi: 10.3390/ijms20184456. PubMed DOI PMC
Holeček M. Aspartate-glutamate carrier 2 (citrin): A role in glucose and amino acid metabolism in the liver. BMB Rep. 2023;56:385–391. doi: 10.5483/BMBRep.2023-0052. PubMed DOI PMC
Cavallero A., Marte A., Fedele E. L-aspartate as an amino acid neurotransmitter: Mechanisms of the depolarization-induced release from cerebrocortical synaptosomes. J. Neurochem. 2009;110:924–934. doi: 10.1111/j.1471-4159.2009.06187.x. PubMed DOI
Alleva C., Machtens J.P., Kortzak D., Weyand I., Fahlke C. Molecular basis of coupled transport and anion conduction in excitatory amino acid transporters. Neurochem. Res. 2022;47:9–22. doi: 10.1007/s11064-021-03252-x. PubMed DOI PMC
Errico F., Mothet J.P., Usiello A. D-Aspartate: An endogenous NMDA receptor agonist enriched in the developing brain with potential involvement in schizophrenia. J. Pharm. Biomed. Anal. 2015;116:7–17. doi: 10.1016/j.jpba.2015.03.024. PubMed DOI
Moffett J.R., Ross B., Arun P., Madhavarao C.N., Namboodiri A.M. N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Prog. Neurobiol. 2007;81:89–131. doi: 10.1016/j.pneurobio.2006.12.003. PubMed DOI PMC
Zhong C., Luo Q., Jiang J. Blockade of N-acetylaspartylglutamate peptidases: A novel protective strategy for brain injuries and neurological disorders. Int. J. Neurosci. 2014;124:867–873. doi: 10.3109/00207454.2014.890935. PubMed DOI
Ramos M., del Arco A., Pardo B., Martínez-Serrano A., Martínez-Morales J.R., Kobayashi K., Yasuda T., Bogónez E., Bovolenta P., Saheki T., et al. Developmental changes in the Ca2+-regulated mitochondrial aspartate-glutamate carrier aralar1 in brain and prominent expression in the spinal cord. Brain. Res. Dev. Brain Res. 2003;143:33–46. doi: 10.1016/S0165-3806(03)00097-X. PubMed DOI
Pardo B., Rodrigues T.B., Contreras L., Garzón M., Llorente-Folch I., Kobayashi K., Saheki T., Cerdan S., Satrústegui J. Brain glutamine synthesis requires neuronal-born aspartate as amino donor for glial glutamate formation. J. Cereb. Blood Flow Metab. 2011;31:90–101. doi: 10.1038/jcbfm.2010.146. PubMed DOI PMC
Pardo B., Contreras L., Satrústegui J. De novo synthesis of glial glutamate and glutamine in young mice requires aspartate provided by the neuronal mitochondrial aspartate-glutamate carrier aralar/AGC1. Front. Endocrinol. 2013;4:149. doi: 10.3389/fendo.2013.00149. PubMed DOI PMC
Xu Y., Ola M.S., Berkich D.A., Gardner T.W., Barber A.J., Palmieri F., Hutson S.M., LaNoue K.F. Energy sources for glutamate neurotransmission in the retina: Absence of the aspartate/glutamate carrier produces reliance on glycolysis in glia. J. Neurochem. 2007;101:120–131. doi: 10.1111/j.1471-4159.2006.04349.x. PubMed DOI
Garcia-Bermudez J., Baudrier L., La K., Zhu X.G., Fidelin J., Sviderskiy V.O., Papagiannakopoulos T., Molina H., Snuderl M., Lewis C.A., et al. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat. Cell Biol. 2018;20:775–781. doi: 10.1038/s41556-018-0118-z. PubMed DOI PMC
Sullivan L.B., Luengo A., Danai L.V., Bush L.N., Diehl F.F., Hosios A.M., Lau A.N., Elmiligy S., Malstrom S., Lewis C.A., et al. Aspartate is an endogenous metabolic limitation for tumour growth. Nat. Cell Biol. 2018;20:782–788. doi: 10.1038/s41556-018-0125-0. PubMed DOI PMC
Alkan H.F., Walter K.E., Luengo A., Madreiter-Sokolowski C.T., Stryeck S., Lau A.N., Al-Zoughbi W., Lewis C.A., Thomas C.J., Hoefler G., et al. Cytosolic aspartate availability determines cell survival when glutamine is limiting. Cell Metab. 2018;28:706–720. doi: 10.1016/j.cmet.2018.07.021. PubMed DOI PMC
Holeček M. Roles of malate and aspartate in gluconeogenesis in various physiological and pathological states. Metabolism. 2023;145:155614. doi: 10.1016/j.metabol.2023.155614. PubMed DOI
Kandasamy P., Gyimesi G., Kanai Y., Hediger M.A. Amino acid transporters revisited: New views in health and disease. Trends Biochem. Sci. 2018;43:752–789. doi: 10.1016/j.tibs.2018.05.003. PubMed DOI
Holecek M., Sispera L. Effects of arginine supplementation on amino acid profiles in blood and tissues in fed and overnight-fasted rats. Nutrients. 2016;8:206. doi: 10.3390/nu8040206. PubMed DOI PMC
Le Boucher J., Charret C., Coudray-Lucas C., Giboudeau J., Cynober L. Amino acid determination in biological fluids by automated ion-exchange chromatography: Performance of Hitachi L-8500A. Clin. Chem. 1997;43:1421–1428. doi: 10.1093/clinchem/43.8.1421. PubMed DOI
Windmueller H.G., Spaeth A.E. Metabolism of absorbed aspartate, asparagine, and arginine by rat small intestine in vivo. Arch. Biochem. Biophys. 1976;175:670–676. doi: 10.1016/0003-9861(76)90558-0. PubMed DOI
Brosnan M.E., Brosnan J.T. Renal arginine metabolism. J. Nutr. 2004;134:2791S–2795S. doi: 10.1093/jn/134.10.2791S. PubMed DOI
Levillain O. Expression and function of arginine-producing and consuming-enzymes in the kidney. Amino Acids. 2012;42:1237–1252. doi: 10.1007/s00726-011-0897-z. PubMed DOI
