Effects of Arginine Supplementation on Amino Acid Profiles in Blood and Tissues in Fed and Overnight-Fasted Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27070638
PubMed Central
PMC4848675
DOI
10.3390/nu8040206
PII: nu8040206
Knihovny.cz E-zdroje
- Klíčová slova
- amino acids, arginine, nutrition, nutritional supplements, starvation,
- MeSH
- aminokyseliny krev MeSH
- arginin aplikace a dávkování farmakologie MeSH
- krysa rodu Rattus MeSH
- potkani Wistar MeSH
- potravinová deprivace fyziologie MeSH
- potravní doplňky * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- arginin MeSH
Chronic arginine intake is believed to have favorable effects on the body. However, it might be hypothesized that excessive consumption of an individual amino acid exerts adverse effects on distribution and metabolism of other amino acids. We evaluated the effect of chronic intake of arginine on amino acid concentrations in blood plasma, liver, kidneys, and soleus and extensor digitorum longus muscles. Rats were fed a standard diet or a high-arginine diet (HAD) for two months. Half of the animals in each group were sacrificed in the fed state, and the other half after fasting overnight. HAD increased blood plasma concentrations of urea, creatinine, arginine, and ornithine and decreased most other amino acids. Arginine and ornithine also increased in muscles and kidneys; an increase of lysine was observed in both muscle types. Methionine, phenylalanine, threonine, asparagine, glycine, serine, and taurine decreased in most tissues of HAD fed animals. Most of the effects of HAD disappeared after overnight fasting. It is concluded that (i) enhanced dietary arginine intake alters distribution of almost all amino acids; and (ii) to attain a better assessment of the effects of various nutritional interventions, an appropriate number of biochemical measurements must be performed in both postprandial and postabsorptive states.
Zobrazit více v PubMed
Morris S.M. Arginine: Beyond protein. Am. J. Clin. Nutr. 2006;83:508S–512S. PubMed
Das U.N., Repossi G., Dain A., Eynard A.R. l-arginine, NO and asymmetrical dimethylarginine in hypertension and type 2 diabetes. Front. Biosci. 2011;16:13–20. doi: 10.2741/3672. PubMed DOI
Zhou M., Martindale R.G. Arginine in the critical care setting. J. Nutr. 2007;137:1687S–1692S. PubMed
Barbul A., Sisto D.A., Wasserkrug H.L., Efron G. Arginine stimulates lymphocyte immune response in healthy human beings. Surgery. 1981;90:244–251. PubMed
Evans R.W., Fernstrom J.D., Thompson J., Morris S.M., Kuller L.H. Biochemical responses of healthy subjects during dietary supplementation with l-arginine. J. Nutr. Biochem. 2004;15:534–539. doi: 10.1016/j.jnutbio.2004.03.005. PubMed DOI
Bergström J., Fürst P., Norée L.O., Vinnars E. Intracellular free amino acid concentration in human muscle tissue. J. Appl. Physiol. 1974;36:693–697. PubMed
Graham J.A., Lamb J.F., Linton A.L. Measurement of body water and intracellular electrolytes by means of muscle biopsy. Lancet. 1976;2:1172–1176. doi: 10.1016/S0140-6736(67)91892-2. PubMed DOI
Xiong Y., Fru M.F., Yu Y., Montani J.P., Ming X.F., Yang Z. Long term exposure to l-arginine accelerates endothelial cell senescence through arginase-II and S6K1 signaling. Aging. 2014;6:369–379. doi: 10.18632/aging.100663. PubMed DOI PMC
Rabier D., Kamoun P. Metabolism of citrulline in man. Amino Acids. 1995;9:299–316. doi: 10.1007/BF00807268. PubMed DOI
Li H., Meininger C.J., Hawker J.R., Haynes T.E., Kepka-Lenhart D., Mistry S.K., Morris S.M., Wu G. Regulatory role of arginase I and II in nitric oxide, polyamine, and proline syntheses in endothelial cells. Am. J. Physiol. Endocrinol. Metab. 2001;280:E75–E82. PubMed
Holecek M., Kovarik M. Alterations in protein metabolism and amino acid concentrations in rats fed by a high-protein (casein-enriched) diet—Effect of starvation. Food Chem. Toxicol. 2011;49:3336–3342. doi: 10.1016/j.fct.2011.09.016. PubMed DOI
Christensen H.N. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol. Rev. 1990;70:43–77. PubMed
Kovarik M., Muthny T., Sispera L., Holecek M. The dose-dependent effects of endotoxin on protein metabolism in two types of rat skeletal muscle. J. Physiol. Biochem. 2012;68:385–395. doi: 10.1007/s13105-012-0150-6. PubMed DOI
Holecek M., Sispera L. Glutamine deficiency in extracellular fluid exerts adverse effects on protein and amino acid metabolism in skeletal muscle of healthy, laparotomized, and septic rats. Amino Acids. 2014;46:1377–1384. doi: 10.1007/s00726-014-1701-7. PubMed DOI
Holecek M., Kandar R., Sispera L., Kovarik M. Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: Different sensitivity of red and white muscle. Amino Acids. 2011;40:575–584. doi: 10.1007/s00726-010-0679-z. PubMed DOI
Holecek M., Sispera L., Skalska H. Enhanced glutamine availability exerts different effects on protein and amino acid metabolism in skeletal muscle from healthy and septic rats. J. Parenter. Enter. Nutr. 2015;39:847–854. doi: 10.1177/0148607114537832. PubMed DOI
Flodin N.W. The metabolic roles, pharmacology, and toxicology of lysine. J. Am. Coll. Nutr. 1997;16:7–21. doi: 10.1080/07315724.1997.10718644. PubMed DOI
Bergström J., Fürst P., Vinnars E. Effect of a test meal, without and with protein, on muscle and plasma free amino acids. Clin. Sci. 1990;79:331–337. doi: 10.1042/cs0790331. PubMed DOI
Bushinsky D.A., Gennari F.J. Life-threatening hyperkalemia induced by arginine. Ann. Intern. Med. 1978;89:632–634. doi: 10.7326/0003-4819-89-5-632. PubMed DOI
Barron J.L., Klaff L.J., Levitt N.S., Ling N., Millar R.P. Arginine hydrochloride stimulation of serum potassium and aldosterone is enhanced by somatostatin-28. Acta Endocrinol. 1984;105:407–410. doi: 10.1530/acta.0.1050407. PubMed DOI
Whang R., Papper S., Llach F. Arginine-induced hypermagnesemia and hyperkalemia in nephrectomized rats. Magnesium. 1988;7:23–26. PubMed
Schulze F., Glos S., Petruschka D., Altenburg C., Maas R., Benndorf R., Schwedhelm E., Beil U., Böger R.H. l-Arginine enhances the triglyceride-lowering effect of simvastatin in patients with elevated plasma triglycerides. Nutr. Res. 2009;29:291–297. doi: 10.1016/j.nutres.2009.04.004. PubMed DOI
Yang Y., Wu Z., Jia S., Dahanayaka S., Feng S., Meininger C.J., McNeal C.J., Wu G. Safety of long-term dietary supplementation with l-arginine in rats. Amino Acids. 2015;47:1909–1920. doi: 10.1007/s00726-015-1992-3. PubMed DOI
Aspartic Acid in Health and Disease
Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver
Side effects of amino acid supplements