del Arco A., Satrústegui J. Molecular cloning of Aralar, a new member of the mitochondrial carrier superfamily that binds calcium and is present in human muscle and brain. J. Biol. Chem. 1998;273:23327–23334. doi: 10.1074/jbc.273.36.23327. PubMed DOI
Borst P. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life. 2020;72:2241–2259. doi: 10.1002/iub.2367. PubMed DOI PMC
Palmieri L., Pardo B., Lasorsa F.M., del Arco A., Kobayashi K., Iijima M., Runswick M.J., Walker J.E., Saheki T., Satrústegui J., et al. Citrin and aralar1 are Ca2+-stimulated aspartate/glutamate transporters in mitochondria. EMBO J. 2001;20:5060–5069. doi: 10.1093/emboj/20.18.5060. PubMed DOI PMC
Bond M., Vadasz G., Somlyo A.V., Somlyo A.P. Subcellular calcium and magnesium mobilization in rat liver stimulated in vivo with vasopressin and glucagon. J. Biol. Chem. 1987;262:15630–15636. doi: 10.1016/S0021-9258(18)47773-3. PubMed DOI
Keppens S., Vandenheede J.R., De Wulf H. On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase. Biochim. Biophys. Acta. 1977;496:448–457. doi: 10.1016/0304-4165(77)90327-0. PubMed DOI
Blackmore P.F., Waynick L.E., Blackman G.E., Graham C.W., Sherry R.S. Alpha- and beta-adrenergic stimulation of parenchymal cell Ca2+ influx. Influence of extracellular pH. J. Biol. Chem. 1984;259:12322–12325. doi: 10.1016/S0021-9258(18)90746-5. PubMed DOI
Contreras L., Rial E., Cerdan S., Satrustegui J. Uncoupling protein 2 (UCP2) Function in the Brain as Revealed by the Cerebral Metabolism of (1-13C)-Glucose. Neurochem. Res. 2017;42:108–114. doi: 10.1007/s11064-016-1999-5. PubMed DOI
Zhang H., Li J., Liang X., Luo Y., Zen K., Zhang C.Y. Uncoupling protein 2 negatively regulates glucose-induced glucagon-like peptide 1 secretion. J. Mol. Endocrinol. 2012;48:151–158. doi: 10.1530/JME-11-0114. PubMed DOI
Vozza A., Parisi G., De Leonardis F., Lasorsa F.M., Castegna A., Amorese D., Marmo R., Calcagnile V.M., Palmieri L., Ricquier D., et al. UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc. Natl. Acad. Sci. USA. 2014;111:960–965. doi: 10.1073/pnas.1317400111. PubMed DOI PMC
Lytovchenko O., Kunji E.R.S. Expression and putative role of mitochondrial transport proteins in cancer. Biochim. Biophys. Acta Bioenerg. 2017;1858:641–654. doi: 10.1016/j.bbabio.2017.03.006. PubMed DOI
Gorgoglione R., Porcelli V., Santoro A., Daddabbo L., Vozza A., Monné M., Di Noia M.A., Palmieri L., Fiermonte G., Palmieri F. The human uncoupling proteins 5 and 6 (UCP5/SLC25A14 and UCP6/SLC25A30) transport sulfur oxyanions, phosphate and dicarboxylates. Biochim. Biophys. Acta Bioenerg. 2019;1860:724–733. doi: 10.1016/j.bbabio.2019.07.010. PubMed DOI
Pi D., Liu Y., Shi H., Li S., Odle J., Lin X., Zhu H., Chen F., Hou Y., Leng W. Dietary supplementation of aspartate enhances intestinal integrity and energy status in weanling piglets after lipopolysaccharide challenge. J. Nutr. Biochem. 2014;25:456–462. doi: 10.1016/j.jnutbio.2013.12.006. PubMed DOI
Sheid B., Morrris H.P., Roth J.S. Distribution and activity of aspartate aminotransferase in some rapidly proliferating tissues. J. Biol. Chem. 1965;240:3016–3022. doi: 10.1016/S0021-9258(18)97280-7. PubMed DOI
Panteghini M. Aspartate aminotransferase isoenzymes. Clin. Biochem. 1990;23:311–319. doi: 10.1016/0009-9120(90)80062-N. PubMed DOI
Watford M. Hepatic glutaminase expression: Relationship to kidney-type glutaminase and to the urea cycle. FASEB J. 1993;7:1468–1474. doi: 10.1096/fasebj.7.15.8262331. PubMed DOI
Curthoys N.P., Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 1995;15:133–159. doi: 10.1146/annurev.nu.15.070195.001025. PubMed DOI
Márquez J., Matés J.M., Campos-Sandoval J.A. Glutaminases. Adv. Neurobiol. 2016;13:133–171. PubMed
Yoo H.C., Park S.J., Nam M., Kang J., Kim K., Yeo J.H., Kim J.K., Heo Y., Lee H.S., Lee M.Y. A variant of SLC1A5 is a mitochondrial glutamine transporter for metabolic reprogramming in cancer cells. Cell Metab. 2020;31:267–283. doi: 10.1016/j.cmet.2019.11.020. PubMed DOI
Suryawan A., Hawes J.W., Harris R.A., Shimomura Y., Jenkins A.E., Hutson S.M. A molecular model of human branched-chain amino acid metabolism. Am. J. Clin. Nutr. 1998;68:72–81. doi: 10.1093/ajcn/68.1.72. PubMed DOI
Harper A.E., Miller R.H., Block K.P. Branched-chain amino acid metabolism. Annu. Rev. Nutr. 1984;4:409–454. doi: 10.1146/annurev.nu.04.070184.002205. PubMed DOI
Hutson S.M., Fenstermacher D., Mahar C. Role of mitochondrial transamination in branched chain amino acid metabolism. J. Biol. Chem. 1988;263:3618–3625. doi: 10.1016/S0021-9258(18)68969-0. PubMed DOI
Morris A. Newly characterized mitochondrial BCAA transporter. Nat. Rev. Endocrinol. 2019;15:626. doi: 10.1038/s41574-019-0262-y. PubMed DOI
Haymond M.W., Miles J.M. Branched chain amino acids as a major source of alanine nitrogen in man. Diabetes. 1982;31:86–89. doi: 10.2337/diab.31.1.86. PubMed DOI
Galim E.B., Hruska K., Bier D.M., Matthews D.E., Haymond M.W. Branched-chain amino acid nitrogen transfer to alamine in vivo in dogs. Direct isotopic determination with [15N]leucine. J. Clin. Investig. 1980;66:1295–1304. doi: 10.1172/JCI109981. PubMed DOI PMC
Skeie B., Kvetan V., Gil K.M., Rothkopf M.M., Newsholme E.A., Askanazi J. Branch-chain amino acids: Their metabolism and clinical utility. Crit. Care Med. 1990;18:549–571. doi: 10.1097/00003246-199005000-00019. PubMed DOI
Genchi G. An overview on D-amino acids. Amino Acids. 2017;49:1521–1533. doi: 10.1007/s00726-017-2459-5. PubMed DOI
D’Aniello A. D-Aspartic acid: An endogenous amino acid with an important neuroendocrine role. Brain Res. Rev. 2007;53:215–234. doi: 10.1016/j.brainresrev.2006.08.005. PubMed DOI
Topo E., Soricelli A., D’Aniello A., Ronsini S., D’Aniello G. The role and molecular mechanism of D-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod. Biol. Endocrinol. 2009;7:120. doi: 10.1186/1477-7827-7-120. PubMed DOI PMC
Di Fiore M.M., Boni R., Santillo A., Falvo S., Gallo A., Esposito S., Baccari G.C. D-Aspartic acid in vertebrate reproduction: Animal models and experimental designs. Biomolecules. 2019;9:445. doi: 10.3390/biom9090445. PubMed DOI PMC
Usiello A., Di Fiore M.M., De Rosa A., Falvo S., Errico F., Santillo A., Nuzzo T., Chieffi Baccari G. New evidence on the role of D-aspartate metabolism in regulating brain and endocrine system physiology: From preclinical observations to clinical applications. Int. J. Mol. Sci. 2020;21:8718. doi: 10.3390/ijms21228718. PubMed DOI PMC
Arkhipova V., Trinco G., Ettema T.W., Jensen S., Slotboom D.J., Guskov A. Binding and transport of D-aspartate by the glutamate transporter homolog GltTk. eLife. 2019;8:e45286. doi: 10.7554/eLife.45286. PubMed DOI PMC
Reeds P.J., Garlick P.J. Protein and amino acid requirements and the composition of complementary foods. J. Nutr. 2003;133:2953S–2961S. doi: 10.1093/jn/133.9.2953S. PubMed DOI
Wan W.Y., Milner-White E.J. A natural grouping of motifs with an aspartate or asparagine residue forming two hydrogen bonds to residues ahead in sequence: Their occurrence at alpha-helical N termini and in other situations. J. Mol. Biol. 1999;286:1633–1649. doi: 10.1006/jmbi.1999.2552. PubMed DOI
Fujii N. D-amino acid in elderly tissues. Biol. Pharm. Bull. 2005;28:1585–1589. doi: 10.1248/bpb.28.1585. PubMed DOI
Geiger T., Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J. Biol. Chem. 1987;262:785–794. doi: 10.1016/S0021-9258(19)75855-4. PubMed DOI
Hooi M.Y., Raftery M.J., Truscott R.J. Interconversion of the peptide isoforms of aspartate: Stability of isoaspartates. Mech. Ageing Dev. 2013;134:103–109. doi: 10.1016/j.mad.2013.01.002. PubMed DOI
Mamula M.J., Gee R.J., Elliott J.I., Sette A., Southwood S., Jones P.J., Blier P.R. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J. Biol. Chem. 1999;274:22321–22327. doi: 10.1074/jbc.274.32.22321. PubMed DOI
Rodwell V.W., Bender D., Botham K. Harper’s Illustrated Biochemistry. 31st ed. McGraw-Hill’s Access Medicine; New York, NY, USA: 2018. 789p. Lange medical book.
Baynes J.W., Dominiczak M.H. Medical Biochemistry. 6th ed. Elsevier; Amsterdam, Netherlands: 2023. 744p.
Lane A.N., Fan T.W. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015;43:2466–2485. doi: 10.1093/nar/gkv047. PubMed DOI PMC
Villa E., Ali E.S., Sahu U., Ben-Sahra I. Cancer cells tune the signaling pathways to empower de novo synthesis of nucleotides. Cancers. 2019;11:688. doi: 10.3390/cancers11050688. PubMed DOI PMC
Milman H.A., Cooney D.A. The distribution of L-asparagine synthetase in the principal organs of several mammalian and avian species. Biochem. J. 1974;142:27–35. doi: 10.1042/bj1420027. PubMed DOI PMC
Balasubramanian M.N., Butterworth E.A., Kilberg M.S. Asparagine synthetase: Regulation by cell stress and involvement in tumor biology. Am. J. Physiol. 2013;304:E789–E799. doi: 10.1152/ajpendo.00015.2013. PubMed DOI PMC
Boos J., Werber G., Ahlke E., Schulze-Westhoff P., Nowak-Göttl U., Würthwein G., Verspohl E.J., Ritter J., Jürgens H. Monitoring of asparaginase activity and asparagine levels in children on different asparaginase preparations. Eur. J. Cancer. 1996;32A:1544–1550. doi: 10.1016/0959-8049(96)00131-1. PubMed DOI
Ray R.M., Viar M.J., Patel T.B., Johnson L.R. Interaction of asparagine and EGF in the regulation of ornithine decarboxylase in IEC-6 cells. Am. J. Physiol. 1999;276:G773–G780. doi: 10.1152/ajpgi.1999.276.3.G773. PubMed DOI
Krall A.S., Xu S., Graeber T.G., Braas D., Christofk H.R. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor. Nat. Commun. 2016;7:11457. doi: 10.1038/ncomms11457. PubMed DOI PMC
Windmueller H.G., Spaeth A.E. Source and fate of circulating citrulline. Am. J. Physiol. 1981;241:E473–E480. doi: 10.1152/ajpendo.1981.241.6.E473. PubMed DOI
Morris S.M., Jr. Arginine metabolism revisited. J. Nutr. 2016;146:2579S–2586S. doi: 10.3945/jn.115.226621. PubMed DOI
Yabaluri N., Bashyam M.D. Hormonal regulation of gluconeogenic gene transcription in the liver. J. Biosci. 2010;35:473–484. doi: 10.1007/s12038-010-0052-0. PubMed DOI
Lowenstein J.M. Ammonia production in muscle and other tissues: The purine nucleotide cycle. Physiol. Rev. 1972;52:382–414. doi: 10.1152/physrev.1972.52.2.382. PubMed DOI
Gorski J., Hood D.A., Brown O.M., Terjung R.L. Incorporation of 15N-leucine amine into ATP of fast-twitch muscle following stimulation. Biochem. Biophys. Res. Commun. 1985;128:1254–1260. doi: 10.1016/0006-291X(85)91075-7. PubMed DOI
Karl I.E., Garber A.J., Kipnis D.M. Alanine and glutamine synthesis and release from skeletal muscle. III. Dietary and hormonal regulation. J. Biol. Chem. 1976;251:844–850. doi: 10.1016/S0021-9258(17)33861-9. PubMed DOI
Holecek M., Siman P., Vodenicarovova M., Kandar R. Alterations in protein and amino acid metabolism in rats fed a branched-chain amino acid- or leucine-enriched diet during postprandial and postabsorptive states. Nutr. Metab. 2016;13:12. doi: 10.1186/s12986-016-0072-3. PubMed DOI PMC
She P., Reid T.M., Bronson S.K., Vary T.C., Hajnal A., Lynch C.J., Hutson S.M. Disruption of BCATm in mice leads to increased energy expenditure associated with the activation of a futile protein turnover cycle. Cell Metab. 2007;6:181–194. doi: 10.1016/j.cmet.2007.08.003. PubMed DOI PMC
Felig P. Amino acid metabolism in man. Annu. Rev. Biochem. 1975;44:933–955. doi: 10.1146/annurev.bi.44.070175.004441. PubMed DOI
Holeček M. Muscle amino acid and adenine nucleotide metabolism during exercise and in liver cirrhosis: Speculations on how to reduce the harmful effects of ammonia. Metabolites. 2022;12:971. doi: 10.3390/metabo12100971. PubMed DOI PMC
Newsholme E., Hardy G. Supplementation of diets with nutritional pharmaceuticals. Nutrition. 1997;13:837–839. doi: 10.1016/S0899-9007(97)00253-0. PubMed DOI
Hankard R.G., Haymond M.W., Darmaun D. Role of glutamine as a glucose precursor in fasting humans. Diabetes. 1997;46:1535–1541. doi: 10.2337/diacare.46.10.1535. PubMed DOI
Bröer S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol. Metab. 2022;33:120–135. doi: 10.1016/j.tem.2021.11.004. PubMed DOI
Holecek M., Skopec F., Skalská H., Sprongl L. Effect of alanyl-glutamine on leucine and protein metabolism in endotoxemic rats. JPEN J. Parenter. Enter. Nutr. 2000;24:215–222. doi: 10.1177/0148607100024004215. PubMed DOI
Holecek M., Sispera L., Skalska H. Enhanced glutamine availability exerts different effects on protein and amino acid metabolism in skeletal muscle from healthy and septic rats. JPEN J. Parenter. Enter. Nutr. 2015;39:847–854. doi: 10.1177/0148607114537832. PubMed DOI
Holecek M., Sispera L. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids. 2014;46:1377–1384. doi: 10.1007/s00726-014-1701-7. PubMed DOI
Durán R.V., Oppliger W., Robitaille A.M., Heiserich L., Skendaj R., Gottlieb E., Hall M. Glutaminolysis activates Rag-mTORC1 signaling. Mol. Cell. 2012;47:349–358. doi: 10.1016/j.molcel.2012.05.043. PubMed DOI
Patneau D.K., Mayer M.L. Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors. J. Neurosci. 1990;10:2385–2399. doi: 10.1523/JNEUROSCI.10-07-02385.1990. PubMed DOI PMC
Downing J.A., Joss J., Scaramuzzi R.J. The effects of N-methyl-D,L-aspartic acid and aspartic acid on the plasma concentration of gonadotrophins, GH and prolactin in the ewe. J. Endocrinol. 1996;149:65–72. doi: 10.1677/joe.0.1490065. PubMed DOI
Nadler J.V. Aspartate release and signalling in the hippocampus. Neurochem. Res. 2011;36:668–676. doi: 10.1007/s11064-010-0291-3. PubMed DOI
Wolosker H., D’Aniello A., Snyder S.H. D-aspartate disposition in neuronal and endocrine tissues: Ontogeny, biosynthesis and release. Neuroscience. 2000;100:183–189. doi: 10.1016/S0306-4522(00)00321-3. PubMed DOI
Hashimoto A., Kumashiro S., Nishikawa T., Oka T., Takahashi K., Mito T., Takashima S., Doi N., Mizutani Y., Yamazaki T. Embryonic development and postnatal changes in free D-aspartate and D-serine in the human prefrontal cortex. J. Neurochem. 1993;61:348–351. doi: 10.1111/j.1471-4159.1993.tb03575.x. PubMed DOI
Fujita T., Katsukawa H., Yodoya E., Wada M., Shimada A., Okada N., Yamamoto A., Ganapathy V. Transport characteristics of N-acetyl-L-aspartate in rat astrocytes: Involvement of sodium-coupled high-affinity carboxylate transporter NaC3/NaDC3-mediated transport system. J. Neurochem. 2005;93:706–714. doi: 10.1111/j.1471-4159.2005.03067.x. PubMed DOI
Tahay G., Wiame E., Tyteca D., Courtoy P.J., Van Schaftingen E. Determinants of the enzymatic activity and the subcellular localization of aspartate N-acetyltransferase. Biochem. J. 2012;441:105–112. doi: 10.1042/BJ20111179. PubMed DOI
Pinto J.T., Suffoletto B.P., Berzin T.M., Qiao C.H., Lin S., Tong W.P., May F., Mukherjee B., Heston W.D. Prostate-specific membrane antigen: A novel folate hydrolase in human prostatic carcinoma cells. Clin. Cancer Res. 1996;2:1445–1451. PubMed
Shibata K., Imanishi D., Abe K., Suzuki M., Takahashi S., Kera Y. d-Aspartate N-methyltransferase catalyzes biosynthesis of N-methyl-d-aspartate (NMDA), a well-known selective agonist of the NMDA receptor, in mice. Biochim. Biophys. Acta Proteins Proteom. 2020;1868:140527. doi: 10.1016/j.bbapap.2020.140527. PubMed DOI
Lindsay K.J., Du J., Sloat S.R., Contreras L., Linton J.D., Turner S.J., Sadilek M., Satrústegui J., Hurley J.B. Pyruvate kinase and aspartate-glutamate carrier distributions reveal key metabolic links between neurons and glia in retina. Proc. Natl. Acad. Sci. USA. 2014;111:15579–15584. doi: 10.1073/pnas.1412441111. PubMed DOI PMC
Norenberg M.D., Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979;161:303–310. doi: 10.1016/0006-8993(79)90071-4. PubMed DOI
Daikhin Y., Yudkoff M. Compartmentation of brain glutamate metabolism in neurons and glia. J. Nutr. 2000;130:1026S–1031S. doi: 10.1093/jn/130.4.1026S. PubMed DOI
McKenna M.C. The glutamate-glutamine cycle is not stoichiometric: Fates of glutamate in brain. J. Neurosci. Res. 2007;85:3347–3358. doi: 10.1002/jnr.21444. PubMed DOI
Broeks M.H., van Karnebeek C.D.M., Wanders R.J.A., Jans J.J.M., Verhoeven-Duif N.M. Inborn disorders of the malate aspartate shuttle. J. Inherit. Metab. Dis. 2021;44:792–808. doi: 10.1002/jimd.12402. PubMed DOI PMC
Dahlin M., Martin D.A., Hedlund Z., Jonsson M., von Döbeln U., Wedell A. The ketogenic diet compensates for AGC1 deficiency and improves myelination. Epilepsia. 2015;56:e176–e181. doi: 10.1111/epi.13193. PubMed DOI
Saheki T., Moriyama M., Funahashi A., Kuroda E. AGC2 (citrin) deficiency-from recognition of the disease till construction of therapeutic procedures. Biomolecules. 2020;10:1100. doi: 10.3390/biom10081100. PubMed DOI PMC
Arai-Ichinoi N., Kikuchi A., Wada Y., Sakamoto O., Kure S. Hypoglycemic attacks and growth failure are the most common manifestations of citrin deficiency after 1 year of age. J. Inherit. Metab. Dis. 2021;44:838–846. doi: 10.1002/jimd.12390. PubMed DOI
Komatsu M., Yazaki M., Tanaka N., Sano K., Hashimoto E., Takei Y., Song Y.Z., Tanaka E., Kiyosawa K., Saheki T., et al. Citrin deficiency as a cause of chronic liver disorder mimicking non-alcoholic fatty liver disease. J. Hepatol. 2008;49:810–820. doi: 10.1016/j.jhep.2008.05.016. PubMed DOI
Tavoulari S., Lacabanne D., Thangaratnarajah C., Kunji E.R.S. Pathogenic variants of the mitochondrial aspartate/glutamate carrier causing citrin deficiency. Trends Endocrinol. Metab. 2022;33:539–553. doi: 10.1016/j.tem.2022.05.002. PubMed DOI PMC
Chang K.W., Chen H.L., Chien Y.H., Chen T.C., Yeh C.T. SLC25A13 gene mutations in Taiwanese patients with non-viral hepatocellular carcinoma. Mol. Genet. Metab. 2011;103:293–296. doi: 10.1016/j.ymgme.2011.03.013. PubMed DOI
Tsai C.W., Yang C.C., Chen H.L., Hwu W.L., Wu M.Z., Liu K.L., Wu M.S. Homozygous SLC25A13 mutation in a Taiwanese patient with adult-onset citrullinemia complicated with steatosis and hepatocellular carcinoma. J. Formos. Med. Assoc. 2006;105:852–856. doi: 10.1016/S0929-6646(09)60274-6. PubMed DOI
Hagiwara N., Sekijima Y., Takei Y., Ikeda S., Kawasaki S., Kobayashi K., Saheki T. Hepatocellular carcinoma in a case of adult-onset type II citrullinemia. Intern. Med. 2003;42:978–982. doi: 10.2169/internalmedicine.42.978. PubMed DOI
Ito T., Shiraki K., Sekoguchi K., Yamanaka T., Sugimoto K., Takase K., Tameda Y., Nakano T. Hepatocellular carcinoma associated with adult-type citrullinemia. Dig. Dis. Sci. 2000;45:2203–2206. doi: 10.1023/A:1026439913915. PubMed DOI
Infantino V., Dituri F., Convertini P., Santarsiero A., Palmieri F., Todisco S., Mancarella S., Giannelli G., Iacobazzi V. Epigenetic upregulation and functional role of the mitochondrial aspartate/glutamate carrier isoform 1 in hepatocellular carcinoma. Biochim. Biophys. Acta Mol. Basis Dis. 2019;1865:38–47. doi: 10.1016/j.bbadis.2018.10.018. PubMed DOI
Mention K., Joncquel Chevalier Curt M., Dessein A.F., Douillard C., Dobbelaere D., Vamecq J. Citrin deficiency: Does the reactivation of liver aralar-1 come into play and promote HCC development? Biochimie. 2021;190:20–23. doi: 10.1016/j.biochi.2021.06.018. PubMed DOI
Lomelino C.L., Andring J.T., McKenna R., Kilberg M.S. Asparagine synthetase: Function, structure, and role in disease. J. Biol. Chem. 2017;292:19952–19958. doi: 10.1074/jbc.R117.819060. PubMed DOI PMC
Ruzzo E.K., Capo-Chichi J.M., Ben-Zeev B., Chitayat D., Mao H., Pappas A.L., Hitomi Y., Lu Y.F., Yao X., Hamdan F.F. Deficiency of asparagine synthetase causes congenital microcephaly and a progressive form of encephalopathy. Neuron. 2013;80:429–441. doi: 10.1016/j.neuron.2013.08.013. PubMed DOI PMC
Sacharow S.J., Dudenhausen E.E., Lomelino C.L., Rodan L., El Achkar C.M., Olson H.E., Genetti C.A., Agrawal P.B., McKenna R., Kilberg M.S. Characterization of a novel variant in siblings with asparagine synthetase deficiency. Mol. Genet. Metab. 2018;123:317–325. doi: 10.1016/j.ymgme.2017.12.433. PubMed DOI PMC
Alrifai M.T., Alfadhel M. Worsening of seizures after asparagine supplementation in a child with asparagine synthetase deficiency. Pediatr. Neurol. 2016;58:98–100. doi: 10.1016/j.pediatrneurol.2016.01.024. PubMed DOI
Walker V. Ammonia metabolism and hyperammonemic disorders. Adv. Clin. Chem. 2014;67:73–150. PubMed
Peghini P., Janzen J., Stoffel W. Glutamate transporter EAAC-1-deficient mice develop dicarboxylic aminoaciduria and behavioral abnormalities but no neurodegeneration. EMBO J. 1997;16:3822–3832. doi: 10.1093/emboj/16.13.3822. PubMed DOI PMC
Yahyaoui R., Pérez-Frías J. Amino acid transport defects in human inherited metabolic disorders. Int. J. Mol. Sci. 2019;21:119. doi: 10.3390/ijms21010119. PubMed DOI PMC
Gorgoglione R., Impedovo V., Riley C.L., Fratantonio D., Tiziani S., Palmieri L., Dolce V., Fiermonte G. Aspartate biosynthesis in cancer cells: Role of mitochondrial transporters and new therapeutic perspectives. Cancers. 2022;14:245. doi: 10.3390/cancers14010245. PubMed DOI PMC
Lukey M.J., Katt W.P., Cerione R.A. Targeting amino acid metabolism for cancer therapy. Drug Discov. Today. 2017;22:796–804. doi: 10.1016/j.drudis.2016.12.003. PubMed DOI PMC
Song Z., Yang Y., Wu Y., Zheng M., Sun D., Li H., Chen L. Glutamic oxaloacetic transaminase 1 as a potential target in human cancer. Eur. J. Pharmacol. 2022;917:174754. doi: 10.1016/j.ejphar.2022.174754. PubMed DOI
Miyo M., Konno M., Nishida N., Sueda T., Noguchi K., Matsui H., Colvin H., Kawamoto K., Koseki J., Haraguchi N. Metabolic adaptation to nutritional stress in human colorectal cancer. Sci. Rep. 2016;6:38415. doi: 10.1038/srep38415. PubMed DOI PMC
Amoedo N.D., Punzi G., Obre E., Lacombe D., De Grassi A., Pierri C.L., Rossignol R. AGC1/2, the mitochondrial aspartate-glutamate carriers. Biochim. Biophys. Acta. 2016;1863:2394–2412. doi: 10.1016/j.bbamcr.2016.04.011. PubMed DOI
Lv Y., Yuan C.H., Han L.Y., Huang G.R., Ju L.C., Chen L.H., Han H.Y., Zhang C., Zeng L.H. The overexpression of SLC25A13 predicts poor prognosis and is correlated with immune cell infiltration in patients with skin cutaneous melanoma. Dis. Markers. 2022;2022:4091978. doi: 10.1155/2022/4091978. PubMed DOI PMC
Sullivan L.B., Gui D.Y., Hosios A.M., Bush L.N., Freinkman E., Vander Heiden M.G. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell. 2015;162:552–563. doi: 10.1016/j.cell.2015.07.017. PubMed DOI PMC
Broome J.D. Studies on the mechanism of tumor inhibition by L-asparaginase. Effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HED lymphomas of mice: Differences in asparagine formation and utilization in asparaginase-sensitive and -resistant lymphoma cells. J. Exp. Med. 1968;127:1055–1072. PubMed PMC
Egler R.A., Ahuja S.P., Matloub Y. L-asparaginase in the treatment of patients with acute lymphoblastic leukemia. J. Pharmacol. Pharmacother. 2016;7:62–71. doi: 10.4103/0976-500X.184769. PubMed DOI PMC
Dufour E., Gay F., Aguera K., Scoazec J.Y., Horand F., Lorenzi P.L., Godfrin Y. Pancreatic tumor sensitivity to plasma L-asparagine starvation. Pancreas. 2012;41:940–948. doi: 10.1097/MPA.0b013e318247d903. PubMed DOI
Ghasemi M., Phillips C., Trillo L., De Miguel Z., Das D., Salehi A. The role of NMDA receptors in the pathophysiology and treatment of mood disorders. Neurosci. Biobehav. Rev. 2014;47:336–358. doi: 10.1016/j.neubiorev.2014.08.017. PubMed DOI
Errico F., Napolitano F., Squillace M., Vitucci D., Blasi G., de Bartolomeis A., Bertolino A., D’Aniello A., Usiello A. Decreased levels of D-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia. J. Psychiatr. Res. 2013;47:1432–1437. doi: 10.1016/j.jpsychires.2013.06.013. PubMed DOI
Paslakis G., Träber F., Roberz J., Block W., Jessen F. N-acetyl-aspartate (NAA) as a correlate of pharmacological treatment in psychiatric disorders: A systematic review. Eur. Neuropsychopharmacol. 2014;24:1659–1675. doi: 10.1016/j.euroneuro.2014.06.004. PubMed DOI
Xu J., Jakher Y., Ahrens-Nicklas R.C. Brain branched-chain amino acids in maple syrup urine disease: Implications for neurological disorders. Int. J. Mol. Sci. 2020;21:7490. doi: 10.3390/ijms21207490. PubMed DOI PMC
Holeček M. Why are branched-chain amino acids increased in starvation and diabetes? Nutrients. 2020;12:3087. doi: 10.3390/nu12103087. PubMed DOI PMC
Holeček M. The role of skeletal muscle in the pathogenesis of altered concentrations of branched-chain amino acids (valine, leucine, and isoleucine) in liver cirrhosis, diabetes, and other diseases. Physiol. Res. 2021;70:293–305. doi: 10.33549/physiolres.934648. PubMed DOI PMC
Holeček M., Vodeničarovová M., Fingrová R. Dual effects of beta-hydroxy-beta-methylbutyrate (HMB) on amino acid, energy, and protein metabolism in the liver and muscles of rats with streptozotocin-induced type 1 diabetes. Biomolecules. 2020;10:1475. doi: 10.3390/biom10111475. PubMed DOI PMC
Brosnan J.T., Man K.C., Hall D.E., Colbourne S.A., Brosnan M.E. Interorgan metabolism of amino acids in streptozotocin-diabetic ketoacidotic rat. Am. J. Physiol. 1983;244:E151–E158. doi: 10.1152/ajpendo.1983.244.2.E151. PubMed DOI
Rodríguez T., Alvarez B., Busquets S., Carbó N., López-Soriano F.J., Argilés J.M. The increased skeletal muscle protein turnover of the streptozotocin diabetic rat is associated with high concentrations of branched-chain amino acids. Biochem. Mol. Med. 1997;61:87–94. doi: 10.1006/bmme.1997.2585. PubMed DOI
Holeček M. Role of impaired glycolysis in perturbations of amino acid metabolism in diabetes mellitus. Int. J. Mol. Sci. 2023;24:1724. doi: 10.3390/ijms24021724. PubMed DOI PMC
Hayashi M., Ohnishi H., Kawade Y., Muto Y., Takahashi Y. Augmented utilization of branched-chain amino acids by skeletal muscle in decompensated liver cirrhosis in special relation to ammonia detoxication. Gastroenterol. Jpn. 1981;16:64–70. doi: 10.1007/BF02820426. PubMed DOI
Holecek M., Sprongl L., Tichý M. Effect of hyperammonemia on leucine and protein metabolism in rats. Metabolism. 2000;49:1330–1334. doi: 10.1053/meta.2000.9531. PubMed DOI
Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI
Rodney S., Boneh A. Amino acid profiles in patients with urea cycle disorders at admission to hospital due to metabolic decompensation. JIMD Rep. 2013;9:97–104. PubMed PMC
Holeček M., Vodeničarovová M. Muscle wasting and branched-chain amino acid, alpha-ketoglutarate, and ATP depletion in a rat model of liver cirrhosis. Int. J. Exp. Pathol. 2018;99:274–281. doi: 10.1111/iep.12299. PubMed DOI PMC
Yao Z.P., Li Y., Liu Y., Wang H.L. Relationship between the incidence of non-hepatic hyperammonemia and the prognosis of patients in the intensive care unit. World J. Gastroenterol. 2020;26:7222–7231. doi: 10.3748/wjg.v26.i45.7222. PubMed DOI PMC
McDaniel J., Davuluri G., Hill E.A., Moyer M., Runkana A., Prayson R., van Lunteren E., Dasarathy S. Hyperammonemia results in reduced muscle function independent of muscle mass. Am. J. Physiol. 2016;310:G163–G170. doi: 10.1152/ajpgi.00322.2015. PubMed DOI PMC
Kumar A., Davuluri G., Silva R.N.E., Engelen M.P.K.J., Ten Have G.A.M., Prayson R., Deutz N.E.P., Dasarathy S. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65:2045–2058. doi: 10.1002/hep.29107. PubMed DOI PMC
Trudeau F. Aspartate as an ergogenic supplement. Sports Med. 2008;38:9–16. doi: 10.2165/00007256-200838010-00002. PubMed DOI
Ji L.L., Miller R.H., Nagle F.J., Lardy H.A., Stratman F.W. Amino acid metabolism during exercise in trained rats: The potential role of carnitine in the metabolic fate of branched-chain amino acids. Metabolism. 1987;36:748–752. doi: 10.1016/0026-0495(87)90111-9. PubMed DOI
Adán C., Ardévol A., Rafecas I., Remesar X., Alemany M., Fernández-López J.A. Amino acid nitrogen handling by hind leg muscle of the rat during exercise. Arch. Physiol. Biochem. 1997;105:478–486. doi: 10.1076/apab.105.5.478.3284. PubMed DOI
Bergström J., Fürst P., Hultman E. Free amino acids in muscle tissue and plasma during exercise in man. Clin. Physiol. 1985;5:155–160. doi: 10.1111/j.1475-097X.1985.tb00591.x. PubMed DOI
Colombani P.C., Bitzi R., Frey-Rindova P., Frey W., Arnold M., Langhans W., Wenk C. Chronic arginine aspartate supplementation in runners reduces total plasma amino acid level at rest and during a marathon run. Eur. J. Nutr. 1999;38:263–270. doi: 10.1007/s003940050076. PubMed DOI
Lancha A.H., Jr., Recco M.B., Abdalla D.S., Curi R. Effect of aspartate, asparagine, and carnitine supplementation in the diet on metabolism of skeletal muscle during a moderate exercise. Physiol. Behav. 1995;57:367–371. doi: 10.1016/0031-9384(94)00243-X. PubMed DOI
Marquezi M.L., Roschel H.A., dos Santa Costa A., Sawada L.A., Lancham A.H., Jr. Effect of aspartate and asparagine supplementation on fatigue determinants in intense exercise. Int. J. Sport Nutr. Exerc. Metab. 2003;13:65–75. doi: 10.1123/ijsnem.13.1.65. PubMed DOI
Butterworth R.F. Ammonia removal by metabolic scavengers for the prevention and treatment of hepatic encephalopathy in cirrhosis. Drugs R D. 2021;21:123–132. doi: 10.1007/s40268-021-00345-4. PubMed DOI PMC
Sivakumar R., Anandh Babu P.V., Shyamaladevi C.S. Protective effect of aspartate and glutamate on cardiac mitochondrial function during myocardial infarction in experimental rats. Chem. Biol. Interact. 2008;176:227–233. doi: 10.1016/j.cbi.2008.08.008. PubMed DOI
Sivakumar R., Babu P.V., Shyamaladevi C.S. Aspartate and glutamate prevents isoproterenol-induced cardiac toxicity by alleviating oxidative stress in rats. Exp. Toxicol. Pathol. 2011;63:137–142. doi: 10.1016/j.etp.2009.10.008. PubMed DOI
Hou E., Sun N., Zhang F., Zhao C., Usa K., Liang M., Tian Z. Malate and aspartate increase L-arginine and nitric oxide and attenuate hypertension. Cell Rep. 2017;19:1631–1639. doi: 10.1016/j.celrep.2017.04.071. PubMed DOI
Ichikawa S., Gohda T., Murakoshi M., Li Z., Adachi E., Koshida T., Suzuki Y. Aspartic acid supplementation ameliorates symptoms of diabetic kidney disease in mice. FEBS Open Bio. 2020;10:1122–1134. doi: 10.1002/2211-5463.12862. PubMed DOI PMC
Nofre C., Tinti J.-M. Neotame: Discovery, properties, utility. Food Chem. 2000;69:245–257. doi: 10.1016/S0308-8146(99)00254-X. DOI
Magnuson B.A., Burdock G.A., Doull J., Kroes R.M., Marsh G.M., Pariza M.W., Spencer P.S., Waddell W.J., Walker R., Williams G.M. Aspartame: A safety evaluation based on current use levels, regulations, and toxicological and epidemiological studies. Crit. Rev. Toxicol. 2007;37:629–727. doi: 10.1080/10408440701516184. PubMed DOI
Choudhary A.K., Lee Y.Y. Neurophysiological symptoms and aspartame: What is the connection? Nutr. Neurosci. 2018;21:306–316. doi: 10.1080/1028415X.2017.1288340. PubMed DOI
Debras C., Chazelas E., Sellem L., Porcher R., Druesne-Pecollo N., Esseddik Y., de Edelenyi F.S., Agaësse C., De Sa A., Lutchia R. Artificial sweeteners and risk of cardiovascular diseases: Results from the prospective NutriNet-Santé cohort. BMJ. 2022;378:e071204. doi: 10.1136/bmj-2022-071204. PubMed DOI PMC
Debras C., Chazelas E., Srour B., Druesne-Pecollo N., Esseddik Y., Szabo de Edelenyi F., Agaësse C., De Sa A., Lutchia R., Gigandet S. Artificial sweeteners and cancer risk: Results from the NutriNet-Santé population-based cohort study. PLoS Med. 2022;19:e1003950. doi: 10.1371/journal.pmed.1003950. PubMed DOI PMC
Naddaf M. Aspartame is a possible carcinogen: The science behind the decision. Nature. 2023. ahead of print . PubMed DOI
Jones A.W. Clinical and forensic toxicology of methanol. Forensic Sci. Rev. 2021;33:117–143. PubMed
Goran M.I., Plows J.F., Ventura E.E. Effects of consuming sugars and alternative sweeteners during pregnancy on maternal and child health: Evidence for a secondhand sugar effect. Proc. Nutr. Soc. 2019;78:262–271. doi: 10.1017/S002966511800263X. PubMed DOI PMC
Azad M.B., Sharma A.K., de Souza R.J., Dolinsky V.W., Becker A.B., Mandhane P.J., Turvey S.E., Subbarao P., Lefebvre D.L., Sears M.R., et al. Association between artificially sweetened beverage consumption during pregnancy and infant body mass index. JAMA Pediatr. 2016;170:662–670. doi: 10.1001/jamapediatrics.2016.0301. PubMed DOI
Zhu Y., Olsen S.F., Mendola P., Halldorsson T.I., Rawal S., Hinkle S.N., Yeung E.H., Chavarro J.E., Grunnet L.G., Granström C., et al. Maternal consumption of artificially sweetened beverages during pregnancy, and offspring growth through 7 years of age: A prospective cohort study. Int. J. Epidemiol. 2017;46:1499–1508. doi: 10.1093/ije/dyx095. PubMed DOI PMC
Wilk K., Korytek W., Pelczyńska M., Moszak M., Bogdański P. The effect of artificial sweeteners use on sweet taste perception and weight loss efficacy: A review. Nutrients. 2022;14:1261. doi: 10.3390/nu14061261. PubMed DOI PMC
Roshanzamir F., Safavi S.M. The putative effects of D-Aspartic acid on blood testosterone levels: A systematic review. Int. J. Reprod. Biomed. 2017;15:1–10. doi: 10.29252/ijrm.15.1.1. PubMed DOI PMC
Willoughby D.S., Leutholtz B. D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men. Nutr. Res. 2013;33:803–810. doi: 10.1016/j.nutres.2013.07.010. PubMed DOI
Melville G.W., Siegler J.C., Marshall P.W.M. The effects of d-aspartic acid supplementation in resistance-trained men over a three month training period: A randomised controlled trial. PLoS ONE. 2017;12:e0182630. doi: 10.1371/journal.pone.0182630. PubMed DOI PMC
D’Aniello G., Grieco N., Di Filippo M.A., Cappiello F., Topo E., D’Aniello E., Ronsini S. Reproductive implication of D-aspartic acid in human pre-ovulatory follicular fluid. Hum. Reprod. 2007;22:3178–3183. doi: 10.1093/humrep/dem328. PubMed DOI
Wang X., Liu Y., Li S., Pi D., Zhu H., Hou Y., Shi H., Leng W. Asparagine attenuates intestinal injury, improves energy status and inhibits AMP-activated protein kinase signalling pathways in weaned piglets challenged with Escherichia coli lipopolysaccharide. Br. J. Nutr. 2015;114:553–565. doi: 10.1017/S0007114515001877. PubMed DOI
Ahlborg B., Ekelund L.G., Nilsson C.G. Effect of potassium-magnesium-aspartate on the capacity for prolonged exercise in man. Acta Physiol. Scand. 1968;74:238–245. doi: 10.1111/j.1365-201X.1968.tb10917.x. PubMed DOI
Hagan R.D., Upton S.J., Duncan J.J., Cummings J.M., Gettman L.R. Absence of effect of potassium-magnesium aspartate on physiologic responses to prolonged work in aerobically trained men. Int. J. Sports Med. 1982;3:177–181. doi: 10.1055/s-2008-1026085. PubMed DOI
Maughan R.J., Sadler D.J. The effects of oral administration of salts of aspartic acid on the metabolic response to prolonged exhausting exercise in man. Int. J. Sports Med. 1983;4:119–123. doi: 10.1055/s-2008-1026024. PubMed DOI
Sen Gupta J., Srivastava K.K. Effect of potassium-magnesium aspartate on endurance work in man. Indian J. Exp. Biol. 1973;11:392–394. PubMed